Review
BibTex RIS Cite

A Study on Learning Environments Nurturing Mathematical Creativity

Year 2025, Volume: 15 Issue: 2, 165 - 172, 31.08.2025
https://doi.org/10.5961/higheredusci.1477390

Abstract

People with 21st century skills are needed in the society we live in today. Creativity, which is one of the 21st century skills, leads individuals
to be recognized in environments in which they exist. The aim of this study is to identify in detail the characteristics of mathematics
learning environments that can trigger creativity, which is one of the 21st century skills, and to examine the activities to increase prospective
mathematics teachers’ awareness of mathematical creativity. From this point of view, the study first discusses in detail how creativity is
handled in the educational literature. Afterwards, how mathematical creativity is conceptualized by various researchers is discussed in
depth. In addition, pedagogical principles that have been suggested for developing mathematical creativity in learning environments are
presented in detail. Strategies that mathematics teachers can use in their classrooms in an inquiry-based way to get their students to work
like mathematicians are also discussed. Finally, it is emphasized what kind of activities can trigger students’ mathematical creativity in
learning environments and various examples of such activities are given

References

  • Amabile, T. M. (1996). Creativity in context: Update to the social psychology of creativity. New York: Westview Press.
  • Amabile, T. (2013). Componential theory of creativity. In E. Kessler (Ed.), Encyclopedia of management theory (pp. 135–140). Thousand Oaks, CA: Sage.
  • Beghetto, R. A., & Kaufman, J. C. (2009). Intellectual estuaries: Connecting learning and creativity in programs of advanced academics. Journal of Advanced Academics, 20(2), 296–324.
  • Bolden, D. S., Harries, A. V., & Newton, D. P. (2010). Pre-service primary teachers’ conceptions of creativity in mathematics. Educational Studies in Mathematics, 73(2), 143–157.
  • Csikszentmihalyi, M. (1999). Implications of a system perspective for the study of creativity. In R. J. Sternberg (Ed.), Handbook of creativity (pp.313–335). Cambridge: Cambridge University Press.
  • Collino, A., Conte, A., Verra, A. (2014). On the life and scientific work of Gino Fano. La Matematica nella Società e nella Cultura. Rivista dell’Unione Matematica Italiana, 7(1), 99–137.
  • Craft, A. (2002). Creativity and early years education: A lifewide foundation. London: Continuum.
  • Emre-Akdoğan, E. & Yazgan-Sağ, G. (2023). Creative mathematics experiences: Defining new geometric concepts. The Australian Mathematics Education Journal, 5(1), 19–23.
  • Erez, R. (2004). Freedom and creativity: An approach to science education for excellent students and its realization in the Israel arts and science academy’s curriculum. The Journal of Secondary Gifted Education, 25, 33–140.
  • Eryynck, G. (1991). Mathematical creativity. In D. Tall (Ed.), Advanced Mathematical Thinking (pp. 42–53). Dordrecht, Netherlands: Kluwer.
  • Fischbein, E. (1993). The theory of figural concepts. Educational Studies in Mathematics, 24(2), 139–162.
  • Guilford, J. P. (1950). Creativity. American Psychologist, 5, 444–454.
  • Grégoire J. (2016). Understanding creativity in mathematics for improving mathematical education. Journal of Cognitive Education and Psychology, 15(1), 24–36.
  • Haylock, D. W. (1987). A framework for assessing mathematical creativity in school children. Educational Studies in Mathematics 18(1), 59–74.
  • Juter, K. & Sriraman, B. (2011). Does high achieving in mathematics—gifted and/or creative in mathematics. In B. Sriraman, & K. H. Lee (Eds.), The Elements of Creativity and Giftedness in Mathematics (pp. 45–65). Rotterdam, Netherlands: Sense Publishers.
  • Kattou, M., Kontoyianni, K., & Christou, C. (2009). Mathematical creativity through teachers’ perceptions. In M. Teekaki, M. Kaldrinidou, & C. Sakonidis (Eds.), Proceedings of the 33rd conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 297–304). Thessaloniki, Greece: PME.
  • Kaufman, J., & Beghetto, R. (2009). Beyond big and little: The four C model of creativity. Review of General Psychology, 13(1), 1–12.
  • Kontorovich, I., Kolchu, B., Leikin, R., & Berman, A. (2012). An exploratory framework for handling the complexity of students’ mathematical problem posing in small groups. Journal of Mathematical Behavior, 31(1), 149–161.
  • Kwon, O. H., Park, J. S., & Park, J. S. (2006). Cultivating divergent thinking in mathematics through an open-ended approach. Asia-Pacific Education Review, 7(1), 51–61.
  • Lambert, J., & Cuper, P. (2008). Multimedia technologies and familiar spaces: 21st century teaching for 21st century learners. Contemporary Issues in Technology and Teacher Education, 8(3), 264–276.
  • Leikin, R. (2009). Exploring mathematical creativity using multiple solution tasks. In R. Leikin, A. Berman, & B. Kolchu (Eds.), Creativity in mathematics and the education of gifted students (pp. 129–145). Rotterdam: Sense Publishers.
  • Leikin, R. (2013). Mathematical creativity: The interplay between multiplicity and insight, Psychological Test and Assessment Modeling, 55(4), 385–400.
  • Leikin, R. (2014). Challenging mathematics with multiple solution tasks and mathematical investigations in geometry. In Y. Li, E. A. Silver, & S. Li (Eds.), Transforming mathematics instruction: Multiple approaches and practices (pp. 59–80). Dordrecht: Springer.
  • Leikin, R., & Pitta-Pantazi, D. (2013). Creativity and mathematics education: The state of the art. ZDM – The International Journal on Mathematics Education, 45(4), 159–166.
  • Levenson, E. (2013). Tasks that may occasion mathematical creativity: teachers’ choices. Journal of Mathematics Teacher Education, 16(4), 269–291.
  • Lev-Zamir, H., & Leikin, R. (2011). Creative mathematics teaching in the eye of the beholder: Focusing on teachers’ conceptions. Research in Mathematics Education, 13(1), 17–32.
  • Lev-Zamir, H., & Leikin, R. (2013). Saying versus doing: Teachers’ conceptions of creativity in elementary mathematics teaching. ZDM – The International Journal on Mathematics Education, 45(2), 295–308.
  • Liljedahl, P., & Sriraman, B. (2006). Musings on mathematical creativity. For the Learning of Mathematics, 26(1), 20–23.
  • Lithner, J. (2008). A research framework for creative and imitative reasoning. Educational Studies in Mathematics, 67(3), 255–276.
  • Mann, E. L. (2006). Creativity: The essence of mathematics. Journal for the Education of the Gifted, 30(2), 236–262.
  • Noite, M., & Pamperlen, K. (2017). Challenging problems in a regular classroom setting and in a special foster programme. ZDM – The International Journal on Mathematics Education, 49(1), 121–136.
  • Oklitschke, J., Rott, B., & Schindler, M. (2022). Notions of creativity in mathematics education research: A systematic literature review. International Journal of Science and Mathematics Education, 20,1161–1181.
  • Öğretmen Yetiştirme ve Geliştirme Genel Müdürlüğü (2017). Öğretmenlik Mesleği Genel Yeterlilikleri. Ankara: Millî Eğitim Bakanlığı.
  • Panaoura, A., & Panaoura, G. (2014). Teachers’ awareness of creativity in mathematical teaching and their practice. JUMPST: The Journal, 4, 1–11.
  • Plucker, J. A., & Beghetto, R. A. (2004). Why creativity is domain general, why it looks domain specific, and why the distinction does not matter. In R.J. Sternberg, J. Lautrey, & T.I. Lubart (Eds.), Models of intelligence: International perspectives (pp. 153–168). Washington, DC: American Psychological Association.
  • Pehkonen, E. (1997). The state-of-art in mathematical creativity. ZDM – International Journal on Mathematics Education, 29(3), 63–67.
  • Sheffield, L. J. (2003). Extending the challenge in mathematics: Developing mathematical promise in K—8 pupils. Thousand Oaks, CA: Corwin Press.
  • Sheffield, L. J. (2006). Developing mathematical promise and creativity. Journal of the Korea Society of Mathematical Education Series D: Research in Mathematical Education, 10(1), 1–11.
  • Shillo R., Hoernle, N. & Gal, K. (2019). Detecting creativity in an open ended geometry environment. In C. F. Lynch, A Merceron, M. Desmarais, & R. Nkambou (Eds.) Proceedings of the 12th International Conference on Educational Data Mining (EDM 2019) (pp. 408–413). Montréal, Canada: UQAM.
  • Shriki, A. (20110). Working like real mathematicians: developing prospective teachers’ awareness of mathematical creativity through generating new concepts. Educational Studies in Mathematics, 73(2), 159–179.
  • Silver, E. (1997). Fostering creativity through instruction rich in mathematical problem solving and problem posing. ZDM – The International Journal on Mathematics Education, 3, 75–80.
  • Singer, F. M. (2007). Beyond conceptual change: Using representations to integrate domain-specific structural models in learning mathematics. Mind, Brain, and Education, 1(2), 84–97.
  • Singer, F. M., Sheffield, L. J., Freiman, V., & Brandl, M. (2016). Research on and activities for mathematically gifted students. New York: Springer Nature.
  • Singer, F.M., Sheffield, L.J. & Leikin, R. (2017). Advancements in research on creativity and giftedness in mathematics education: Introduction to the special issue. ZDM – The International Journal on Mathematics Education, 49(1): 5–12.
  • Sriraman, B. (2004). The characteristics of mathematical creativity. The Mathematics Educator, 14(1), 19–34.
  • Sriraman, B. (2005). Are giftedness and creativity synonyms in mathematics? The Journal of Secondary Gifted Education, 17(1), 20–36.
  • Sriraman, B., & Haavold, P. (2017). Creativity and giftedness in mathematics education: A pragmatic view. First compendium for research in mathematics education. Reston: National Council of Teachers of Mathematics.
  • Sriraman, B., Yaftian, N., & Lee, K. H. (2011). Mathematical creativity and mathematics education: A derivative of existing research. In B. Sriraman & K.H. Lee (Eds.), The elements of creativity and giftedness in mathematics (pp. 119-130). Rotterdam: Sense Publishers.
  • Sternberg, R. J., & Lubart, T. I. (1999). The concept of creativity: Prospects and paradigms. In R. Sternberg (Ed.), Handbook of Creativity (pp. 3–15). Cambridge, U.K.: Cambridge University Press.
  • Stillman, G., Kwok-Cheung, C., Mason, R., Sheffield, L., Sriraman, B., & Ueno, K. (2009). Classroom practice: Challenging mathematics classroom practices. In E. Barbeau & P. Taylor (Eds.), Challenging mathematics in and beyond the classroom: The 16th ICMI Study (pp. 243–284). Berlin: Springer.
  • Torrance, E. P. (1974). Torrance tests of creative thinking: Norms-technical manual. Lexington, MA: Ginn.
  • van de Oudeweetering, K., & Voogt, J. (2018). Teachers’ conceptualization and enactment of twenty-first century competences: Exploring dimensions for new curricula. The Curriculum Journal, 29(1), 116–133.
  • Van Harpen, X. Y., & Sriraman, B. (2013). Creativity and mathematical problem posing: An analysis of high school students’ mathematical problem posing in China and the USA. Educational Studies in Mathematics, 82(2), 201–222.
  • Wallas, G. (1926). The art of thought. New York, NY: Harcourt, Brace & World.
  • Yazgan-Sağ, G., & Emre-Akdoğan, E. (2016). Creativity from two perspectives: Prospective mathematics teachers and mathematician. Australian Journal of Teacher Education, 41(12), 25-40.

Matematiksel Yaratıcılığı Destekleyen Öğrenme Ortamları Üzerine İnceleme

Year 2025, Volume: 15 Issue: 2, 165 - 172, 31.08.2025
https://doi.org/10.5961/higheredusci.1477390

Abstract

İçinde yaşadığımız günümüz toplumu, 21. yüzyıl becerilerine sahip insan gücü talep etmektedir. 21. yüzyıl becerileri arasında öne çıkan
yaratıcılık, bireylerin var oldukları her türlü ortamda fark edilmelerine yol açabilmektedir. Bu çalışmanın amacı, 21. yüzyıl becerileri
arasında yer alan yaratıcılığı tetikleyen matematik öğrenme ortamlarının ne gibi özelliklere sahip olabileceğini detaylı bir şekilde ortaya
koymak ve matematik öğretmen adaylarının matematiksel yaratıcılığa dair farkındalıklarının artırılmasına yönelik yapılabilecek etkinlikleri
irdelemektir. Buradan hareketle, öncelikle yaratıcılığın eğitim literatüründe nasıl ele alındığına etraflıca yer verilmiştir. Sonrasında ise
matematiksel yaratıcılığın çeşitli araştırmacılar tarafından nasıl kavramsallaştırıldığı derinlemesine tartışılmıştır. Ayrıca öğrenme ortamlarında
matematiksel yaratıcılığı geliştirilmesine yönelik önerilen pedagojik prensipler ayrıntılı bir şekilde tanıtılmıştır. Bunun yanında
matematik öğretmenlerinin kendi sınıflarında, öğrencilerini birer matematikçi gibi düşünmelerini sağlamak için sorgulamaya dayalı bir
biçimde kullanılabilecekleri stratejilerden de söz edilmiştir. Son olarak öğrenme ortamlarında, öğrencilerin matematiksel yaratıcılıklarını
ne tür etkinliklerin tetikleyebileceği üzerinde durulmuş ve bu anlamda çeşitli etkinlik örneklerine yer verilmiştir.

References

  • Amabile, T. M. (1996). Creativity in context: Update to the social psychology of creativity. New York: Westview Press.
  • Amabile, T. (2013). Componential theory of creativity. In E. Kessler (Ed.), Encyclopedia of management theory (pp. 135–140). Thousand Oaks, CA: Sage.
  • Beghetto, R. A., & Kaufman, J. C. (2009). Intellectual estuaries: Connecting learning and creativity in programs of advanced academics. Journal of Advanced Academics, 20(2), 296–324.
  • Bolden, D. S., Harries, A. V., & Newton, D. P. (2010). Pre-service primary teachers’ conceptions of creativity in mathematics. Educational Studies in Mathematics, 73(2), 143–157.
  • Csikszentmihalyi, M. (1999). Implications of a system perspective for the study of creativity. In R. J. Sternberg (Ed.), Handbook of creativity (pp.313–335). Cambridge: Cambridge University Press.
  • Collino, A., Conte, A., Verra, A. (2014). On the life and scientific work of Gino Fano. La Matematica nella Società e nella Cultura. Rivista dell’Unione Matematica Italiana, 7(1), 99–137.
  • Craft, A. (2002). Creativity and early years education: A lifewide foundation. London: Continuum.
  • Emre-Akdoğan, E. & Yazgan-Sağ, G. (2023). Creative mathematics experiences: Defining new geometric concepts. The Australian Mathematics Education Journal, 5(1), 19–23.
  • Erez, R. (2004). Freedom and creativity: An approach to science education for excellent students and its realization in the Israel arts and science academy’s curriculum. The Journal of Secondary Gifted Education, 25, 33–140.
  • Eryynck, G. (1991). Mathematical creativity. In D. Tall (Ed.), Advanced Mathematical Thinking (pp. 42–53). Dordrecht, Netherlands: Kluwer.
  • Fischbein, E. (1993). The theory of figural concepts. Educational Studies in Mathematics, 24(2), 139–162.
  • Guilford, J. P. (1950). Creativity. American Psychologist, 5, 444–454.
  • Grégoire J. (2016). Understanding creativity in mathematics for improving mathematical education. Journal of Cognitive Education and Psychology, 15(1), 24–36.
  • Haylock, D. W. (1987). A framework for assessing mathematical creativity in school children. Educational Studies in Mathematics 18(1), 59–74.
  • Juter, K. & Sriraman, B. (2011). Does high achieving in mathematics—gifted and/or creative in mathematics. In B. Sriraman, & K. H. Lee (Eds.), The Elements of Creativity and Giftedness in Mathematics (pp. 45–65). Rotterdam, Netherlands: Sense Publishers.
  • Kattou, M., Kontoyianni, K., & Christou, C. (2009). Mathematical creativity through teachers’ perceptions. In M. Teekaki, M. Kaldrinidou, & C. Sakonidis (Eds.), Proceedings of the 33rd conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 297–304). Thessaloniki, Greece: PME.
  • Kaufman, J., & Beghetto, R. (2009). Beyond big and little: The four C model of creativity. Review of General Psychology, 13(1), 1–12.
  • Kontorovich, I., Kolchu, B., Leikin, R., & Berman, A. (2012). An exploratory framework for handling the complexity of students’ mathematical problem posing in small groups. Journal of Mathematical Behavior, 31(1), 149–161.
  • Kwon, O. H., Park, J. S., & Park, J. S. (2006). Cultivating divergent thinking in mathematics through an open-ended approach. Asia-Pacific Education Review, 7(1), 51–61.
  • Lambert, J., & Cuper, P. (2008). Multimedia technologies and familiar spaces: 21st century teaching for 21st century learners. Contemporary Issues in Technology and Teacher Education, 8(3), 264–276.
  • Leikin, R. (2009). Exploring mathematical creativity using multiple solution tasks. In R. Leikin, A. Berman, & B. Kolchu (Eds.), Creativity in mathematics and the education of gifted students (pp. 129–145). Rotterdam: Sense Publishers.
  • Leikin, R. (2013). Mathematical creativity: The interplay between multiplicity and insight, Psychological Test and Assessment Modeling, 55(4), 385–400.
  • Leikin, R. (2014). Challenging mathematics with multiple solution tasks and mathematical investigations in geometry. In Y. Li, E. A. Silver, & S. Li (Eds.), Transforming mathematics instruction: Multiple approaches and practices (pp. 59–80). Dordrecht: Springer.
  • Leikin, R., & Pitta-Pantazi, D. (2013). Creativity and mathematics education: The state of the art. ZDM – The International Journal on Mathematics Education, 45(4), 159–166.
  • Levenson, E. (2013). Tasks that may occasion mathematical creativity: teachers’ choices. Journal of Mathematics Teacher Education, 16(4), 269–291.
  • Lev-Zamir, H., & Leikin, R. (2011). Creative mathematics teaching in the eye of the beholder: Focusing on teachers’ conceptions. Research in Mathematics Education, 13(1), 17–32.
  • Lev-Zamir, H., & Leikin, R. (2013). Saying versus doing: Teachers’ conceptions of creativity in elementary mathematics teaching. ZDM – The International Journal on Mathematics Education, 45(2), 295–308.
  • Liljedahl, P., & Sriraman, B. (2006). Musings on mathematical creativity. For the Learning of Mathematics, 26(1), 20–23.
  • Lithner, J. (2008). A research framework for creative and imitative reasoning. Educational Studies in Mathematics, 67(3), 255–276.
  • Mann, E. L. (2006). Creativity: The essence of mathematics. Journal for the Education of the Gifted, 30(2), 236–262.
  • Noite, M., & Pamperlen, K. (2017). Challenging problems in a regular classroom setting and in a special foster programme. ZDM – The International Journal on Mathematics Education, 49(1), 121–136.
  • Oklitschke, J., Rott, B., & Schindler, M. (2022). Notions of creativity in mathematics education research: A systematic literature review. International Journal of Science and Mathematics Education, 20,1161–1181.
  • Öğretmen Yetiştirme ve Geliştirme Genel Müdürlüğü (2017). Öğretmenlik Mesleği Genel Yeterlilikleri. Ankara: Millî Eğitim Bakanlığı.
  • Panaoura, A., & Panaoura, G. (2014). Teachers’ awareness of creativity in mathematical teaching and their practice. JUMPST: The Journal, 4, 1–11.
  • Plucker, J. A., & Beghetto, R. A. (2004). Why creativity is domain general, why it looks domain specific, and why the distinction does not matter. In R.J. Sternberg, J. Lautrey, & T.I. Lubart (Eds.), Models of intelligence: International perspectives (pp. 153–168). Washington, DC: American Psychological Association.
  • Pehkonen, E. (1997). The state-of-art in mathematical creativity. ZDM – International Journal on Mathematics Education, 29(3), 63–67.
  • Sheffield, L. J. (2003). Extending the challenge in mathematics: Developing mathematical promise in K—8 pupils. Thousand Oaks, CA: Corwin Press.
  • Sheffield, L. J. (2006). Developing mathematical promise and creativity. Journal of the Korea Society of Mathematical Education Series D: Research in Mathematical Education, 10(1), 1–11.
  • Shillo R., Hoernle, N. & Gal, K. (2019). Detecting creativity in an open ended geometry environment. In C. F. Lynch, A Merceron, M. Desmarais, & R. Nkambou (Eds.) Proceedings of the 12th International Conference on Educational Data Mining (EDM 2019) (pp. 408–413). Montréal, Canada: UQAM.
  • Shriki, A. (20110). Working like real mathematicians: developing prospective teachers’ awareness of mathematical creativity through generating new concepts. Educational Studies in Mathematics, 73(2), 159–179.
  • Silver, E. (1997). Fostering creativity through instruction rich in mathematical problem solving and problem posing. ZDM – The International Journal on Mathematics Education, 3, 75–80.
  • Singer, F. M. (2007). Beyond conceptual change: Using representations to integrate domain-specific structural models in learning mathematics. Mind, Brain, and Education, 1(2), 84–97.
  • Singer, F. M., Sheffield, L. J., Freiman, V., & Brandl, M. (2016). Research on and activities for mathematically gifted students. New York: Springer Nature.
  • Singer, F.M., Sheffield, L.J. & Leikin, R. (2017). Advancements in research on creativity and giftedness in mathematics education: Introduction to the special issue. ZDM – The International Journal on Mathematics Education, 49(1): 5–12.
  • Sriraman, B. (2004). The characteristics of mathematical creativity. The Mathematics Educator, 14(1), 19–34.
  • Sriraman, B. (2005). Are giftedness and creativity synonyms in mathematics? The Journal of Secondary Gifted Education, 17(1), 20–36.
  • Sriraman, B., & Haavold, P. (2017). Creativity and giftedness in mathematics education: A pragmatic view. First compendium for research in mathematics education. Reston: National Council of Teachers of Mathematics.
  • Sriraman, B., Yaftian, N., & Lee, K. H. (2011). Mathematical creativity and mathematics education: A derivative of existing research. In B. Sriraman & K.H. Lee (Eds.), The elements of creativity and giftedness in mathematics (pp. 119-130). Rotterdam: Sense Publishers.
  • Sternberg, R. J., & Lubart, T. I. (1999). The concept of creativity: Prospects and paradigms. In R. Sternberg (Ed.), Handbook of Creativity (pp. 3–15). Cambridge, U.K.: Cambridge University Press.
  • Stillman, G., Kwok-Cheung, C., Mason, R., Sheffield, L., Sriraman, B., & Ueno, K. (2009). Classroom practice: Challenging mathematics classroom practices. In E. Barbeau & P. Taylor (Eds.), Challenging mathematics in and beyond the classroom: The 16th ICMI Study (pp. 243–284). Berlin: Springer.
  • Torrance, E. P. (1974). Torrance tests of creative thinking: Norms-technical manual. Lexington, MA: Ginn.
  • van de Oudeweetering, K., & Voogt, J. (2018). Teachers’ conceptualization and enactment of twenty-first century competences: Exploring dimensions for new curricula. The Curriculum Journal, 29(1), 116–133.
  • Van Harpen, X. Y., & Sriraman, B. (2013). Creativity and mathematical problem posing: An analysis of high school students’ mathematical problem posing in China and the USA. Educational Studies in Mathematics, 82(2), 201–222.
  • Wallas, G. (1926). The art of thought. New York, NY: Harcourt, Brace & World.
  • Yazgan-Sağ, G., & Emre-Akdoğan, E. (2016). Creativity from two perspectives: Prospective mathematics teachers and mathematician. Australian Journal of Teacher Education, 41(12), 25-40.
There are 55 citations in total.

Details

Primary Language Turkish
Subjects Higher Education Studies (Other)
Journal Section Review
Authors

Gönül Yazgan Sağ 0000-0002-7237-5683

Publication Date August 31, 2025
Submission Date May 2, 2024
Acceptance Date June 22, 2025
Published in Issue Year 2025 Volume: 15 Issue: 2

Cite

APA Yazgan Sağ, G. (2025). Matematiksel Yaratıcılığı Destekleyen Öğrenme Ortamları Üzerine İnceleme. Yükseköğretim Ve Bilim Dergisi, 15(2), 165-172. https://doi.org/10.5961/higheredusci.1477390
AMA Yazgan Sağ G. Matematiksel Yaratıcılığı Destekleyen Öğrenme Ortamları Üzerine İnceleme. J Higher Edu Sci. August 2025;15(2):165-172. doi:10.5961/higheredusci.1477390
Chicago Yazgan Sağ, Gönül. “Matematiksel Yaratıcılığı Destekleyen Öğrenme Ortamları Üzerine İnceleme”. Yükseköğretim Ve Bilim Dergisi 15, no. 2 (August 2025): 165-72. https://doi.org/10.5961/higheredusci.1477390.
EndNote Yazgan Sağ G (August 1, 2025) Matematiksel Yaratıcılığı Destekleyen Öğrenme Ortamları Üzerine İnceleme. Yükseköğretim ve Bilim Dergisi 15 2 165–172.
IEEE G. Yazgan Sağ, “Matematiksel Yaratıcılığı Destekleyen Öğrenme Ortamları Üzerine İnceleme”, J Higher Edu Sci, vol. 15, no. 2, pp. 165–172, 2025, doi: 10.5961/higheredusci.1477390.
ISNAD Yazgan Sağ, Gönül. “Matematiksel Yaratıcılığı Destekleyen Öğrenme Ortamları Üzerine İnceleme”. Yükseköğretim ve Bilim Dergisi 15/2 (August2025), 165-172. https://doi.org/10.5961/higheredusci.1477390.
JAMA Yazgan Sağ G. Matematiksel Yaratıcılığı Destekleyen Öğrenme Ortamları Üzerine İnceleme. J Higher Edu Sci. 2025;15:165–172.
MLA Yazgan Sağ, Gönül. “Matematiksel Yaratıcılığı Destekleyen Öğrenme Ortamları Üzerine İnceleme”. Yükseköğretim Ve Bilim Dergisi, vol. 15, no. 2, 2025, pp. 165-72, doi:10.5961/higheredusci.1477390.
Vancouver Yazgan Sağ G. Matematiksel Yaratıcılığı Destekleyen Öğrenme Ortamları Üzerine İnceleme. J Higher Edu Sci. 2025;15(2):165-72.