Research Article
BibTex RIS Cite

Biotechnological Potential of Thymus sipyleus Boiss. subsp. sipyleus Extract in the Inhibition of Some Metabolic Enzyme Activities

Year 2025, Volume: 1 Issue: 2, 43 - 50, 31.10.2025

Abstract

Thymus sipyleus Boiss. subsp. sipyleus, a plant widely used in traditional medicine, holds substantial promise in the biotechnological field due to its bioactive compounds. This study explores the inhibitory effects of Thymus sipyleus Boiss. subsp. sipyleus extract on six major enzymes—acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), lipoxygenase (LOX), α-amylase, tyrosinase, and xanthine oxidase (XO)—which are critical in various pathological processes such as neurodegenerative diseases, metabolic disorders, and skin pigmentation issues. Through advanced enzymatic assays, we demonstrate the extract’s potent inhibitory activity, especially against AChE and BuChE, which are relevant targets in Alzheimer’s therapy, and LOX, implicated in inflammatory diseases. Among the three different extracts tested (water, methanol, and ethanol), the methanol extract exhibited the highest enzyme inhibitory activities, with inhibition rates of 46.23% for LOX, 42.05% for AChE, 38.27% for BuChE, 36.26% for XO, 33.71% for α-amylase, and 26.93% for tyrosinase. The ethanol extract followed with slightly lower but comparable results (AChE: 40.29%, BuChE: 37.64%, LOX: 43.32%), while the water extract showed the lowest inhibitory activity across all enzymes tested (AChE: 38.22%, BuChE: 34.78%, LOX: 40.3%). Although none of the extracts matched the effectiveness of standard inhibitors, their moderate to strong activity indicates substantial therapeutic potential. The results highlight the biotechnological potential of Thymus sipyleus Boiss. subsp. sipyleus extract as a natural source for the development of enzyme-specific inhibitors. The findings suggest that this plant can serve as a sustainable, plant-based alternative for producing bioactive compounds, thereby contributing to the design of novel therapeutic strategies in biotechnology, including neuroprotective, anti-inflammatory, and anti-diabetic treatments.

Ethical Statement

The author declares that this study complies with Research and Publication Ethics.

References

  • Abd El-Rahman, H. S., & Abd-ELHak, N. A. (2015). Xanthine oxidase inhibitory activity and antigout of celery, leek, parsley, and molokhia. Advances in Biochemistry, 3(4), 40–50. https://doi.org/10.11648/j.ab.20150304.11
  • Ağalar, H. G., Kürkçüoğlu, M., Başer, K. H. C., & Turgut, K. (2021). Volatile constituents of three Thymus sipyleus Boiss. subspecies from different sites in Turkey. Turkish Journal of Chemistry, 45(6), Article 24. https://doi.org/10.3906/kim-2103-6
  • Chaachouay, N., & Zidane, L. (2024). Plant-Derived Natural Products: A Source for Drug Discovery and Development. Drugs and Drug Candidates, 3(1), 184-207. https://doi.org/10.3390/ddc3010011
  • Chang, T. S. (2009). An updated review of tyrosinase inhibitors. International Journal of Molecular Sciences, 10(6), 2440–2475. https://doi.org/10.3390/ijms10062440
  • Colović, M. B., Krstić, D. Z., Lazarević-Pašti, T. D., Bondžić, A. M., & Vasić, V. M. (2013). Acetylcholinesterase inhibitors: Pharmacology and toxicology. Current Neuropharmacology, 11(3), 315–335. https://doi.org/10.2174/1570159X11311030006
  • Dawson, J., & Walters, M. (2006). Uric acid and xanthine oxidase: Future therapeutic targets in the prevention of cardiovascular disease? British Journal of Clinical Pharmacology, 62(6), 633–644. https://doi.org/10.1111/j.1365-2125.2006.02785.x
  • Ellman, G. L., Courtney, K. D., Andres, V., Jr., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7, 88–95. https://doi.org/10.1016/0006-2952(61)90145-9
  • Greig, N. H., Utsuki, T., Ingram, D. K., Wang, Y., Pepeu, G., Scali, C., Yu, Q. S., Mamczarz, J., Holloway, H. W., Giordano, T., Chen, D., Furukawa, K., Sambamurti, K., Brossi, A., & Lahiri, D. K. (2005). Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer beta-amyloid peptide in rodent. Proceedings of the National Academy of Sciences of the United States of America, 102(47), 17213–17218. https://doi.org/10.1073/pnas.0508575102
  • Guerrero, L., Castillo, J., Quiñones, M., Garcia-Vallvé, S., Arola, L., Pujadas, G., & Muguerza, B. (2012). Inhibition of angiotensin-converting enzyme activity by flavonoids: Structure-activity relationship studies. PLoS ONE, 7(11), e49493. https://doi.org/10.1371/journal.pone.0049493
  • Jasiecki, J., Targońska, M., & Wasąg, B. (2021). The Role of Butyrylcholinesterase and Iron in the Regulation of Cholinergic Network and Cognitive Dysfunction in Alzheimer’s Disease Pathogenesis. International Journal of Molecular Sciences, 22(4), 2033. https://doi.org/10.3390/ijms22042033
  • Lončarić, M., Strelec, I., Moslavac, T., Šubarić, D., Pavić, V., & Molnar, M. (2021). Lipoxygenase inhibition by plant extracts. Biomolecules, 11(2), 152. https://doi.org/10.3390/biom11020152
  • Kahnt, A. S., Häfner, A. K., & Steinhilber, D. (2024). The role of human 5-lipoxygenase (5-LO) in carcinogenesis: A question of canonical and non-canonical functions. Oncogene, 43, 1319–1327. https://doi.org/10.1038/s41388-024-03016-1
  • Kashtoh, H., & Baek, K. H. (2023). New insights into the latest advancement in α-amylase inhibitors of plant origin with anti-diabetic effects. Plants, 12(16), 2944. https://doi.org/10.3390/plants12162944
  • Lane, R. M., Potkin, S. G., & Enz, A. (2006). Targeting acetylcholinesterase and butyrylcholinesterase in dementia. International Journal of Neuropsychopharmacology, 9(1), 101–124. https://doi.org/10.1017/S1461145705005833
  • Moein, S., Moein, M., & Javid, H. (2022). Inhibition of α-amylase and α-glucosidase of anthocyanin isolated from Berberis integerrima Bunge fruits: A model of antidiabetic compounds. Evidence-Based Complementary and Alternative Medicine, 2022, 6529590. https://doi.org/10.1155/2022/6529590
  • Pacher, P., Nivorozhkin, A., & Szabó, C. (2006). Therapeutic effects of xanthine oxidase inhibitors: Renaissance half a century after the discovery of allopurinol. Pharmacological Reviews, 58(1), 87–114. https://doi.org/10.1124/pr.58.1.6
  • Sasidharan, S., Chen, Y., Saravanan, D., Sundram, K. M., & Yoga Latha, L. (2011). Extraction, isolation and characterization of bioactive compounds from plants' extracts. African Journal of Traditional, Complementary and Alternative Medicines, 8(1), 1–10.
  • Štěpánková, Š., & Vorčáková, K. (2016). Cholinesterase-based biosensors. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(sup3), 180–193. https://doi.org/10.1080/14756366.2016.1204609
  • Tundis, R., Loizzo, M. R., & Menichini, F. (2010). Natural products as alpha-amylase and alpha-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: An update. Mini Reviews in Medicinal Chemistry, 10(4), 315–331. https://doi.org/10.2174/138955710791331007
  • Waheed, M., Hussain, M. B., Saeed, F., Afzaal, M., Ahmed, A., Irfan, R., Akram, N., Ahmed, F., & Hailu, G. G. (2024). Phytochemical profiling and therapeutic potential of thyme (Thymus spp.): A medicinal herb. Food Science & Nutrition, 12, 9893–9912. https://doi.org/10.1002/fsn3.4563
  • Wang, B.-S., Chang, L.-W., Wu, H.-C., Huang, S.-L., Chu, H.-L., & Huang, M.-H. (2011). Antioxidant and antityrosinase activity of aqueous extracts of green asparagus. Food Chemistry, 127(1), 141–146. https://doi.org/10.1016/j.foodchem.2010.12.102
  • Werz, O., & Steinhilber, D. (2006). Therapeutic options for 5-lipoxygenase inhibitors. Pharmacology & Therapeutics, 112(3), 701–718. https://doi.org/10.1016/j.pharmthera.2006.05.009
  • Zheng, W., & Wang, S. Y. (2001). Antioxidant activity and phenolic compounds in selected herbs. Journal of Agricultural and Food Chemistry, 49(11), 5165–5170. https://doi.org/10.1021/jf010697n
  • Zolghadri, S., Beygi, M., Mohammad, T. F., Alijanianzadeh, M., Pillaiyar, T., Garcia-Molina, P., Garcia-Canovas, F., Muñoz-Muñoz, J., & Saboury, A. A. (2023). Targeting tyrosinase in hyperpigmentation: Current status, limitations and future promises. Biochemical Pharmacology, 212, 115574. https://doi.org/10.1016/j.bcp.2023.115574

Thymus sipyleus Boiss. subsp. sipyleus Ekstraktının Bazı Metabolik Enzim Aktivitelerinin İnhibisyonundaki Biyoteknolojik Potansiyeli

Year 2025, Volume: 1 Issue: 2, 43 - 50, 31.10.2025

Abstract

Geleneksel tıpta yaygın olarak kullanılan bir bitki olan Thymus sipyleus Boiss. subsp. sipyleus, biyoaktif bileşenleri nedeniyle biyoteknolojik alandaki çalışmalarda umut vaat etmektedir. Bu çalışma, Thymus sipyleus Boiss. subsp. sipyleus ekstraktının nörodejeneratif hastalıklar, metabolik bozukluklar ve cilt pigmentasyon sorunları gibi çeşitli patolojik süreçlerde kritik öneme sahip olan altı ana enzim -asetilkolinesteraz (AChE), bütirilkolinesteraz (BuChE), lipoksijenaz (LOX), α-amilaz, tirozinaz ve ksantin oksidaz (XO)- üzerindeki inhibitör etkilerini araştırmaktadır. Yapılan enzimatik analizler, ekstraktların özellikle Alzheimer tedavisinde önemli hedefler olan AChE ve BuChE'ye ve inflamatuar hastalıklarda rol oynayan LOX'a karşı güçlü inhibitör aktivitesini göstermektedir. Test edilen üç farklı ekstrakt arasında (su, metanol ve etanol), metanol ekstraktı en yüksek enzim inhibitör aktivitelerini göstermiştir; LOX için %46,23, AChE için %42,05, BuChE için %38,27, XO için %36,26, α-amilaz için %33,71 ve tirozinaz için %26,93 inhibisyon oranları saptanmıştır. Etanol ekstraktı biraz daha düşük ancak benzer sonuçlarla (AChE: %40,29, BuChE: %37,64, LOX: %43,32) takip etmiş; su ekstraktı ise test edilen tüm enzimler arasında en düşük inhibitör aktiviteyi göstermiştir (AChE: %38,22, BuChE: %34,78, LOX: %40,3). Ekstraktların hiçbirisi standart inhibitörlerin etkinliğine ulaşmasa da, orta ila güçlü aktiviteleri önemli terapötik potansiyele işaret etmektedir Sonuçlar, Thymus sipyleus Boiss. subsp. sipyleus özütünün enzim-spesifik inhibitörlerin geliştirilmesi için doğal bir kaynak olarak biyoteknolojik potansiyelini vurgulamaktadır. Bulgular, bu bitkinin biyoaktif bileşikler üretmek için sürdürülebilir, bitki bazlı bir alternatif olarak hizmet edebileceğini ve böylece nöroprotektif, anti-inflamatuar ve anti-diyabetik tedaviler dahil olmak üzere biyoteknolojide yeni terapötik stratejilerin tasarlanmasına katkıda bulunabileceğini göstermektedir.

References

  • Abd El-Rahman, H. S., & Abd-ELHak, N. A. (2015). Xanthine oxidase inhibitory activity and antigout of celery, leek, parsley, and molokhia. Advances in Biochemistry, 3(4), 40–50. https://doi.org/10.11648/j.ab.20150304.11
  • Ağalar, H. G., Kürkçüoğlu, M., Başer, K. H. C., & Turgut, K. (2021). Volatile constituents of three Thymus sipyleus Boiss. subspecies from different sites in Turkey. Turkish Journal of Chemistry, 45(6), Article 24. https://doi.org/10.3906/kim-2103-6
  • Chaachouay, N., & Zidane, L. (2024). Plant-Derived Natural Products: A Source for Drug Discovery and Development. Drugs and Drug Candidates, 3(1), 184-207. https://doi.org/10.3390/ddc3010011
  • Chang, T. S. (2009). An updated review of tyrosinase inhibitors. International Journal of Molecular Sciences, 10(6), 2440–2475. https://doi.org/10.3390/ijms10062440
  • Colović, M. B., Krstić, D. Z., Lazarević-Pašti, T. D., Bondžić, A. M., & Vasić, V. M. (2013). Acetylcholinesterase inhibitors: Pharmacology and toxicology. Current Neuropharmacology, 11(3), 315–335. https://doi.org/10.2174/1570159X11311030006
  • Dawson, J., & Walters, M. (2006). Uric acid and xanthine oxidase: Future therapeutic targets in the prevention of cardiovascular disease? British Journal of Clinical Pharmacology, 62(6), 633–644. https://doi.org/10.1111/j.1365-2125.2006.02785.x
  • Ellman, G. L., Courtney, K. D., Andres, V., Jr., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7, 88–95. https://doi.org/10.1016/0006-2952(61)90145-9
  • Greig, N. H., Utsuki, T., Ingram, D. K., Wang, Y., Pepeu, G., Scali, C., Yu, Q. S., Mamczarz, J., Holloway, H. W., Giordano, T., Chen, D., Furukawa, K., Sambamurti, K., Brossi, A., & Lahiri, D. K. (2005). Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer beta-amyloid peptide in rodent. Proceedings of the National Academy of Sciences of the United States of America, 102(47), 17213–17218. https://doi.org/10.1073/pnas.0508575102
  • Guerrero, L., Castillo, J., Quiñones, M., Garcia-Vallvé, S., Arola, L., Pujadas, G., & Muguerza, B. (2012). Inhibition of angiotensin-converting enzyme activity by flavonoids: Structure-activity relationship studies. PLoS ONE, 7(11), e49493. https://doi.org/10.1371/journal.pone.0049493
  • Jasiecki, J., Targońska, M., & Wasąg, B. (2021). The Role of Butyrylcholinesterase and Iron in the Regulation of Cholinergic Network and Cognitive Dysfunction in Alzheimer’s Disease Pathogenesis. International Journal of Molecular Sciences, 22(4), 2033. https://doi.org/10.3390/ijms22042033
  • Lončarić, M., Strelec, I., Moslavac, T., Šubarić, D., Pavić, V., & Molnar, M. (2021). Lipoxygenase inhibition by plant extracts. Biomolecules, 11(2), 152. https://doi.org/10.3390/biom11020152
  • Kahnt, A. S., Häfner, A. K., & Steinhilber, D. (2024). The role of human 5-lipoxygenase (5-LO) in carcinogenesis: A question of canonical and non-canonical functions. Oncogene, 43, 1319–1327. https://doi.org/10.1038/s41388-024-03016-1
  • Kashtoh, H., & Baek, K. H. (2023). New insights into the latest advancement in α-amylase inhibitors of plant origin with anti-diabetic effects. Plants, 12(16), 2944. https://doi.org/10.3390/plants12162944
  • Lane, R. M., Potkin, S. G., & Enz, A. (2006). Targeting acetylcholinesterase and butyrylcholinesterase in dementia. International Journal of Neuropsychopharmacology, 9(1), 101–124. https://doi.org/10.1017/S1461145705005833
  • Moein, S., Moein, M., & Javid, H. (2022). Inhibition of α-amylase and α-glucosidase of anthocyanin isolated from Berberis integerrima Bunge fruits: A model of antidiabetic compounds. Evidence-Based Complementary and Alternative Medicine, 2022, 6529590. https://doi.org/10.1155/2022/6529590
  • Pacher, P., Nivorozhkin, A., & Szabó, C. (2006). Therapeutic effects of xanthine oxidase inhibitors: Renaissance half a century after the discovery of allopurinol. Pharmacological Reviews, 58(1), 87–114. https://doi.org/10.1124/pr.58.1.6
  • Sasidharan, S., Chen, Y., Saravanan, D., Sundram, K. M., & Yoga Latha, L. (2011). Extraction, isolation and characterization of bioactive compounds from plants' extracts. African Journal of Traditional, Complementary and Alternative Medicines, 8(1), 1–10.
  • Štěpánková, Š., & Vorčáková, K. (2016). Cholinesterase-based biosensors. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(sup3), 180–193. https://doi.org/10.1080/14756366.2016.1204609
  • Tundis, R., Loizzo, M. R., & Menichini, F. (2010). Natural products as alpha-amylase and alpha-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: An update. Mini Reviews in Medicinal Chemistry, 10(4), 315–331. https://doi.org/10.2174/138955710791331007
  • Waheed, M., Hussain, M. B., Saeed, F., Afzaal, M., Ahmed, A., Irfan, R., Akram, N., Ahmed, F., & Hailu, G. G. (2024). Phytochemical profiling and therapeutic potential of thyme (Thymus spp.): A medicinal herb. Food Science & Nutrition, 12, 9893–9912. https://doi.org/10.1002/fsn3.4563
  • Wang, B.-S., Chang, L.-W., Wu, H.-C., Huang, S.-L., Chu, H.-L., & Huang, M.-H. (2011). Antioxidant and antityrosinase activity of aqueous extracts of green asparagus. Food Chemistry, 127(1), 141–146. https://doi.org/10.1016/j.foodchem.2010.12.102
  • Werz, O., & Steinhilber, D. (2006). Therapeutic options for 5-lipoxygenase inhibitors. Pharmacology & Therapeutics, 112(3), 701–718. https://doi.org/10.1016/j.pharmthera.2006.05.009
  • Zheng, W., & Wang, S. Y. (2001). Antioxidant activity and phenolic compounds in selected herbs. Journal of Agricultural and Food Chemistry, 49(11), 5165–5170. https://doi.org/10.1021/jf010697n
  • Zolghadri, S., Beygi, M., Mohammad, T. F., Alijanianzadeh, M., Pillaiyar, T., Garcia-Molina, P., Garcia-Canovas, F., Muñoz-Muñoz, J., & Saboury, A. A. (2023). Targeting tyrosinase in hyperpigmentation: Current status, limitations and future promises. Biochemical Pharmacology, 212, 115574. https://doi.org/10.1016/j.bcp.2023.115574
There are 24 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Biotechnology
Journal Section Research Article
Authors

Hatice Baş 0000-0001-8296-0360

Publication Date October 31, 2025
Submission Date July 6, 2025
Acceptance Date August 10, 2025
Published in Issue Year 2025 Volume: 1 Issue: 2

Cite

APA Baş, H. (2025). Biotechnological Potential of Thymus sipyleus Boiss. subsp. sipyleus Extract in the Inhibition of Some Metabolic Enzyme Activities. Kenevir Ve Biyoteknoloji Araştırmaları Dergisi, 1(2), 43-50.
AMA Baş H. Biotechnological Potential of Thymus sipyleus Boiss. subsp. sipyleus Extract in the Inhibition of Some Metabolic Enzyme Activities. Kenevir ve Biyoteknoloji Araştırmaları Dergisi. October 2025;1(2):43-50.
Chicago Baş, Hatice. “Biotechnological Potential of Thymus Sipyleus Boiss. Subsp. Sipyleus Extract in the Inhibition of Some Metabolic Enzyme Activities”. Kenevir Ve Biyoteknoloji Araştırmaları Dergisi 1, no. 2 (October 2025): 43-50.
EndNote Baş H (October 1, 2025) Biotechnological Potential of Thymus sipyleus Boiss. subsp. sipyleus Extract in the Inhibition of Some Metabolic Enzyme Activities. Kenevir ve Biyoteknoloji Araştırmaları Dergisi 1 2 43–50.
IEEE H. Baş, “Biotechnological Potential of Thymus sipyleus Boiss. subsp. sipyleus Extract in the Inhibition of Some Metabolic Enzyme Activities”, Kenevir ve Biyoteknoloji Araştırmaları Dergisi, vol. 1, no. 2, pp. 43–50, 2025.
ISNAD Baş, Hatice. “Biotechnological Potential of Thymus Sipyleus Boiss. Subsp. Sipyleus Extract in the Inhibition of Some Metabolic Enzyme Activities”. Kenevir ve Biyoteknoloji Araştırmaları Dergisi 1/2 (October2025), 43-50.
JAMA Baş H. Biotechnological Potential of Thymus sipyleus Boiss. subsp. sipyleus Extract in the Inhibition of Some Metabolic Enzyme Activities. Kenevir ve Biyoteknoloji Araştırmaları Dergisi. 2025;1:43–50.
MLA Baş, Hatice. “Biotechnological Potential of Thymus Sipyleus Boiss. Subsp. Sipyleus Extract in the Inhibition of Some Metabolic Enzyme Activities”. Kenevir Ve Biyoteknoloji Araştırmaları Dergisi, vol. 1, no. 2, 2025, pp. 43-50.
Vancouver Baş H. Biotechnological Potential of Thymus sipyleus Boiss. subsp. sipyleus Extract in the Inhibition of Some Metabolic Enzyme Activities. Kenevir ve Biyoteknoloji Araştırmaları Dergisi. 2025;1(2):43-50.