Research Article
BibTex RIS Cite

Computational Fluid Dynamics Simulation of a Two-Phase Flow Model with a Cylindroconical Structure for Optimization of Liquid Flow

Year 2024, Volume: 1 Issue: 2, 98 - 101, 27.10.2024
https://doi.org/10.5281/zenodo.13996532

Abstract

Hydrocyclone pumps are devices used in mining facilities to classify solid particles according to density or size differences or to separate them from a liquid. Hydrocyclones are manufactured in a cylindroconical structure that does not contain mechanical parts and are used to optimize liquid flow. Hydrocyclones heat up rapidly during operation and these high temperature values can cause wear and danger to hydrocyclone components. In order to prevent this, a cooling process must be carried out. This process reduces wear and extends the working life of the hydrocyclone. The viscosity of the liquid is reduced with the cooling process. Thus, it both ensures that the system operates in a better flow and creates a safe environment for employees.
Regular cooling of hydrocyclone pumps used in mining facilities; ensures that the system operates more efficiently and has a longer life. An automation system can be created to guarantee the effectiveness of this cooling process. In this study, it is aimed to design an automation system for active cooling in hydrocyclone pumps.

Project Number

TR-CS.1717191 (51)

References

  • [1] Senfter, T., Neuner, T., Bachmann, C., Berger, M., Mayerl, C., Kofler, T., Pillei, M., “An Empirical Study on the Upcycling of Glass Bottles into Hydrocyclone Separators”, Separations, Vol. 11, Issue 8, Pages 230-239, 2024.
  • [2] Mohanty, Shuvam., “Computational fluid dynamics analysis of a novel axial flow hydrocyclone”, PhD Thesis, UNSW Sydney, Sydney, 2023.
  • [3] Kalashnikov, A. A., “Regulation of hydrocyclone parameters to improve the quality of water purification on drip irrigation systems”, Caspian Journal of Environmental Sciences, Vol. 21, Issue 4, Pages 787-799, 2023.
  • [4] Gonçalves, S. M., Kyriakidis, Y. N., Ullmann, G., Barrozo, M. A. D. S., Vieira, L. G. M. “Design of an optimized hydrocyclone for high efficiency and low energy consumption”, Industrial & Engineering Chemistry Research, Vol. 59, Issue 37, Pages 16437-16449, 2020.
  • [5] Lee, H., Park, J., Lee, J. C., Ko, K., Seo, Y., “Development of a hydrocyclone for ultra-low flow rates”, Chemical Engineering Research and Design, Vol. 156, Pages 100-107, 2020.
  • [6] Bram, M. V., Jespersen, S., Hansen, D. S., Yang, Z., “Control-oriented modeling and experimental validation of a deoiling hydrocyclone system”, Processes, Vol. 8, Issue 9, Page 1010, 2020.
  • [7] Tian, J., Ni, L., Song, T., Olson, J., Zhao, J., “An overview of operating parameters and conditions in hydrocyclones for enhanced separations”, Separation and Purification Technology, Vol. 206, Pages 268-285, 2018.
  • [8] Li, F., Liu, P., Yang, X., Zhang, Y., Zhao, Y., “Effects of inlet concentration on the hydrocyclone separation performance with different inlet velocity”, Powder Technology, Vol. 375, Pages 337-351, 2020.
  • [9] Bergström, J., Hannes V., “Experimental hydrocyclone flow field studies”, Separation and Purification Technology, Vol. 53, Issue 1, Pages 8-20, 2007.
  • [10] Svarovsky, L., “Hydrocyclones”, in Solid-Liquid Separation, Butterworth-Heinemann, Pages 191-245, 2001.
  • [11] Zhang, L., Xiaohua X., Jiangfeng Z., “Improving energy efficiency of cyclone circuits in coal beneficiation plants by pump-storage systems”, Applied Energy, Vol. 119, Pages 306-313, 2014.
  • [12] Zhao, X., Zhao, K., Zhang, X., Gao, Y., Liu, H., “Structure Optimization and Performance Evaluation of Downhole Oil–Water Separation Tools: A Novel Hydrocyclone”, Journal of Energy Resources Technology, Vol. 146, Issue 2, Pages 023001-023012, 2024.
  • [13] Ekechukwu, O. M., Taimoor A., Haval K. H., “Recent Developments in Hydrocyclone Technology for Oil-in-Water Separation from Produced Water”, Energies, Vol. 17, Issue 13, Page 3181, 2024.
  • [14] Lee, H., “Development of a hydrocyclone for ultra-low flow rates”, Chemical Engineering Research and Design, Vol. 156, Pages 100-107, 2020.
  • [15] Tian, J., Ni, L., Song, T., Olson, J., Zhao, J., “An overview of operating parameters and conditions in hydrocyclones for enhanced separations”, Separation and Purification Technology, Vol. 206, Pages 268-285, 2018.
  • [16] Gonçalves, S. M., “Design of an optimized hydrocyclone for high efficiency and low energy consumption”, Industrial Engineering Chemistry Research, Vol. 59, Issue 37, Pages 16437-16449, 2020.
  • [17] Ovchinnikov, A. S., “Modernization of structural elements of a hydrocyclone to improve the efficiency of irrigation water treatment”, IOP Conference Series: Earth and Environmental Science, Vol. 965, No. 1, IOP Publishing, 2022.
  • [18] Padhi, M., Mayank K., Narasimha, M., “Understanding the bicomponent particle separation mechanism in a hydrocyclone using a computational fluid dynamic model”, Industrial & Engineering Chemistry Research, Vol. 59, Issue 25, Pages 11621-11644, 2020.
  • [19] Zhao, Z., Zhou, L., Liu, B., Cao, W., “Computational fluid dynamics and experimental investigation of inlet flow rate effects on separation performance of desanding hydrocyclone”, Powder Technology, Vol. 402, Pages 117363, 2022.
  • [20] Ullmann, G., Gonçalves, S. M., Kyriakidis, Y. N., Souza Barrozo, M. A., Vieira, L. G. M., “Optimization study of thickener hydrocyclones”, Minerals Engineering, Vol. 170, Page 107066, 2021.
  • [21] Jokovic, V., Robert, M., Daniel A., “Can the performance of semi-inverted hydrocyclones be similar to fine screening?”, Minerals Engineering, Vol. 146, Page 106147, 2020.
  • [22] Song, W., “Intelligent Control and Energy Conservation of Ball Mill”, 2020 2nd International Conference on Artificial Intelligence and Advanced Manufacture (AIAM), IEEE, 2020.
  • [23] Zou, G., Zhou, J., Song, T., Yang, J., Li, K., “Hierarchical intelligent control method for mineral particle size based on machine learning”, Minerals, Vol. 13, Issue 9, Page 1143, 2023.
  • [24] Khatri, N., Kamal K. K., Abhishek S., “Enhanced energy saving in wastewater treatment plant using dissolved oxygen control and hydrocyclone”, Environmental Technology & Innovation, Vol. 18, Page 100678, 2020.
  • [25] Beaulac, P., Issa, M., Ilinca, A., Lepage, R., Martini, F. “Improving the energy efficiency of cyclone dust collectors for wood product factories”, Open Journal of Energy Efficiency, Vol. 10, Issue 3, Pages 97-119, 2021.

Sıvı Akışının Optimizasyonu için Silindirik Konik Yapıya Sahip İki Fazlı Bir Akış Modelinin Hesaplamalı Akışkanlar Dinamiği Simülasyonu

Year 2024, Volume: 1 Issue: 2, 98 - 101, 27.10.2024
https://doi.org/10.5281/zenodo.13996532

Abstract

👔

1.083 / 5.000
Hidrosiklon pompaları, maden tesislerinde katı parçacıkları yoğunluk veya boyut farklılıklarına göre sınıflandırmak veya bunları bir sıvıdan ayırmak için kullanılan cihazlardır. Hidrosiklonlar, mekanik parça içermeyen silindirik konik bir yapıda üretilir ve sıvı akışını optimize etmek için kullanılır. Hidrosiklonlar çalışma sırasında hızla ısınır ve bu yüksek sıcaklık değerleri hidrosiklon bileşenlerinde aşınma ve tehlikeye neden olabilir. Bunu önlemek için bir soğutma işlemi yapılmalıdır. Bu işlem aşınmayı azaltır ve hidrosiklonun çalışma ömrünü uzatır. Soğutma işlemi ile sıvının viskozitesi azaltılır. Böylece hem sistemin daha iyi bir akışta çalışmasını sağlar hem de çalışanlar için güvenli bir ortam yaratır.
Maden tesislerinde kullanılan hidrosiklon pompalarının düzenli olarak soğutulması; sistemin daha verimli çalışmasını ve daha uzun ömürlü olmasını sağlar. Bu soğutma işleminin etkinliğini garanti altına almak için bir otomasyon sistemi oluşturulabilir. Bu çalışmada, hidrosiklon pompalarında aktif soğutma için bir otomasyon sistemi tasarlanması amaçlanmıştır.

Supporting Institution

Sanayi Bakanlığı

Project Number

TR-CS.1717191 (51)

References

  • [1] Senfter, T., Neuner, T., Bachmann, C., Berger, M., Mayerl, C., Kofler, T., Pillei, M., “An Empirical Study on the Upcycling of Glass Bottles into Hydrocyclone Separators”, Separations, Vol. 11, Issue 8, Pages 230-239, 2024.
  • [2] Mohanty, Shuvam., “Computational fluid dynamics analysis of a novel axial flow hydrocyclone”, PhD Thesis, UNSW Sydney, Sydney, 2023.
  • [3] Kalashnikov, A. A., “Regulation of hydrocyclone parameters to improve the quality of water purification on drip irrigation systems”, Caspian Journal of Environmental Sciences, Vol. 21, Issue 4, Pages 787-799, 2023.
  • [4] Gonçalves, S. M., Kyriakidis, Y. N., Ullmann, G., Barrozo, M. A. D. S., Vieira, L. G. M. “Design of an optimized hydrocyclone for high efficiency and low energy consumption”, Industrial & Engineering Chemistry Research, Vol. 59, Issue 37, Pages 16437-16449, 2020.
  • [5] Lee, H., Park, J., Lee, J. C., Ko, K., Seo, Y., “Development of a hydrocyclone for ultra-low flow rates”, Chemical Engineering Research and Design, Vol. 156, Pages 100-107, 2020.
  • [6] Bram, M. V., Jespersen, S., Hansen, D. S., Yang, Z., “Control-oriented modeling and experimental validation of a deoiling hydrocyclone system”, Processes, Vol. 8, Issue 9, Page 1010, 2020.
  • [7] Tian, J., Ni, L., Song, T., Olson, J., Zhao, J., “An overview of operating parameters and conditions in hydrocyclones for enhanced separations”, Separation and Purification Technology, Vol. 206, Pages 268-285, 2018.
  • [8] Li, F., Liu, P., Yang, X., Zhang, Y., Zhao, Y., “Effects of inlet concentration on the hydrocyclone separation performance with different inlet velocity”, Powder Technology, Vol. 375, Pages 337-351, 2020.
  • [9] Bergström, J., Hannes V., “Experimental hydrocyclone flow field studies”, Separation and Purification Technology, Vol. 53, Issue 1, Pages 8-20, 2007.
  • [10] Svarovsky, L., “Hydrocyclones”, in Solid-Liquid Separation, Butterworth-Heinemann, Pages 191-245, 2001.
  • [11] Zhang, L., Xiaohua X., Jiangfeng Z., “Improving energy efficiency of cyclone circuits in coal beneficiation plants by pump-storage systems”, Applied Energy, Vol. 119, Pages 306-313, 2014.
  • [12] Zhao, X., Zhao, K., Zhang, X., Gao, Y., Liu, H., “Structure Optimization and Performance Evaluation of Downhole Oil–Water Separation Tools: A Novel Hydrocyclone”, Journal of Energy Resources Technology, Vol. 146, Issue 2, Pages 023001-023012, 2024.
  • [13] Ekechukwu, O. M., Taimoor A., Haval K. H., “Recent Developments in Hydrocyclone Technology for Oil-in-Water Separation from Produced Water”, Energies, Vol. 17, Issue 13, Page 3181, 2024.
  • [14] Lee, H., “Development of a hydrocyclone for ultra-low flow rates”, Chemical Engineering Research and Design, Vol. 156, Pages 100-107, 2020.
  • [15] Tian, J., Ni, L., Song, T., Olson, J., Zhao, J., “An overview of operating parameters and conditions in hydrocyclones for enhanced separations”, Separation and Purification Technology, Vol. 206, Pages 268-285, 2018.
  • [16] Gonçalves, S. M., “Design of an optimized hydrocyclone for high efficiency and low energy consumption”, Industrial Engineering Chemistry Research, Vol. 59, Issue 37, Pages 16437-16449, 2020.
  • [17] Ovchinnikov, A. S., “Modernization of structural elements of a hydrocyclone to improve the efficiency of irrigation water treatment”, IOP Conference Series: Earth and Environmental Science, Vol. 965, No. 1, IOP Publishing, 2022.
  • [18] Padhi, M., Mayank K., Narasimha, M., “Understanding the bicomponent particle separation mechanism in a hydrocyclone using a computational fluid dynamic model”, Industrial & Engineering Chemistry Research, Vol. 59, Issue 25, Pages 11621-11644, 2020.
  • [19] Zhao, Z., Zhou, L., Liu, B., Cao, W., “Computational fluid dynamics and experimental investigation of inlet flow rate effects on separation performance of desanding hydrocyclone”, Powder Technology, Vol. 402, Pages 117363, 2022.
  • [20] Ullmann, G., Gonçalves, S. M., Kyriakidis, Y. N., Souza Barrozo, M. A., Vieira, L. G. M., “Optimization study of thickener hydrocyclones”, Minerals Engineering, Vol. 170, Page 107066, 2021.
  • [21] Jokovic, V., Robert, M., Daniel A., “Can the performance of semi-inverted hydrocyclones be similar to fine screening?”, Minerals Engineering, Vol. 146, Page 106147, 2020.
  • [22] Song, W., “Intelligent Control and Energy Conservation of Ball Mill”, 2020 2nd International Conference on Artificial Intelligence and Advanced Manufacture (AIAM), IEEE, 2020.
  • [23] Zou, G., Zhou, J., Song, T., Yang, J., Li, K., “Hierarchical intelligent control method for mineral particle size based on machine learning”, Minerals, Vol. 13, Issue 9, Page 1143, 2023.
  • [24] Khatri, N., Kamal K. K., Abhishek S., “Enhanced energy saving in wastewater treatment plant using dissolved oxygen control and hydrocyclone”, Environmental Technology & Innovation, Vol. 18, Page 100678, 2020.
  • [25] Beaulac, P., Issa, M., Ilinca, A., Lepage, R., Martini, F. “Improving the energy efficiency of cyclone dust collectors for wood product factories”, Open Journal of Energy Efficiency, Vol. 10, Issue 3, Pages 97-119, 2021.
There are 25 citations in total.

Details

Primary Language English
Subjects Clean Production Technologies, Mechatronic System Design, Simulation, Modelling, and Programming of Mechatronics Systems
Journal Section Research Article
Authors

Ümit Doğu 0009-0008-9002-2524

Fikret Kemal Akyüz 0000-0003-1584-9421

Ahmet Feyzioğlu 0000-0003-0296-106X

Sezgin Ersoy 0000-0002-4029-5603

Project Number TR-CS.1717191 (51)
Publication Date October 27, 2024
Submission Date September 18, 2024
Acceptance Date October 22, 2024
Published in Issue Year 2024 Volume: 1 Issue: 2

Cite

APA Doğu, Ü., Akyüz, F. K., Feyzioğlu, A., Ersoy, S. (2024). Computational Fluid Dynamics Simulation of a Two-Phase Flow Model with a Cylindroconical Structure for Optimization of Liquid Flow. Hendese Teknik Bilimler Ve Mühendislik Dergisi, 1(2), 98-101. https://doi.org/10.5281/zenodo.13996532