This study investigates the acoustic performance of automotive headliner composites by examining the impact of various factors in the headliner composites, including the density, pore structure and thickness of the foam, the amount and type of fiberglass, and the type and weight of the fabric. The research aims to reveal the relationship between these variables and their effects on the overall acoustic properties of automobile headliner composites. Through a systematic examination, various combinations of fiberglass types, foam densities, foam structures/roughness, and fabric types are analyzed to determine their influence on sound absorption, transmission, and overall in-car acoustic comfort. The findings of this study have significant implications for the design and production of headliner composites, providing valuable insights for optimizing them to enhance sound performance within the automobile interior. This research contributes to an improved understanding of material and design factors crucial for achieving optimal acoustic conditions in automotive interiors.
Işık, Y., Tuzla, M., “Investigation of Sound Absorption Performance of Roof Panels in Automobiles”, International Journal of Mechanical Engineering, Vol. 9, Issue 12, Pages 1-9, 2022.
Aggarwal, A., Khan, H., Crepeau, H., “New Headliner Composites with Improved Acoustical Performance” SAE Technical Paper, 980946, 1998.
spe.automotive, «https://commons.wikimedia.org/,» https://commons.wikimedia.org/, 2 October 2018. [Online].Available: https://commons.wikimedia.org/wiki/File:Headliner_with_Integration_of_Components_(30454241607 ).jpg.
Lee, J.W., Lee, S.N., Shim, J.H., Jung, P.K., Lee, W.K., “The Study on Improvement of Acoustic Performance for Automobile Sound-absorbing Materials Using Hollow Fiber”, Transactions of the Korean Society for Noise and Vibration Engineering, Vol. 21, Issue 1, Pages 850-857, 2011.
Haque, E. “Designing strength, stiffness and acoustics in headliner substrate material”, AutoTechnology, Vol. 6, Issue 1, Pages 42-45, 2006.
Augusto Garcez da Silva, C., Calçada, M., Cesar Massarelli, L., “Vehicle Interior Noise Reduction Using Innovative Roof Trim Structure”, SAE International, Vol. 36, Issue 1, Pages 1-10, 2014.
Memon, H., Ayele, H. S., Yesuf, H. M., Sun, L., (2022). Investigation of the physical properties of yarn produced from textile waste by optimizing their proportions. Sustainability, Vol. 14, Issue 15, Pages 1-15, 2022.
Pornea, A. G. M., Puguan, J. M. C., Ruello, J. L. A., Kim, H., “Multifunctional dual-pore network aerogel composite material for broadband sound absorption, thermal insulation, and fire repellent applications”, ACS Applied Polymer Materials, Vol. 4, Issue 4, Pages, 2880-2895, 2022.
Forouharmajd, F., Mohammadi, Z., Salehian, J., Mosayebi, M., “The effect of foam thickness, sound intensity, and air layer on sound absorption coefficient of polyurethane foam using transfer function method”, Journal of Health System Research, Vol. 12, Issue 2, Pages 190-195, 2016.
Gwon, J. G., Kim, S. K., Kim, J. H., “Sound absorption behavior of flexible polyurethane foams with distinct cellular structures” Materials & Design, Vol. 89, Issue 1, Pages 448-454, 2016.
Park, J. H., Minn, K. S., Lee, H. R., Yang, S. H., Yu, C. B., Pak, S. Y., Youn, J. R., “Cell openness manipulation of low density polyurethane foam for efficient sound absorption”, Journal of Sound and Vibration, Vol. 406, Pages 224-236, 2017.
Akustik Mükemmeliyet İçin Geliştirilmiş Tavan Kaplama Kompozit Malzemelerin Optimizasyonu
Bu çalışma, otomobil tavan kompozitlerinin akustik performansını incelemek üzere tavan kompozitlerinde yer alan süngerin; yoğunluğu, gözenek yapısı ve kalınlığı, cam elyafın miktarının ve kumaşın türü ve ağırlığının akustik performansa etkisi incelenmiştir. Araştırma, bu değişkenler arasındaki ilişkiyi ve bunların otomobil tavan kaplamalarının genel akustik özellikleri üzerindeki etkilerini ortaya çıkarmayı amaçlamaktadır. Sistematik bir inceleme yoluyla, çeşitli camelyaf türleri, köpük yoğunlukları, köpük yapıları/pürüzlülükleri ve kumaş türleri kombinasyonları analiz edilerek, bunların ses emilimi, iletimi ve araç içi genel akustik konfor üzerindeki etkileri belirlenmeye çalışılmıştır. Bu çalışmanın bulguları, tavan kompozit tasarımı ve üretimi için önemli sonuçlar doğurmakta, otomobil iç mekanında ses performansını artırmak için tavan kompozitlerinin optimize edilmesine dair değerli bilgiler sunmaktadır. Bu araştırma, otomotiv iç mekanlarda optimal akustik koşulları elde etmek için önemli olan malzeme ve tasarım faktörlerinin anlayışını geliştirmeye katkı sağlar.
Işık, Y., Tuzla, M., “Investigation of Sound Absorption Performance of Roof Panels in Automobiles”, International Journal of Mechanical Engineering, Vol. 9, Issue 12, Pages 1-9, 2022.
Aggarwal, A., Khan, H., Crepeau, H., “New Headliner Composites with Improved Acoustical Performance” SAE Technical Paper, 980946, 1998.
spe.automotive, «https://commons.wikimedia.org/,» https://commons.wikimedia.org/, 2 October 2018. [Online].Available: https://commons.wikimedia.org/wiki/File:Headliner_with_Integration_of_Components_(30454241607 ).jpg.
Lee, J.W., Lee, S.N., Shim, J.H., Jung, P.K., Lee, W.K., “The Study on Improvement of Acoustic Performance for Automobile Sound-absorbing Materials Using Hollow Fiber”, Transactions of the Korean Society for Noise and Vibration Engineering, Vol. 21, Issue 1, Pages 850-857, 2011.
Haque, E. “Designing strength, stiffness and acoustics in headliner substrate material”, AutoTechnology, Vol. 6, Issue 1, Pages 42-45, 2006.
Augusto Garcez da Silva, C., Calçada, M., Cesar Massarelli, L., “Vehicle Interior Noise Reduction Using Innovative Roof Trim Structure”, SAE International, Vol. 36, Issue 1, Pages 1-10, 2014.
Memon, H., Ayele, H. S., Yesuf, H. M., Sun, L., (2022). Investigation of the physical properties of yarn produced from textile waste by optimizing their proportions. Sustainability, Vol. 14, Issue 15, Pages 1-15, 2022.
Pornea, A. G. M., Puguan, J. M. C., Ruello, J. L. A., Kim, H., “Multifunctional dual-pore network aerogel composite material for broadband sound absorption, thermal insulation, and fire repellent applications”, ACS Applied Polymer Materials, Vol. 4, Issue 4, Pages, 2880-2895, 2022.
Forouharmajd, F., Mohammadi, Z., Salehian, J., Mosayebi, M., “The effect of foam thickness, sound intensity, and air layer on sound absorption coefficient of polyurethane foam using transfer function method”, Journal of Health System Research, Vol. 12, Issue 2, Pages 190-195, 2016.
Gwon, J. G., Kim, S. K., Kim, J. H., “Sound absorption behavior of flexible polyurethane foams with distinct cellular structures” Materials & Design, Vol. 89, Issue 1, Pages 448-454, 2016.
Park, J. H., Minn, K. S., Lee, H. R., Yang, S. H., Yu, C. B., Pak, S. Y., Youn, J. R., “Cell openness manipulation of low density polyurethane foam for efficient sound absorption”, Journal of Sound and Vibration, Vol. 406, Pages 224-236, 2017.
Yazıcı, M., Uysal, N., & Donga, H. (2024). Optimization of Composite Materials for Enhanced Acoustic Performance in Headliners. Hendese Teknik Bilimler Ve Mühendislik Dergisi, 1(1), 1-6. https://doi.org/10.5281/zenodo.11068857