Research Article
BibTex RIS Cite

Response of the Turkish Ionosphere to Geomagnetic Storms During the 24th Solar Cycle

Year 2024, , 50 - 56, 27.10.2024
https://doi.org/10.5281/zenodo.13996448

Abstract

The Earth's ionosphere, a haven for charged particles within our atmosphere, is susceptible to energetic excitations from space weather. When geomagnetic storms erupt, triggered by solar activity, a cascade of charged particles rushes towards our planet. These charged particles, among other factors, have dynamic and disruptive effects on the ionosphere of Earth. Foremost among these effects are significant fluctuations in the ionospheric electron density during geomagnetic storms. This study investigates the effects of 54 geomagnetic storms of different magnitudes on the Turkish ionosphere during the 24th Solar Cycle using the differential rate of total electron content (DROT) method. The study was conducted for the TUBITAK station. The results indicate that both medium- and large-scale traveling ionospheric disturbances (TIDs) occurred in the Turkish ionosphere during these geomagnetic storms. However, it was also observed that no ionospheric disturbances occurred during some geomagnetic storms. The study demonstrates that the DROT method requires careful application in detecting ionospheric disturbances.

References

  • [1] Atıcı, R., “Comparison of GPS TEC with modelled values from IRI 2016 and IRI-PLAS over Istanbul, Turkey”, Astrophysics and Space Science, Vol. 363, No. 11, p. 231, 2018.
  • [2] Schunk, R., Nagy, A., “Ionospheres: Physics, Plasma Physics, and Chemistry, 2nd ed.”, Cambridge University Press, Cambridge, 2009.
  • [3] Rishbeth, H., “Physics and Chemistry of the Ionosphere”, Contemporary Physics, Vol. 14, No. 3, pp. 229-249, 1973.
  • [4] Kelly, M.C., “The Earth's Ionosphere: Plasma Physics and Electrodynamics, 2nd ed.”, Elsevier, Amsterdam, 2012.
  • [5] Kaladze, T.D., Özcan, O., Yeşil, A., Tsamalashvili, L.V., Kaladze, D.T., Inc, M., Sağir, S., Kurt, K., “Shear Flow-Driven Magnetized Rossby Wave Dynamics in the Earth’s Ionosphere”, Zeitschrift für Angewandte Mathematik und Physik (ZAMP), Vol. 72, Issue 3, Pages 130, 2021.
  • [6] Davies, K., Baker, D.M., “Ionospheric Effects Observed Around the Time of the Alaskan Earthquake of March 28, 1964”, Journal of Geophysical Research, Vol. 70, Issue 9, Pages 2251-2253, 1965.
  • [7] Kelley, M., Fejer, B.G., Gonzales, C., “An Explanation for Anomalous Equatorial Ionospheric Electric Fields Associated with a Northward Turning of the Interplanetary Magnetic Field”, Geophysical Research Letters, Vol. 6, Issue 4, Pages 301-304, 1979.
  • [8] Inyurt, S., “Investigation of Ionospheric Variations During Magnetic Storm Over Turkey”, Geomagnetism and Aeronomy, Vol. 60, Pages 131-135, 2020.
  • [9] Atıcı, R., Sağır, S., “Global Investigation of the Ionospheric Irregularities During the Severe Geomagnetic Storm on September 7–8, 2017”, Geodesy and Geodynamics, Vol. 11, Issue 3, Pages 211-221, 2020.
  • [10] Özcan, O., Sağır, S., Atıcı, R., “The Relationship Between TEC and Earth’s Magnetic Field During Quiet and Disturbed Days Over Istanbul, Turkey”, Advances in Space Research, Vol. 65, Issue 9, Pages 2167-2171, 2020.
  • [11] Astafyeva, E., Yasyukevich, Y.V., Maletckii, B., Oinats, A., Vesnin, A., Yasyukevich, A.S., Guendouz, N., “Ionospheric Disturbances and Irregularities During the 25–26 August 2018 Geomagnetic Storm”, Journal of Geophysical Research: Space Physics, Vol. 127, Issue 1, Pages e2021JA029843, 2022.
  • [12] Belehaki, A., Tsagouri, I., Altadill, D., Blanch, E., Borries, C., Buresova, D., Chum, J., Galkin, I., Juan, J.M., Segarra, A., Timoté, C.C., Tziotziou, K., Verhulst, T.G.W., Watermann, J., “An Overview of Methodologies for Real-Time Detection, Characterisation, and Tracking of Traveling Ionospheric Disturbances Developed in the TechTIDE Project”, Journal of Space Weather and Space Climate, Vol. 10, Pages 42, 2020.
  • [13] Otsuka, Y., “Medium‐Scale Traveling Ionospheric Disturbances”, in Ionosphere Dynamics and Applications, Eds. Zhang, K., and Xiao, Z., Springer, Pages 421-437, 2021.
  • [14] Ferreira, A.A., Borries, C., Xiong, C., Borges, R.A., Mielich, J., Kouba, D., “Identification of Potential Precursors for the Occurrence of Large-Scale Traveling Ionospheric Disturbances in a Case Study During September 2017”, Journal of Space Weather and Space Climate, Vol. 10, Pages 32, 2020.
  • [15] Kishore, A., Kumar, S., “Large-Scale Traveling Ionospheric Disturbances During Geomagnetic Storms of 17 March and 23 June 2015 in the Australian Region”, Journal of Geophysical Research: Space Physics, Vol. 128, Issue 11, Pages e2023JA031740, 2023.
  • [16] Liu, Y., Li, Z., Fu, L., Wang, J., Zhang, C., “Studying the Ionospheric Responses Induced by a Geomagnetic Storm in September 2017 with Multiple Observations in America”, GPS Solutions, Vol. 24, Pages 1-13, 2020.
  • [17] Zhang, S.R., Nishimura, Y., Erickson, P.J., Aa, E., Kil, H., Deng, Y., Vierinen, J., “Traveling Ionospheric Disturbances in the Vicinity of Storm‐Enhanced Density at Midlatitudes”, Journal of Geophysical Research: Space Physics, Vol. 127, Issue 8, Pages e2022JA030429, 2022.
  • [18] Karatay, S., “Estimation of Frequency and Duration of Ionospheric Disturbances Over Turkey with IONOLAB-FFT Algorithm”, Journal of Geodesy, Vol. 94, Issue 9, Pages 89, 2020.
  • [19] Karatay, S., “Detection of the Ionospheric Disturbances on GPS-TEC Using Differential Rate of TEC (DROT) Algorithm”, Advances in Space Research, Vol. 65, Issue 10, Pages 2372-2390, 2020.
  • [20] Yaşar, M., Atici, R., Sağır, S., “The Change of the Collision Parameters of ‘O++ N₂ → NO+ + N’ Reaction According to Geomagnetic Activity Days in the Ionosphere”, MSU Journal of Science, Vol. 6, Issue 1, Pages 529-532, 2018.
  • [21] Kurt, K., “Analysis of the Phase Velocities of (Pure, Slow, and Fast) Alfvèn Waves in the E Region of the Ionosphere for Low Latitudes”, Wireless Personal Communications, Vol. 131, Pages 887-896, 2023.
  • [22] Rishbeth, H., Garriott, O.K., Introduction to Ionospheric Physics, Academic Press, 1969.
  • [23] Francis, S.H., “A Theory of Medium‐Scale Traveling Ionospheric Disturbances”, Journal of Geophysical Research, Vol. 79, Issue 34, Pages 5245-5260, 1974.
  • [24] Hocke, K., Schlegel, K., “A Review of Atmospheric Gravity Waves and Travelling Ionospheric Disturbances: 1982–1995”, Annales Geophysicae, Vol. 14, Issue 9, Pages 917-940, 1996.
  • [25] Ho, C.M., Mannucci, A.J., Sparks, L., Pi, X., Lindqwister, U.J., Wilson, B.D., Iijima, B.A., Reyes, M.J., “Ionospheric Total Electron Content Perturbations Monitored by the GPS Global Network During Two Northern Hemisphere Winter Storms”, Journal of Geophysical Research: Space Physics, Vol. 103, Issue A11, Pages 26409-26420, 1998.
  • [26] Cherniak, I., Zakharenkova, I., Krankowski, A., “Approaches for Modeling Ionosphere Irregularities Based on the TEC Rate Index”, Earth, Planets and Space, Vol. 66, Issue 1, Pages 1-5, 2014.
  • [27] Efendi, E., Arikan, F., “A Fast Algorithm for Automatic Detection of Ionospheric Disturbances: DROT”, Advances in Space Research, Vol. 59, Issue 12, Pages 2923-2933, 2017.
  • [28] Arikan, F., Koroglu, O., “A Methodology for Estimation of Hourly-Monthly Stochastic Trend Characteristics of Midlatitude Ionosphere”, Radio Science, Vol. 55, Issue 11, Pages 1-15, 2020.
  • [29] Arikan, F., Nayir, H., Sezen, U., Arikan, O., “Estimation of Single Station Interfrequency Receiver Bias Using GPS-TEC”, Radio Science, Vol. 43, Issue 4, Pages 1-13, 2008.
  • [30] Nayir, H., Arikan, F., Arikan, O., Erol, C.B., “Total Electron Content Estimation with Reg‐Est”, Journal of Geophysical Research: Space Physics, Vol. 112, Issue A11, Pages A11309, 2007.
  • [31] Sezen, U., Arikan, F., Arikan, O., Ugurlu, O., Sadeghimorad, A., “Online, Automatic, Near-Real Time Estimation of GPS-TEC: IONOLAB-TEC”, Space Weather, Vol. 11, Issue 5, Pages 297–305, 2013.
  • [32] Arikan, F., Erol, C., Arikan, O., “Regularized Estimation of Vertical Total Electron Content from Global Positioning System Data”, Journal of Geophysical Research: Space Physics, Vol. 108, Issue A12, Pages 1469, 2003.
  • [33] Sayin, I., Arikan, F., Akdogan, K., “Optimum Temporal Update Periods for Regional Ionosphere Monitoring”, Radio Science, Vol. 45, Issue 6, Pages RS6006, 2010.
  • [34] Erol, C., Arikan, F., “Statistical Characterization of the Ionosphere Using GPS Signals”, Journal of Electromagnetic Waves and Applications, Vol. 19, Issue 3, Pages 373-387, 2005.
  • [35] Song, Q., Ding, F., Wan, W., Ning, B., Zhao, B., “Monitoring Traveling Ionospheric Disturbances Using the GPS Network Around China During the Geomagnetic Storm on 28 May 2011”, Science China Earth Sciences, Vol. 56, Pages 718-726, 2013.
  • [36] Berényi, K.A., Heilig, B., Urbář, J., Kouba, D., Kis, Á., Barta, V., “Comprehensive Analysis of the Ionospheric Response to the Largest Geomagnetic Storms from Solar Cycle 24 Over Europe”, Frontiers in Astronomy and Space Sciences, Vol. 10, Article 1092850, 2023.
  • [37] Mansilla, G.A., “Ionospheric Response to the Magnetic Storm of 22 June 2015”, Pure and Applied Geophysics, Vol. 175, Pages 1139-1153, 2018.
  • [38] Greer, K., Immel, T., Ridley, A., “On the Variation in the Ionospheric Response to Geomagnetic Storms with Time of Onset”, Journal of Geophysical Research: Space Physics, Vol. 122, Issue 4, Pages 4512-4525, 2017.
  • [39] Şentürk, E., “Investigation of Global Ionospheric Response of the Severe Geomagnetic Storm on June 22-23, 2015 by GNSS-Based TEC Observations”, Astrophysics and Space Science, Vol. 365, Issue 7, Article 110, 2020.
  • [40] Şentürk, E., Çepni, M.S., “Ionospheric Temporal Variations Over the Region of Turkey: A Study Based on Long-Time TEC Observations”, Acta Geodaetica et Geophysica, Vol. 53, Pages 623-637, 2018.
  • [41] Atici, R., “Investigation of Ionospheric Storms Occurred Over Turkey During a Geomagnetic Storm”, International Journal of Scientific and Technological Research, Vol. 5, Issue 12, Pages 301-305, 2019.
  • [42] Danilov, A., “Ionospheric F-Region Response to Geomagnetic Disturbances”, Advances in Space Research, Vol. 52, Issue 3, Pages 343-366, 2013.
  • [43] Fuller‐Rowell, T.J., Codrescu, M.V., Moffett, R.J., Quegan, S., “Response of the Thermosphere and Ionosphere to Geomagnetic Storms”, Journal of Geophysical Research: Space Physics, Vol. 99, Issue A3, Pages 3893-3914, 1994.
  • [44] Cherniak, I., Zakharenkova, I., “Large‐Scale Traveling Ionospheric Disturbances Origin and Propagation: Case Study of the December 2015 Geomagnetic Storm”, Space Weather, Vol. 16, Issue 9, Pages 1377-1395, 2018.
  • [45] Koroglu, M., Arikan, F., “Spatio-Temporal Analysis of Ionospheric Disturbances for Ground-Based Augmentation Systems Over a Midlatitude Region”, Advances in Space Research, Vol. 65, Issue 9, Pages 2099-2118, 2020.

24. Güneş Döngüsü Boyunca Türkiye İyonosferinin Jeomanyetik Fırtınalara Tepkisi

Year 2024, , 50 - 56, 27.10.2024
https://doi.org/10.5281/zenodo.13996448

Abstract

Atmosferimizdeki yüklü parçacıklar için bir sığınak olan Dünya iyonküresi, uzaydan kaynaklanan enerjik uyarılmalara karşı hassastır. Güneş aktivitesinin tetiklediği jeomanyetik fırtınalar başladığında, yüklü parçacıklardan oluşan topluluklar gezegenimize doğru hareket eder. Bu yüklü parçacıklar, diğer faktörlerin yanı sıra, Dünya iyonküresi üzerinde dinamik ve yıkıcı etkiye sahiptirler. Bu etkilerin en önemlisi, jeomanyetik fırtınalar sırasında iyonküresel elektron yoğunluğundaki önemli dalgalanmalardır. Bu çalışma, 24. Güneş Döngüsü sırasında farklı büyüklükteki 54 jeomanyetik fırtınanın Türkiye iyonküresi üzerindeki etkilerini toplam elektron içeriğinin diferansiyel oranı (DROT) yöntemini kullanarak araştırmaktadır. Çalışma TÜBİTAK istasyonu için yapılmıştır. Sonuçlar, bu jeomanyetik fırtınalar sırasında Türkiye iyonküresinde hem orta hem de büyük ölçekli gezici iyonküresel bozuklukların (TID'ler) meydana geldiğini göstermektedir. Ancak bazı jeomanyetik fırtınalar sırasında iyonküresel bozulmaların meydana gelmediği de gözlemlendi. Çalışma, DROT yönteminin iyonküresel bozuklukların tespitinde dikkatli bir şekilde uygulanmasının gerekliliğini göstermektedir.

References

  • [1] Atıcı, R., “Comparison of GPS TEC with modelled values from IRI 2016 and IRI-PLAS over Istanbul, Turkey”, Astrophysics and Space Science, Vol. 363, No. 11, p. 231, 2018.
  • [2] Schunk, R., Nagy, A., “Ionospheres: Physics, Plasma Physics, and Chemistry, 2nd ed.”, Cambridge University Press, Cambridge, 2009.
  • [3] Rishbeth, H., “Physics and Chemistry of the Ionosphere”, Contemporary Physics, Vol. 14, No. 3, pp. 229-249, 1973.
  • [4] Kelly, M.C., “The Earth's Ionosphere: Plasma Physics and Electrodynamics, 2nd ed.”, Elsevier, Amsterdam, 2012.
  • [5] Kaladze, T.D., Özcan, O., Yeşil, A., Tsamalashvili, L.V., Kaladze, D.T., Inc, M., Sağir, S., Kurt, K., “Shear Flow-Driven Magnetized Rossby Wave Dynamics in the Earth’s Ionosphere”, Zeitschrift für Angewandte Mathematik und Physik (ZAMP), Vol. 72, Issue 3, Pages 130, 2021.
  • [6] Davies, K., Baker, D.M., “Ionospheric Effects Observed Around the Time of the Alaskan Earthquake of March 28, 1964”, Journal of Geophysical Research, Vol. 70, Issue 9, Pages 2251-2253, 1965.
  • [7] Kelley, M., Fejer, B.G., Gonzales, C., “An Explanation for Anomalous Equatorial Ionospheric Electric Fields Associated with a Northward Turning of the Interplanetary Magnetic Field”, Geophysical Research Letters, Vol. 6, Issue 4, Pages 301-304, 1979.
  • [8] Inyurt, S., “Investigation of Ionospheric Variations During Magnetic Storm Over Turkey”, Geomagnetism and Aeronomy, Vol. 60, Pages 131-135, 2020.
  • [9] Atıcı, R., Sağır, S., “Global Investigation of the Ionospheric Irregularities During the Severe Geomagnetic Storm on September 7–8, 2017”, Geodesy and Geodynamics, Vol. 11, Issue 3, Pages 211-221, 2020.
  • [10] Özcan, O., Sağır, S., Atıcı, R., “The Relationship Between TEC and Earth’s Magnetic Field During Quiet and Disturbed Days Over Istanbul, Turkey”, Advances in Space Research, Vol. 65, Issue 9, Pages 2167-2171, 2020.
  • [11] Astafyeva, E., Yasyukevich, Y.V., Maletckii, B., Oinats, A., Vesnin, A., Yasyukevich, A.S., Guendouz, N., “Ionospheric Disturbances and Irregularities During the 25–26 August 2018 Geomagnetic Storm”, Journal of Geophysical Research: Space Physics, Vol. 127, Issue 1, Pages e2021JA029843, 2022.
  • [12] Belehaki, A., Tsagouri, I., Altadill, D., Blanch, E., Borries, C., Buresova, D., Chum, J., Galkin, I., Juan, J.M., Segarra, A., Timoté, C.C., Tziotziou, K., Verhulst, T.G.W., Watermann, J., “An Overview of Methodologies for Real-Time Detection, Characterisation, and Tracking of Traveling Ionospheric Disturbances Developed in the TechTIDE Project”, Journal of Space Weather and Space Climate, Vol. 10, Pages 42, 2020.
  • [13] Otsuka, Y., “Medium‐Scale Traveling Ionospheric Disturbances”, in Ionosphere Dynamics and Applications, Eds. Zhang, K., and Xiao, Z., Springer, Pages 421-437, 2021.
  • [14] Ferreira, A.A., Borries, C., Xiong, C., Borges, R.A., Mielich, J., Kouba, D., “Identification of Potential Precursors for the Occurrence of Large-Scale Traveling Ionospheric Disturbances in a Case Study During September 2017”, Journal of Space Weather and Space Climate, Vol. 10, Pages 32, 2020.
  • [15] Kishore, A., Kumar, S., “Large-Scale Traveling Ionospheric Disturbances During Geomagnetic Storms of 17 March and 23 June 2015 in the Australian Region”, Journal of Geophysical Research: Space Physics, Vol. 128, Issue 11, Pages e2023JA031740, 2023.
  • [16] Liu, Y., Li, Z., Fu, L., Wang, J., Zhang, C., “Studying the Ionospheric Responses Induced by a Geomagnetic Storm in September 2017 with Multiple Observations in America”, GPS Solutions, Vol. 24, Pages 1-13, 2020.
  • [17] Zhang, S.R., Nishimura, Y., Erickson, P.J., Aa, E., Kil, H., Deng, Y., Vierinen, J., “Traveling Ionospheric Disturbances in the Vicinity of Storm‐Enhanced Density at Midlatitudes”, Journal of Geophysical Research: Space Physics, Vol. 127, Issue 8, Pages e2022JA030429, 2022.
  • [18] Karatay, S., “Estimation of Frequency and Duration of Ionospheric Disturbances Over Turkey with IONOLAB-FFT Algorithm”, Journal of Geodesy, Vol. 94, Issue 9, Pages 89, 2020.
  • [19] Karatay, S., “Detection of the Ionospheric Disturbances on GPS-TEC Using Differential Rate of TEC (DROT) Algorithm”, Advances in Space Research, Vol. 65, Issue 10, Pages 2372-2390, 2020.
  • [20] Yaşar, M., Atici, R., Sağır, S., “The Change of the Collision Parameters of ‘O++ N₂ → NO+ + N’ Reaction According to Geomagnetic Activity Days in the Ionosphere”, MSU Journal of Science, Vol. 6, Issue 1, Pages 529-532, 2018.
  • [21] Kurt, K., “Analysis of the Phase Velocities of (Pure, Slow, and Fast) Alfvèn Waves in the E Region of the Ionosphere for Low Latitudes”, Wireless Personal Communications, Vol. 131, Pages 887-896, 2023.
  • [22] Rishbeth, H., Garriott, O.K., Introduction to Ionospheric Physics, Academic Press, 1969.
  • [23] Francis, S.H., “A Theory of Medium‐Scale Traveling Ionospheric Disturbances”, Journal of Geophysical Research, Vol. 79, Issue 34, Pages 5245-5260, 1974.
  • [24] Hocke, K., Schlegel, K., “A Review of Atmospheric Gravity Waves and Travelling Ionospheric Disturbances: 1982–1995”, Annales Geophysicae, Vol. 14, Issue 9, Pages 917-940, 1996.
  • [25] Ho, C.M., Mannucci, A.J., Sparks, L., Pi, X., Lindqwister, U.J., Wilson, B.D., Iijima, B.A., Reyes, M.J., “Ionospheric Total Electron Content Perturbations Monitored by the GPS Global Network During Two Northern Hemisphere Winter Storms”, Journal of Geophysical Research: Space Physics, Vol. 103, Issue A11, Pages 26409-26420, 1998.
  • [26] Cherniak, I., Zakharenkova, I., Krankowski, A., “Approaches for Modeling Ionosphere Irregularities Based on the TEC Rate Index”, Earth, Planets and Space, Vol. 66, Issue 1, Pages 1-5, 2014.
  • [27] Efendi, E., Arikan, F., “A Fast Algorithm for Automatic Detection of Ionospheric Disturbances: DROT”, Advances in Space Research, Vol. 59, Issue 12, Pages 2923-2933, 2017.
  • [28] Arikan, F., Koroglu, O., “A Methodology for Estimation of Hourly-Monthly Stochastic Trend Characteristics of Midlatitude Ionosphere”, Radio Science, Vol. 55, Issue 11, Pages 1-15, 2020.
  • [29] Arikan, F., Nayir, H., Sezen, U., Arikan, O., “Estimation of Single Station Interfrequency Receiver Bias Using GPS-TEC”, Radio Science, Vol. 43, Issue 4, Pages 1-13, 2008.
  • [30] Nayir, H., Arikan, F., Arikan, O., Erol, C.B., “Total Electron Content Estimation with Reg‐Est”, Journal of Geophysical Research: Space Physics, Vol. 112, Issue A11, Pages A11309, 2007.
  • [31] Sezen, U., Arikan, F., Arikan, O., Ugurlu, O., Sadeghimorad, A., “Online, Automatic, Near-Real Time Estimation of GPS-TEC: IONOLAB-TEC”, Space Weather, Vol. 11, Issue 5, Pages 297–305, 2013.
  • [32] Arikan, F., Erol, C., Arikan, O., “Regularized Estimation of Vertical Total Electron Content from Global Positioning System Data”, Journal of Geophysical Research: Space Physics, Vol. 108, Issue A12, Pages 1469, 2003.
  • [33] Sayin, I., Arikan, F., Akdogan, K., “Optimum Temporal Update Periods for Regional Ionosphere Monitoring”, Radio Science, Vol. 45, Issue 6, Pages RS6006, 2010.
  • [34] Erol, C., Arikan, F., “Statistical Characterization of the Ionosphere Using GPS Signals”, Journal of Electromagnetic Waves and Applications, Vol. 19, Issue 3, Pages 373-387, 2005.
  • [35] Song, Q., Ding, F., Wan, W., Ning, B., Zhao, B., “Monitoring Traveling Ionospheric Disturbances Using the GPS Network Around China During the Geomagnetic Storm on 28 May 2011”, Science China Earth Sciences, Vol. 56, Pages 718-726, 2013.
  • [36] Berényi, K.A., Heilig, B., Urbář, J., Kouba, D., Kis, Á., Barta, V., “Comprehensive Analysis of the Ionospheric Response to the Largest Geomagnetic Storms from Solar Cycle 24 Over Europe”, Frontiers in Astronomy and Space Sciences, Vol. 10, Article 1092850, 2023.
  • [37] Mansilla, G.A., “Ionospheric Response to the Magnetic Storm of 22 June 2015”, Pure and Applied Geophysics, Vol. 175, Pages 1139-1153, 2018.
  • [38] Greer, K., Immel, T., Ridley, A., “On the Variation in the Ionospheric Response to Geomagnetic Storms with Time of Onset”, Journal of Geophysical Research: Space Physics, Vol. 122, Issue 4, Pages 4512-4525, 2017.
  • [39] Şentürk, E., “Investigation of Global Ionospheric Response of the Severe Geomagnetic Storm on June 22-23, 2015 by GNSS-Based TEC Observations”, Astrophysics and Space Science, Vol. 365, Issue 7, Article 110, 2020.
  • [40] Şentürk, E., Çepni, M.S., “Ionospheric Temporal Variations Over the Region of Turkey: A Study Based on Long-Time TEC Observations”, Acta Geodaetica et Geophysica, Vol. 53, Pages 623-637, 2018.
  • [41] Atici, R., “Investigation of Ionospheric Storms Occurred Over Turkey During a Geomagnetic Storm”, International Journal of Scientific and Technological Research, Vol. 5, Issue 12, Pages 301-305, 2019.
  • [42] Danilov, A., “Ionospheric F-Region Response to Geomagnetic Disturbances”, Advances in Space Research, Vol. 52, Issue 3, Pages 343-366, 2013.
  • [43] Fuller‐Rowell, T.J., Codrescu, M.V., Moffett, R.J., Quegan, S., “Response of the Thermosphere and Ionosphere to Geomagnetic Storms”, Journal of Geophysical Research: Space Physics, Vol. 99, Issue A3, Pages 3893-3914, 1994.
  • [44] Cherniak, I., Zakharenkova, I., “Large‐Scale Traveling Ionospheric Disturbances Origin and Propagation: Case Study of the December 2015 Geomagnetic Storm”, Space Weather, Vol. 16, Issue 9, Pages 1377-1395, 2018.
  • [45] Koroglu, M., Arikan, F., “Spatio-Temporal Analysis of Ionospheric Disturbances for Ground-Based Augmentation Systems Over a Midlatitude Region”, Advances in Space Research, Vol. 65, Issue 9, Pages 2099-2118, 2020.
There are 45 citations in total.

Details

Primary Language English
Subjects Chemical Reaction
Journal Section Research Article
Authors

Mehmet Yaşar 0000-0002-2758-3635

Publication Date October 27, 2024
Submission Date June 6, 2024
Acceptance Date October 6, 2024
Published in Issue Year 2024

Cite

APA Yaşar, M. (2024). Response of the Turkish Ionosphere to Geomagnetic Storms During the 24th Solar Cycle. Hendese Teknik Bilimler Ve Mühendislik Dergisi, 1(2), 50-56. https://doi.org/10.5281/zenodo.13996448