Research Article
BibTex RIS Cite

Modulation of SCFA-Producing Bacteria by the Combination of Intermittent Fasting and Probiotics in the Aging Gut Microbiota

Year 2025, Volume: 2 Issue: 2, 78 - 83, 30.10.2025
https://doi.org/10.5281/zenodo.17474573

Abstract

Aging is accompanied by profound alterations in gut microbiota composition, often leading to a dysbiotic state characterized by reduced abundance of short-chain fatty acid (SCFA) producers. Intermittent fasting (IF) and probiotics (Prb) have emerged as dietary strategies with potential to counteract these changes. Twenty-four-month-old Sprague Dawley rats were assigned to control (Cnt), intermittent fasting (IF), probiotic (Prb), or combined IF+Prb groups. Cecal contents were subjected to 16S rDNA sequencing, and the relative abundance of key SCFA-producing taxa was determined. Correlation analyses (Spearman and Pearson) and heatmap visualizations were applied to examine ecological relationships and group-specific shifts. The control group displayed a dysbiotic profile with diminished representation of butyrate- and propionate-producing taxa. In contrast, IF, Prb, and IF+Prb interventions consistently promoted the enrichment of core SCFA producers such as Anaerostipes hadrus, Roseburia intestinalis, Butyrivibrio fibrisolvens, and Akkermansia muciniphila. Additional taxa including Intestinimonas butyriciproducens, Coprococcus catus, and Clostridium hylemonae also showed increased abundances under intervention conditions. Correlation analyses revealed coordinated ecological restructuring, supporting restoration of microbial networks linked to SCFA production. These findings demonstrate that intermittent fasting and probiotics, independently or in combination, mitigate age-associated dysbiosis by selectively enhancing SCFA-producing bacterial communities. Such interventions may represent promising nutritional strategies to restore gut microbial balance and improve host metabolic health in aging.

References

  • [1] T. Ceylani, H. T. Teker, G. Samgane, and R. Gurbanov, “Intermittent fasting-induced biomolecular modifications in rat tissues detected by ATR-FTIR spectroscopy and machine learning algorithms,” Analytical Biochemistry, vol. 654, p. 114825, Oct. 2022, doi: 10.1016/j.ab.2022.114825.
  • [2] İ. Ardahanlı, H. İ. Özkan, F. Özel, R. Gurbanov, H. T. Teker, and T. Ceylani, “Infrared spectrochemical findings on intermittent fasting-associated gross molecular modifications in rat myocardium,” Biophysical Chemistry, vol. 289, p. 106873, Oct. 2022, doi: 10.1016/j.bpc.2022.106873.
  • [3] M. P. Mattson, K. Moehl, N. Ghena, M. Schmaedick, and A. Cheng, “Intermittent metabolic switching, neuroplasticity and brain health,” Nature Reviews Neuroscience, vol. 19, no. 2, pp. 81–94, Feb. 2018, doi: 10.1038/nrn.2017.156.
  • [4] H. T. Teker and T. Ceylani, “Intermittent fasting supports the balance of the gut microbiota composition,” International Microbiology, vol. 26, no. 1, pp. 51–57, Jan. 2023, doi: 10.1007/s10123-022-00272-7.
  • [5] T. Ceylani, “Effect of SCD probiotics supplemented with tauroursodeoxycholic acid (TUDCA) application on the aged rat gut microbiota composition,” Journal of Applied Microbiology, vol. 134, no. 5, May 2023, Art. no. lxad092, doi: 10.1093/jambio/lxad092.
  • [6] T. Altintaş, T. Ceylani, H. Önlü, E. Sağır, M. Yılmaz, and A. Bora, “Targeting gut microbiota health in aged rats through the potent strategy of probiotics supplementation during intermittent fasting,” Pakistan Veterinary Journal, vol. 45, no. 1, pp. 286–294, 2025, doi: 10.29261/pakvetj/2025.003.
  • [7] H. T. Teker, T. Ceylani, S. Keskin, G. Samgane, B. Baba, E. Acıkgoz, and R. Gurbanov, “Reduced liver damage and fibrosis with combined SCD probiotics and intermittent fasting in aged rat,” Journal of Cellular and Molecular Medicine, vol. 28, Oct. 2023, Art. no. e18014, doi: 10.1111/jcmm.18014.
  • [8] T. Ceylani, H. Önlü, S. Keskin, H. A. Allahverdi, and H. T. Teker, “SCD probiotics mitigate cafeteria diet-induced liver damage in Wistar rats during development,” Journal of Gastroenterology and Hepatology, vol. 38, Nov. 2023, doi: 10.1111/jgh.16395.
  • [9] T. Ceylani and H. T. Teker, “The effect of young blood plasma administration on gut microbiota in middle-aged rats,” Archives of Microbiology, vol. 204, no. 8, p. 541, Aug. 2022, doi: 10.1007/s00203-022-03154-8.
  • [10] T. Ceylani, H. Allahverdi, and H. T. Teker, “Role of age-related plasma in the diversity of gut bacteria,” Archives of Gerontology and Geriatrics, vol. 111, p. 105003, 2023, doi: 10.1016/j.archger.2023.105003.
  • [11] P. W. O’Toole and I. B. Jeffery, “Gut microbiota and aging,” Science, vol. 350, no. 6265, pp. 1214–1215, Dec. 2015, doi: 10.1126/science.aac8469.
  • [12] R. Nagpal, R. Mainali, and H. Yadav et al., “Gut microbiome and aging: Physiological and mechanistic insights,” Nutrition and Healthy Aging, vol. 4, no. 4, pp. 267–285, 2018, doi: 10.3233/NHA-170030.
  • [13] P. Louis and H. J. Flint, “Formation of propionate and butyrate by the human colonic microbiota,” Environmental Microbiology, vol. 19, no. 1, pp. 29–41, Jan. 2017, doi: 10.1111/1462-2920.13589.
  • [14] E. E. Canfora, R. C. R. Meex, K. Venema, et al., “Gut microbial metabolites in obesity, NAFLD and T2DM,” Nature Reviews Endocrinology, vol. 15, pp. 261–273, May 2019, doi: 10.1038/s41574-019-0156-z.
  • [15] H. Zhang, H.-B. Li, J.-R. Lyu, X.-M. Lei, W. Li, G. Wu, J. Lyu, and Z.-M. Dai, “Specific ACE2 expression in small intestinal enterocytes may cause gastrointestinal symptoms and injury after 2019-nCoV infection,” International Journal of Infectious Diseases, vol. 96, pp. 19–24, 2020, doi: 10.1016/j.ijid.2020.04.027.
  • [16] C. Depommier, A. Everard, C. Druart, et al., “Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study,” Nature Medicine, vol. 25, pp. 1096–1103, Jul. 2019, doi: 10.1038/s41591-019-0495-2.
  • [17] I. Lagkouvardos, R. Pukall, B. Abt, et al., “The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota,” Nature Microbiology, vol. 1, p. 16131, 2016, doi: 10.1038/nmicrobiol.2016.131.
  • [18] S. L. Long, C. G. M. Gahan, and S. A. Joyce, “Interactions between gut bacteria and bile in health and disease,” Molecular Aspects of Medicine, vol. 56, pp. 54–65, Aug. 2017, doi: 10.1016/j.mam.2017.06.002.
  • [19] A. Koh, F. De Vadder, P. Kovatcheva-Datchary, and F. Bäckhed, “From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites,” Cell, vol. 165, no. 6, pp. 1332–1345, Jun. 2016, doi: 10.1016/j.cell.2016.05.041.
  • [20] D. J. Morrison and T. Preston, “Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism,” Gut Microbes, vol. 7, no. 3, pp. 189–200, 2016, doi: 10.1080/19490976.2015.1134082.
  • [21] R. de Cabo and M. P. Mattson, “Effects of intermittent fasting on health, aging, and disease,” New England Journal of Medicine, vol. 381, no. 26, pp. 2541–2551, Dec. 2019, doi: 10.1056/NEJMra1905136.
  • [22] M. J. Claesson, S. Cusack, O. O’Sullivan, et al., “Composition, variability, and temporal stability of the intestinal microbiota of the elderly,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, suppl. 1, pp. 4586–4591, Jun. 2010, doi: 10.1073/pnas.1000097107.
  • [23] F. Mangiola, A. Nicoletti, A. Gasbarrini, and F. R. Ponziani, “Gut microbiota and aging,” European Review for Medical and Pharmacological Sciences, vol. 22, no. 21, pp. 7404–7413, 2018.
  • [24] V. D. Badal, E. D. Vaccariello, E. R. Murray, K. E. Yu, R. Knight, D. V. Jeste, and T. T. Nguyen, “The gut microbiome, aging, and longevity: A systematic review,” Nutrients, vol. 12, no. 12, p. 3759, Dec. 2020, doi: 10.3390/nu12123759.
  • [25] R. Nagpal, S. Wang, S. Ahmadi, J. Hayes, J. Gagliano, S. Subashchandrabose, D. W. Kitzman, T. Becton, R. Read, and H. Yadav, “Human-origin probiotic cocktail increases short-chain fatty acid production via modulation of mice and human gut microbiome,” Scientific Reports, vol. 8, p. 12649, Aug. 2018, doi: 10.1038/s41598-018-30114-4.

Yaşlı Bağırsak Mikrobiyotasında Aralıklı Oruç ve Probiyotiklerin Kombinasyonuyla SCFA Üreten Bakterilerin Modülasyonu

Year 2025, Volume: 2 Issue: 2, 78 - 83, 30.10.2025
https://doi.org/10.5281/zenodo.17474573

Abstract

Yaşlanma, bağırsak mikrobiyotası bileşiminde derin değişikliklere eşlik eder ve bu genellikle kısa zincirli yağ asidi (SCFA) üreticilerinin azalmış bolluğu ile karakterize disbiyotik bir duruma yol açar. Aralıklı oruç (IF) ve probiyotikler (Prb), bu değişikliklere karşı koyma potansiyeline sahip diyet stratejileri olarak ortaya çıkmıştır. Yirmi dört aylık Sprague Dawley sıçanları kontrol (Cnt), aralıklı oruç (IF), probiyotik (Prb) veya kombine IF + Prb gruplarına atandı. Kör bağırsak içerikleri 16S rDNA dizilemesine tabi tutuldu ve önemli SCFA üreten taksonların göreceli bolluğu belirlendi. Ekolojik ilişkileri ve grup-özgü değişimleri incelemek için korelasyon analizleri (Spearman ve Pearson) ve ısı haritası görselleştirmeleri uygulandı. Kontrol grubu, bütirat ve propiyonat üreten taksonların azalmış temsiliyle disbiyotik bir profil gösterdi. Buna karşılık, IF, Prb ve IF+Prb müdahaleleri, Anaerostipes hadrus, Roseburia intestinalis, Butyrivibrio fibrisolvens ve Akkermansia muciniphila gibi temel SCFA üreticilerinin zenginleştirilmesini sürekli olarak desteklemiştir. Intestinimonas butyriciproducens, Coprococcus catus ve Clostridium hylemonae dahil ek taksonlar da müdahale koşulları altında artan bolluk göstermiştir. Korelasyon analizleri, SCFA üretimiyle bağlantılı mikrobiyal ağların restorasyonunu destekleyen koordineli ekolojik yeniden yapılanmayı ortaya koymuştur. Bu bulgular, aralıklı oruç ve probiyotiklerin, bağımsız olarak veya birlikte, SCFA üreten bakteri topluluklarını seçici olarak artırarak yaşa bağlı disbiyozu hafiflettiğini göstermektedir. Bu tür müdahaleler, bağırsak mikrobiyal dengesini yeniden sağlamak ve yaşlanmada konakçı metabolik sağlığını iyileştirmek için umut verici beslenme stratejileri sunabilir.

References

  • [1] T. Ceylani, H. T. Teker, G. Samgane, and R. Gurbanov, “Intermittent fasting-induced biomolecular modifications in rat tissues detected by ATR-FTIR spectroscopy and machine learning algorithms,” Analytical Biochemistry, vol. 654, p. 114825, Oct. 2022, doi: 10.1016/j.ab.2022.114825.
  • [2] İ. Ardahanlı, H. İ. Özkan, F. Özel, R. Gurbanov, H. T. Teker, and T. Ceylani, “Infrared spectrochemical findings on intermittent fasting-associated gross molecular modifications in rat myocardium,” Biophysical Chemistry, vol. 289, p. 106873, Oct. 2022, doi: 10.1016/j.bpc.2022.106873.
  • [3] M. P. Mattson, K. Moehl, N. Ghena, M. Schmaedick, and A. Cheng, “Intermittent metabolic switching, neuroplasticity and brain health,” Nature Reviews Neuroscience, vol. 19, no. 2, pp. 81–94, Feb. 2018, doi: 10.1038/nrn.2017.156.
  • [4] H. T. Teker and T. Ceylani, “Intermittent fasting supports the balance of the gut microbiota composition,” International Microbiology, vol. 26, no. 1, pp. 51–57, Jan. 2023, doi: 10.1007/s10123-022-00272-7.
  • [5] T. Ceylani, “Effect of SCD probiotics supplemented with tauroursodeoxycholic acid (TUDCA) application on the aged rat gut microbiota composition,” Journal of Applied Microbiology, vol. 134, no. 5, May 2023, Art. no. lxad092, doi: 10.1093/jambio/lxad092.
  • [6] T. Altintaş, T. Ceylani, H. Önlü, E. Sağır, M. Yılmaz, and A. Bora, “Targeting gut microbiota health in aged rats through the potent strategy of probiotics supplementation during intermittent fasting,” Pakistan Veterinary Journal, vol. 45, no. 1, pp. 286–294, 2025, doi: 10.29261/pakvetj/2025.003.
  • [7] H. T. Teker, T. Ceylani, S. Keskin, G. Samgane, B. Baba, E. Acıkgoz, and R. Gurbanov, “Reduced liver damage and fibrosis with combined SCD probiotics and intermittent fasting in aged rat,” Journal of Cellular and Molecular Medicine, vol. 28, Oct. 2023, Art. no. e18014, doi: 10.1111/jcmm.18014.
  • [8] T. Ceylani, H. Önlü, S. Keskin, H. A. Allahverdi, and H. T. Teker, “SCD probiotics mitigate cafeteria diet-induced liver damage in Wistar rats during development,” Journal of Gastroenterology and Hepatology, vol. 38, Nov. 2023, doi: 10.1111/jgh.16395.
  • [9] T. Ceylani and H. T. Teker, “The effect of young blood plasma administration on gut microbiota in middle-aged rats,” Archives of Microbiology, vol. 204, no. 8, p. 541, Aug. 2022, doi: 10.1007/s00203-022-03154-8.
  • [10] T. Ceylani, H. Allahverdi, and H. T. Teker, “Role of age-related plasma in the diversity of gut bacteria,” Archives of Gerontology and Geriatrics, vol. 111, p. 105003, 2023, doi: 10.1016/j.archger.2023.105003.
  • [11] P. W. O’Toole and I. B. Jeffery, “Gut microbiota and aging,” Science, vol. 350, no. 6265, pp. 1214–1215, Dec. 2015, doi: 10.1126/science.aac8469.
  • [12] R. Nagpal, R. Mainali, and H. Yadav et al., “Gut microbiome and aging: Physiological and mechanistic insights,” Nutrition and Healthy Aging, vol. 4, no. 4, pp. 267–285, 2018, doi: 10.3233/NHA-170030.
  • [13] P. Louis and H. J. Flint, “Formation of propionate and butyrate by the human colonic microbiota,” Environmental Microbiology, vol. 19, no. 1, pp. 29–41, Jan. 2017, doi: 10.1111/1462-2920.13589.
  • [14] E. E. Canfora, R. C. R. Meex, K. Venema, et al., “Gut microbial metabolites in obesity, NAFLD and T2DM,” Nature Reviews Endocrinology, vol. 15, pp. 261–273, May 2019, doi: 10.1038/s41574-019-0156-z.
  • [15] H. Zhang, H.-B. Li, J.-R. Lyu, X.-M. Lei, W. Li, G. Wu, J. Lyu, and Z.-M. Dai, “Specific ACE2 expression in small intestinal enterocytes may cause gastrointestinal symptoms and injury after 2019-nCoV infection,” International Journal of Infectious Diseases, vol. 96, pp. 19–24, 2020, doi: 10.1016/j.ijid.2020.04.027.
  • [16] C. Depommier, A. Everard, C. Druart, et al., “Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study,” Nature Medicine, vol. 25, pp. 1096–1103, Jul. 2019, doi: 10.1038/s41591-019-0495-2.
  • [17] I. Lagkouvardos, R. Pukall, B. Abt, et al., “The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota,” Nature Microbiology, vol. 1, p. 16131, 2016, doi: 10.1038/nmicrobiol.2016.131.
  • [18] S. L. Long, C. G. M. Gahan, and S. A. Joyce, “Interactions between gut bacteria and bile in health and disease,” Molecular Aspects of Medicine, vol. 56, pp. 54–65, Aug. 2017, doi: 10.1016/j.mam.2017.06.002.
  • [19] A. Koh, F. De Vadder, P. Kovatcheva-Datchary, and F. Bäckhed, “From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites,” Cell, vol. 165, no. 6, pp. 1332–1345, Jun. 2016, doi: 10.1016/j.cell.2016.05.041.
  • [20] D. J. Morrison and T. Preston, “Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism,” Gut Microbes, vol. 7, no. 3, pp. 189–200, 2016, doi: 10.1080/19490976.2015.1134082.
  • [21] R. de Cabo and M. P. Mattson, “Effects of intermittent fasting on health, aging, and disease,” New England Journal of Medicine, vol. 381, no. 26, pp. 2541–2551, Dec. 2019, doi: 10.1056/NEJMra1905136.
  • [22] M. J. Claesson, S. Cusack, O. O’Sullivan, et al., “Composition, variability, and temporal stability of the intestinal microbiota of the elderly,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, suppl. 1, pp. 4586–4591, Jun. 2010, doi: 10.1073/pnas.1000097107.
  • [23] F. Mangiola, A. Nicoletti, A. Gasbarrini, and F. R. Ponziani, “Gut microbiota and aging,” European Review for Medical and Pharmacological Sciences, vol. 22, no. 21, pp. 7404–7413, 2018.
  • [24] V. D. Badal, E. D. Vaccariello, E. R. Murray, K. E. Yu, R. Knight, D. V. Jeste, and T. T. Nguyen, “The gut microbiome, aging, and longevity: A systematic review,” Nutrients, vol. 12, no. 12, p. 3759, Dec. 2020, doi: 10.3390/nu12123759.
  • [25] R. Nagpal, S. Wang, S. Ahmadi, J. Hayes, J. Gagliano, S. Subashchandrabose, D. W. Kitzman, T. Becton, R. Read, and H. Yadav, “Human-origin probiotic cocktail increases short-chain fatty acid production via modulation of mice and human gut microbiome,” Scientific Reports, vol. 8, p. 12649, Aug. 2018, doi: 10.1038/s41598-018-30114-4.
There are 25 citations in total.

Details

Primary Language English
Subjects Neural Engineering
Journal Section Research Article
Authors

Taha Ceylani 0000-0002-3041-6010

Sevcan Kabayer 0009-0006-8826-6787

Vesila Yıldırım 0009-0007-7900-8791

Enes Esmertaş 0009-0007-3379-0706

Hikmet Taner Teker 0000-0002-6621-3071

Publication Date October 30, 2025
Submission Date August 23, 2025
Acceptance Date October 13, 2025
Published in Issue Year 2025 Volume: 2 Issue: 2

Cite

IEEE T. Ceylani, S. Kabayer, V. Yıldırım, E. Esmertaş, and H. T. Teker, “Modulation of SCFA-Producing Bacteria by the Combination of Intermittent Fasting and Probiotics in the Aging Gut Microbiota”, HENDESE, vol. 2, no. 2, pp. 78–83, 2025, doi: 10.5281/zenodo.17474573.