Research Article
BibTex RIS Cite

Optimization of the Anemia Diagnosis in Children and Adolescents Using Support Vector Machines

Year 2025, Volume: 2 Issue: 2, 84 - 88, 30.10.2025
https://doi.org/10.5281/zenodo.17474575

Abstract

Support Vector machines (SVMs) are widely used learning methods that often achieve remarkable results, encouraging further research into their applications. This paper presents a paradigm based on classification via SVMs for diagnosing Anemia in children and adolescents (people under 18). As training and test data, hemogram test results of 50 individuals (either patients or healthy) are used. Input data consists of five different features (HGB, HCT, MCV, MCH, and MCHC). In order to increase the classifier efficiency, feature subset selection is applied, and the number of features is decreased. The Fisher Score Algorithm is utilized to obtain the most important features for this preprocessing step. These selected features were then used to train the SVM. After repeated training sessions, it has been observed that the performance depends heavily on not only the input's selected feature subsets but also the SVM's hyperparameters. To improve performance (in terms of accuracy), the penalization coefficient of the slack variable is optimized by a well-known optimization method called "Genetic Algorithm".

References

  • [1] H. L. Chen, B. Yang, G. Wang, J. Liu, and D. Li, “A three-stage expert system based on support vector machines for thyroid disease diagnosis,” Journal of Medical Systems, vol. 36, pp. 1953–1963, Jun. 2012, doi: 10.1007/s10916-011-9655-8.
  • [2] M. N. Kousarrizi, F. Seiti, and M. Teshnehlab, “An experimental comparative study on thyroid disease diagnosis based on feature subset selection and classification,” International Journal of Electrical & Computer Sciences (IJECS–IJENS), vol. 12, no. 1, pp. 13–20, 2012.
  • [3] J. S. Sartakhti, M. H. Zangooei, and K. Mozafari, “Hepatitis disease diagnosis using a novel hybrid method based on support vector machine and simulated annealing (SVM-SA),” Computer Methods and Programs in Biomedicine, vol. 108, no. 2, pp. 570–579, Nov. 2012, doi: 10.1016/j.cmpb.2011.08.003.
  • [4] A. V. Hoffbrand, P. A. H. Chowdhry, G. R. Collins, and J. Loke, Hoffbrand’s Essential Haematology, 9th ed. Hoboken, NJ, USA: Wiley-Blackwell, 2024.
  • [5] A. Baldi and S. R. Pasricha, “Anaemia: Worldwide prevalence and progress in reduction,” in Nutritional Anemia, C. D. Karakochuk, M. B. Zimmermann, D. Moretti, and K. Kraemer, Eds. Cham, Switzerland: Springer, 2022, pp. 3–17, doi: 10.1007/978-3-031-14521-6_1.
  • [6] B. F. Rodak, G. A. Fritsma, and E. M. Keohane, Hematology: Clinical Principles and Applications, 5th ed. St. Louis, MO, USA: Elsevier, 2016, pp. 150–172.
  • [7] A. T. Koru, E. Akdoğan, E. Kaya, M. Aktan, and A. Koru, “Diagnosis of anemia in children via artificial neural network,” International Journal of Intelligent Systems and Applications in Engineering, vol. 3, no. 1, pp. 24–27, Jan. 2015, doi: 10.18201/ijisae.61036.
  • [8] S. Volkan, G. D. Çelik, and A. Devrim, “The diagnosis of iron-deficiency anemia using feedforward backpropagation neural network,” Journal of Medical and Technological Innovations, vol. 2, no. 1, pp. –, 2014.
  • [9] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20, pp. 273–297, Sep. 1995, doi: 10.1007/BF00994018.
  • [10] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed. New York, NY, USA: John Wiley & Sons, 2001, pp. 207–212.
  • [11] R. A. Fisher, “The use of multiple measurements in taxonomic problems,” Annals of Eugenics, vol. 7, no. 2, pp. 179–188, Sep. 1936, doi: 10.1111/j.1469-1809.1936.tb02137.x.
  • [12] Q. Gu, Z. Li, and J. Han, “Generalized Fisher score for feature selection,” arXiv preprint arXiv:1202.3725, Feb. 2012, doi: 10.48550/arXiv.1202.3725.

Destek Vektör Makineleri Kullanılarak Çocuk ve Ergenlerde Anemi Tanısının Optimizasyonu

Year 2025, Volume: 2 Issue: 2, 84 - 88, 30.10.2025
https://doi.org/10.5281/zenodo.17474575

Abstract

Destek Vektör Makineleri (DVM), çeşitli alanlarda dikkate değer sonuçlar elde eden ve bu nedenle uygulamalarına yönelik araştırmaları teşvik eden yaygın öğrenme yöntemidir. Bu çalışma, çocuk ve ergenlerde (18 yaş altı bireylerde) anemi tanısına dayalı bir DVM yaklaşımı sunmaktadır. Eğitim ve test verisi olarak 50 bireyin (hasta veya sağlıklı) hemogram test sonuçları kullanılmıştır. Girdi verileri, beş farklı özelliği (HGB, HCT, MCV, MCH ve MCHC) içermektedir. Sınıflandırıcı verimliliğini artırmak amacıyla öznitelik alt kümesi seçimi uygulanmış ve öznitelik sayısı azaltılmıştır. Bu ön işleme adımı için en önemli özniteliklerin elde edilmesinde Fisher puanı Algoritması kullanılmıştır. Seçilen bu özellikler, DVM’nin eğitilmesinde kullanılmıştır. Tekrarlanan eğitim oturumları sonucunda, başarımın yalnızca seçilen öznitelik alt kümelerine değil, aynı zamanda DVM’nin hiperparametrelerine de güçlü biçimde bağlı olduğu gözlemlenmiştir. Performansın artırılması amacıyla, iyi bilinen bir optimizasyon yöntemi olan “Genetik Algoritma” kullanılarak gevşek değişken isimli model parametresinin cezalandırma katsayısı optimize edilmiştir.

References

  • [1] H. L. Chen, B. Yang, G. Wang, J. Liu, and D. Li, “A three-stage expert system based on support vector machines for thyroid disease diagnosis,” Journal of Medical Systems, vol. 36, pp. 1953–1963, Jun. 2012, doi: 10.1007/s10916-011-9655-8.
  • [2] M. N. Kousarrizi, F. Seiti, and M. Teshnehlab, “An experimental comparative study on thyroid disease diagnosis based on feature subset selection and classification,” International Journal of Electrical & Computer Sciences (IJECS–IJENS), vol. 12, no. 1, pp. 13–20, 2012.
  • [3] J. S. Sartakhti, M. H. Zangooei, and K. Mozafari, “Hepatitis disease diagnosis using a novel hybrid method based on support vector machine and simulated annealing (SVM-SA),” Computer Methods and Programs in Biomedicine, vol. 108, no. 2, pp. 570–579, Nov. 2012, doi: 10.1016/j.cmpb.2011.08.003.
  • [4] A. V. Hoffbrand, P. A. H. Chowdhry, G. R. Collins, and J. Loke, Hoffbrand’s Essential Haematology, 9th ed. Hoboken, NJ, USA: Wiley-Blackwell, 2024.
  • [5] A. Baldi and S. R. Pasricha, “Anaemia: Worldwide prevalence and progress in reduction,” in Nutritional Anemia, C. D. Karakochuk, M. B. Zimmermann, D. Moretti, and K. Kraemer, Eds. Cham, Switzerland: Springer, 2022, pp. 3–17, doi: 10.1007/978-3-031-14521-6_1.
  • [6] B. F. Rodak, G. A. Fritsma, and E. M. Keohane, Hematology: Clinical Principles and Applications, 5th ed. St. Louis, MO, USA: Elsevier, 2016, pp. 150–172.
  • [7] A. T. Koru, E. Akdoğan, E. Kaya, M. Aktan, and A. Koru, “Diagnosis of anemia in children via artificial neural network,” International Journal of Intelligent Systems and Applications in Engineering, vol. 3, no. 1, pp. 24–27, Jan. 2015, doi: 10.18201/ijisae.61036.
  • [8] S. Volkan, G. D. Çelik, and A. Devrim, “The diagnosis of iron-deficiency anemia using feedforward backpropagation neural network,” Journal of Medical and Technological Innovations, vol. 2, no. 1, pp. –, 2014.
  • [9] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20, pp. 273–297, Sep. 1995, doi: 10.1007/BF00994018.
  • [10] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed. New York, NY, USA: John Wiley & Sons, 2001, pp. 207–212.
  • [11] R. A. Fisher, “The use of multiple measurements in taxonomic problems,” Annals of Eugenics, vol. 7, no. 2, pp. 179–188, Sep. 1936, doi: 10.1111/j.1469-1809.1936.tb02137.x.
  • [12] Q. Gu, Z. Li, and J. Han, “Generalized Fisher score for feature selection,” arXiv preprint arXiv:1202.3725, Feb. 2012, doi: 10.48550/arXiv.1202.3725.
There are 12 citations in total.

Details

Primary Language English
Subjects Biomedical Diagnosis
Journal Section Research Article
Authors

Nuri Korhan 0000-0003-4351-2885

Publication Date October 30, 2025
Submission Date October 3, 2025
Acceptance Date October 27, 2025
Published in Issue Year 2025 Volume: 2 Issue: 2

Cite

IEEE N. Korhan, “Optimization of the Anemia Diagnosis in Children and Adolescents Using Support Vector Machines”, HENDESE, vol. 2, no. 2, pp. 84–88, 2025, doi: 10.5281/zenodo.17474575.