Research Article
BibTex RIS Cite

Computational Investigation of 5-Ethynyl-2’-deoxyuridine (EdU) as a Biologically Active Nucleoside Analogue: Insights from Molecular Docking, ADMET Profiling, and DFT Analyses

Year 2025, Volume: 15 Issue: 2, 310 - 321, 31.08.2025
https://doi.org/10.5961/higheredusci.1697221

Abstract

This study presents a comprehensive computational investigation of the molecule 5-ethynyl-2'-deoxyuridine (EdU), a thymidine analogue of considerable biological importance. The investigation includes quantum chemical analyses, molecular docking, and pharmacokinetic evaluation to assess the structural, electronic, and biological properties of EdU. Initially, the molecular geometry of EdU was optimized using Density Functional Theory (DFT), providing a basis for deeper electronic structure evaluations. Topological analyses, including Electron Localization Function (ELF) and Localized Orbital Locator (LOL), were performed to explore the distribution of electron density and bonding properties within the molecule. These visual and quantitative descriptors contributed to a clearer understanding of the reactivity and stability of the molecule. The pharmacokinetic behavior of EdU and its similarity to the drug was evaluated through in silico ADME (absorption, distribution, metabolism, and excretion) modeling. Using internet-based platforms such as SwissADME and admetSAR, various parameters were evaluated to determine the potential of the molecule as an orally active compound and its compliance with established drug similarity rules. Toxicological properties were further investigated using predictive tools to estimate acute and environmental toxicity risks.
Molecular docking simulations were performed to investigate the interaction between EdU and the selected proteins alpha-amylase and alpha-glucosidase, selected for their endocrinological importance, providing insights into possible binding mechanisms and structural compatibility. Overall, this study uses a multidisciplinary computational approach to provide a detailed theoretical profile of EdU, contributing to the understanding of its chemical behavior and potential applications in biomedical research.

References

  • admetSAR. (2024). A free tool for evaluating ADME and toxicity properties of chemicals. http://lmmd.ecust.edu.cn/ admetsar2/
  • Ahmad, H. O. (2020). Computational study of optical properties, and enantioselective synthesis of di-substituted esters of hydantoic and thiohydantoic acids. Zanco Journal Of Pure And Applied Sciences, 32(1). https://doi.org/10.21271/ZJPAS.32.1.9
  • Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648–5652. https://doi.org/10.1063/1.464913
  • Berman, H. M. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235 BIOVIA, Discovery Studio Visualizer Software (Version 4.0.). (2021). Dassault Systèmes.
  • Bradford, J. A., & Clarke, S. T. (2011). Dual‐Pulse Labeling Using 5‐ Ethynyl‐2′‐Deoxyuridine (EdU) and 5‐Bromo‐2′‐Deoxyuridine (BrdU) in Flow Cytometry. Current Protocols in Cytometry, 55(1). https://doi.org/10.1002/0471142956.cy0738s55
  • Buck, S. B., Bradford, J., Gee, K. R., Agnew, B. J., Clarke, S. T., & Salic, A. (2008). Detection of S-phase cell cycle progression using 5-ethynyl-2′-deoxyuridine incorporation with click chemistry, an alternative to using 5-bromo-2′-deoxyuridine antibodies. BioTechniques, 44(7), 927–929. https://doi. org/10.2144/000112812
  • Bultinck, P., Carbó-Dorca, R., & Langenaeker, W. (2003). Negative Fukui functions: New insights based on electronegativity equalization. Journal of Chemical Physics, 118(10), 4349–4356. https://doi.org/10.1063/1.1542875
  • Cavanagh, B. L., Walker, T., Norazit, A., & Meedeniya, A. C. B. (2011). Thymidine Analogues for Tracking DNA Synthesis. Molecules, 16(9), 7980–7993. https://doi.org/10.3390/molecules16097980
  • Cieślar-Pobuda, A., & Łos, M. J. (2013). Prospects and limitations of “Click-Chemistry”-based DNA labeling technique employing 5-ethynyl-2′deoxyuridine (EdU). Cytometry Part A, 83(11), 977–978. https://doi.org/10.1002/cyto.a.22394
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • DeLano, W. L. (n.d.). The PyMOL Molecular Graphics System (Version 3.0). Schrödinger, LLC.
  • Dennington, R., Keith, T., & Millam, J. (2009). GaussView Version 5 (Version 4.1.2.). Semichem Inc.
  • Dvořáčková, M., & Fajkus, J. (2018). Visualization of the Nucleolus Using Ethynyl Uridine. Frontiers in Plant Science, 9. https://doi. org/10.3389/fpls.2018.00177
  • El-Kattan, A., Asbill, C. S., & Haidar, S. (2000). Transdermal testing: practical aspects and methods. Pharmaceutical Science & Technology Today, 3(12), 426–430. https://doi.org/10.1016/ S1461-5347(00)00316-3
  • Fedorov, D. G. (2019). Solvent Screening in Zwitterions Analyzed with the Fragment Molecular Orbital Method. Journal of Chemical Theory and Computation, 15(10), 5404–5416. https://doi.org/10.1021/acs.jctc.9b00715
  • Frisch, M.J., et. al. (2009). Gaussian 09. Gaussian Inc. Fuster, F., Sevin, A., & Silvi, B. (2000). Topological Analysis of the Electron Localization Function (ELF) Applied to the Electrophilic Aromatic Substitution. The Journal of Physical Chemistry A, 104(4), 852–858. https://doi.org/10.1021/jp992783k
  • Honório, K. M., & Da Silva, A. B. F. (2003). An AM1 study on the electron‐donating and electron‐accepting character of biomolecules. International Journal of Quantum Chemistry, 95(2), 126–132. https://doi.org/10.1002/qua.10661
  • Hua, H., & Kearsey, S. E. (2011). Monitoring DNA replication in fission yeast by incorporation of 5-ethynyl-2′-deoxyuridine. Nucleic Acids Research, 39(9), e60–e60. https://doi.org/10.1093/ nar/gkr063
  • Kitchen, D. B., Decornez, H., Furr, J. R., & Bajorath, J. (2004). Docking and scoring in virtual screening for drug discovery: methods and applications. Nature Reviews Drug Discovery, 3(11), 935–949. https://doi.org/10.1038/nrd1549
  • Kohlmeier, F., Maya-Mendoza, A., & Jackson, D. A. (2013). EdU induces DNA damage response and cell death in mESC in culture. Chromosome Research, 21(1), 87–100. https://doi. org/10.1007/s10577-013-9340-5
  • Kujawski, J., Popielarska, H., Myka, A., Drabińska, B., & Bernard, M. (2012). The log P Parameter as a Molecular Descriptor in the Computer-aided Drug Design – an Overview. Computational Methods in Science and Technology, 18(2), 81–88. https://doi. org/10.12921/cmst.2012.18.02.81-88
  • Kumar, S., & Kumar, S. (2019). Molecular Docking: A Structure- Based Approach for Drug Repurposing. In In Silico Drug Design (pp. 161–189). Elsevier. https://doi.org/10.1016/B978-0-12- 816125-8.00006-7
  • Liu, F., Liu, J., & Wang, L. (2020). Panchromatic Organoboron Molecules with Tunable Absorption Spectra. Chemistry – An Asian Journal, 15(20), 3314–3320. https://doi.org/10.1002/ asia.202000958
  • Lu, T., & Chen, F. (2012). Multiwfn: A multifunctional wavefunction analyzer. Journal of Computational Chemistry, 33(5), 580–592. https://doi.org/10.1002/jcc.22885
  • Manallack, D. T. (2007). The pK(a) Distribution of Drugs: Application to Drug Discovery. Perspectives in Medicinal Chemistry, 1, 25–38. http://www.ncbi.nlm.nih.gov/pubmed/19812734
  • Mary, Y. S., Mary, Y. S., Resmi, K. S., & Thomas, R. (2019). DFT and molecular docking investigations of oxicam derivatives. Heliyon, 5(7), e02175. https://doi.org/10.1016/j.heliyon.2019. e02175
  • Marziano, M., Tonello, S., Cantù, E., Abate, G., Vezzoli, M., Rungratanawanich, W., Serpelloni, M., Lopomo, N. F., Memo,
  • M., Sardini, E., & Uberti, D. (2019). Monitoring Caco-2 to enterocyte- like cells differentiation by means of electric impedance analysis on printed sensors. Biochimica et Biophysica Acta (BBA) - General Subjects, 1863(5), 893–902. https://doi. org/10.1016/j.bbagen.2019.02.008
  • Meng, X.-Y., Zhang, H.-X., Mezei, M., & Cui, M. (2011). Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery. Current Computer Aided-Drug Design, 7(2), 146– 157. https://doi.org/10.2174/157340911795677602
  • Nahoum, V., Roux, G., Anton, V., Rougé, P., Puigserver, A., Bischoff, H., Henrissat, B., & Payan, F. (2000). Crystal structures of human pancreatic α-amylase in complex with carbohydrate and proteinaceous inhibitors. Biochemical Journal, 346(1), 201– 208. https://doi.org/10.1042/bj3460201
  • Nakajima, H., Takahashi, O., & Kikuchi, O. (1996). Rapid evaluation of molecular electrostatic potential maps for amino acids, peptides, and proteins by empirical functions. Journal of Computational Chemistry, 17(7), 790–805. https://doi. org /10.1002/(SICI)1096-987X(199605)17:7<790::AIDJCC4> 3.0.CO;2-N
  • Parr, R. G., & Yang, W. (1984). Density functional approach to the frontier-electron theory of chemical reactivity. Journal of the American Chemical Society, 106(14), 4049–4050. https://doi. org/10.1021/ja00326a036
  • Rieder, U., & Luedtke, N. W. (2014). Alkene-Tetrazine Ligation for Imaging Cellular DNA. Angewandte Chemie International Edition, 53(35), 9168–9172. https://doi.org/10.1002/ anie.201403580
  • Ring, C. S., Sun, E., McKerrow, J. H., Lee, G. K., Rosenthal, P. J., Kuntz, I. D., & Cohen, F. E. (1993). Structure-based inhibitor design by using protein models for the development of antiparasitic agents. Proceedings of the National Academy of Sciences, 90(8), 3583–3587. https://doi.org/10.1073/pnas.90.8.3583
  • Roig-Zamboni, V., Cobucci-Ponzano, B., Iacono, R., Ferrara, M. C., Germany, S., Bourne, Y., Parenti, G., Moracci, M., & Sulzenbacher, G. (2017). Structure of human lysosomal acid α-glucosidase–a guide for the treatment of Pompe disease. Nature Communications, 8(1), 1111. https://doi.org/10.1038/ s41467-017-01263-3
  • Roy, R. K., Krishnamurti, S., Geerlings, P., & Pal, S. (1998). Local Softness and Hardness Based Reactivity Descriptors for Predicting Intra- and Intermolecular Reactivity Sequences: Carbonyl Compounds. The Journal of Physical Chemistry A, 102(21), 3746–3755. https://doi.org/10.1021/jp973450v
  • Sakaue-Sawano, A., Kurokawa, H., Morimura, T., Hanyu, A., Hama, H., Osawa, H., Kashiwagi, S., Fukami, K., Miyata, T., Miyoshi, H., Imamura, T., Ogawa, M., Masai, H., & Miyawaki, A. (2008). Visualizing Spatiotemporal Dynamics of Multicellular Cell-Cycle Progression. Cell, 132(3), 487–498. https://doi.org/10.1016/j. cell.2007.12.033
  • Savin, A., Silvi, B., & Colonna, F. (1996). Topological analysis of the electron localization function applied to delocalized bonds. Canadian Journal of Chem
  • Sendovski, M., Kanteev, M., Ben-Yosef, V. S., Adir, N., & Fishman, A. (2011). First Structures of an Active Bacterial Tyrosinase Reveal Copper Plasticity. Journal of Molecular Biology, 405(1), 227–237. https://doi.org/10.1016/j.jmb.2010.10.048
  • Seo, S., Onizuka, K., Nishioka, C., Takahashi, E., Tsuneda, S., Abe, H., & Ito, Y. (2015). Phosphorylated 5-ethynyl-2′-deoxyuridine for advanced DNA labeling. Organic & Biomolecular Chemistry, 13(15), 4589–4595. https://doi.org/10.1039/C5OB00199D
  • Sliwoski, G., Kothiwale, S., Meiler, J., & Lowe, E. W. (2014). Computational Methods in Drug Discovery. Pharmacological Reviews, 66(1), 334–395. https://doi.org/10.1124/pr.112.007336
  • Soliman, S. M., Abu-Youssef, M. A. M., Kassem, T. S., & Assem, R. (2015). Synthesis of two new silver(I) complexes with 3-bromoquinoline: Molecular structure, spectroscopic characterizations and DFT studies. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 149, 352–362. https://doi.org/10.1016/j.saa.2015.04.078
  • Sridevi, C., & Velraj, G. (2012). Investigation of molecular structure, vibrational, electronic, NMR and NBO analysis of 5-chloro-1- methyl-4-nitro-1H-imidazole (CMNI) using ab initio HF and DFT calculations. Journal of Molecular Structure, 1019, 50–60. https://doi.org/10.1016/j.molstruc.2012.03.040
  • SwissADME. (n.d.). A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness. Retrieved May 7, 2025, from http://www.swissadme.ch
  • Tasi, G., & Pálinkó, I. (1995). Using molecular electrostatic potential maps for similarity studies (pp. 45–71). https://doi. org/10.1007/3-540-58672-5_23
  • Torres, P. H. M., Sodero, A. C. R., Jofily, P., & Silva-Jr, F. P. (2019). Key Topics in Molecular Docking for Drug Design. International Journal of Molecular Sciences, 20(18), 4574. https://doi. org/10.3390/ijms20184574
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Valle, F., Sandal, M., & Samorì, B. (2007). The interplay between chemistry and mechanics in the transduction of a mechanical signal into a biochemical function. Physics of Life Reviews, 4(3), 157–188. https://doi.org/10.1016/j.plrev.2007.06.001
  • Welch, G. C., & Bazan, G. C. (2011). Lewis Acid Adducts of Narrow Band Gap Conjugated Polymers. Journal of the American Chemical Society, 133(12), 4632–4644. https://doi. org/10.1021/ja110968m
  • Yang, W., & Mortier, W. J. (1986). The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines. Journal of the American Chemical Society, 108(19), 5708–5711. https://doi.org/10.1021/ja00279a008
  • Zhao, H., Halicka, H. D., Li, J., Biela, E., Berniak, K., Dobrucki, J., & Darzynkiewicz, Z. (2013). DNA damage signaling, impairment of cell cycle progression, and apoptosis triggered by 5-ethynyl- 2′-deoxyuridine incorporated into DNA. Cytometry Part A, 83(11), 979–988. https://doi.org/10.1002/cyto.a.22396 Zhitenev, N. B., Fulton, T. A., Yacoby, A., Hess, H. F., Pfeiffer, L. N., &
  • West, K. W. (2000). Imaging of localized electronic states in the quantum Hall regime. Nature, 404(6777), 473–476. https:// doi.org/10.1038/35006591

Biyolojik Olarak Aktif Bir Nükleozit Analoğu Olarak 5-Etinil-2’- deoksiüridin’in (EdU) Hesaplamalı İncelenmesi: Moleküler Yerleştirme, ADMETox Değerlendirmesi ve DFT Analizlerinden Elde Edilen Bilgiler

Year 2025, Volume: 15 Issue: 2, 310 - 321, 31.08.2025
https://doi.org/10.5961/higheredusci.1697221

Abstract

Bu çalışma, kayda değer biyolojik öneme sahip bir timidin analoğu olan 5-etinil-2'-deoksiüridin (EdU) molekülünün kapsamlı bir hesaplamalı incelemesini sunmaktadır. Araştırma, EdU'nun yapısal, elektronik ve biyolojik özelliklerini değerlendirmek için kuantum kimyasal analizleri, moleküler yerleştirme ve farmakokinetik değerlendirme içermektedir. Başlangıçta, EdU'nun moleküer geometrisi Yoğunluk Fonksiyonel Teorisi (DFT) kullanılarak optimize edilmiş ve daha derin elektronik yapı değerlendirmeleri için bir temel sağlanmıştır. Elektron Lokalizasyon Fonksiyonu (ELF) ve Lokalize Orbital Konumlandırıcı (LOL) dahil olmak üzere topolojik analizler, molekül içindeki elektron yoğunluğu ve bağlanma özelliklerinin dağılımını keşfetmek için yapılmıştır. Bu görsel ve nicel tanımlayıcılar, molekülün reaktivitesinin ve stabilitesinin daha net anlaşılmasına katkıda bulunmuştur. EdU'nun farmakokinetik davranışı ve ilaca benzerliği, in silico ADME (emilim, dağılım, metabolizma ve atılım) modellemesi yoluyla değerlendirilmiştir. SwissADME ve admetSAR gibi internet tabanlı platformlar kullanılarak, molekülün oral olarak aktif bir bileşik olarak potansiyelini ve yerleşik ilaç benzerliği kurallarına uygunluğunu belirlemek için çeşitli parametreler değerlendirilmiştir. Toksikolojik özellikler, akut ve çevresel toksisite risklerini tahmin etmek için öngörücü araçlar kullanılarak daha fazla araştırılmıştır.
EdU ile endokrinolojik öneme sahip olduğu için seçilen alfa-amilaz ve alfa-glukosidaz seçil proteinleri arasındaki etkileşimi araştırmak için moleküler yerleştirme simülasyonları gerçekleştirilerek olası bağlanma mekanizmaları ve yapısal uyumluluk hakkında içgörüler sağlanmıştır. Genel olarak, bu çalışma EdU'nun ayrıntılı bir teorik profilini sunmak için multidisipliner bir hesaplama yaklaşımı kullanmakta, kimyasal davranışının ve biyomedikal araştırmalardaki potansiyel uygulamalarının anlaşılmasına katkıda bulunmaktadır.

References

  • admetSAR. (2024). A free tool for evaluating ADME and toxicity properties of chemicals. http://lmmd.ecust.edu.cn/ admetsar2/
  • Ahmad, H. O. (2020). Computational study of optical properties, and enantioselective synthesis of di-substituted esters of hydantoic and thiohydantoic acids. Zanco Journal Of Pure And Applied Sciences, 32(1). https://doi.org/10.21271/ZJPAS.32.1.9
  • Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648–5652. https://doi.org/10.1063/1.464913
  • Berman, H. M. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235 BIOVIA, Discovery Studio Visualizer Software (Version 4.0.). (2021). Dassault Systèmes.
  • Bradford, J. A., & Clarke, S. T. (2011). Dual‐Pulse Labeling Using 5‐ Ethynyl‐2′‐Deoxyuridine (EdU) and 5‐Bromo‐2′‐Deoxyuridine (BrdU) in Flow Cytometry. Current Protocols in Cytometry, 55(1). https://doi.org/10.1002/0471142956.cy0738s55
  • Buck, S. B., Bradford, J., Gee, K. R., Agnew, B. J., Clarke, S. T., & Salic, A. (2008). Detection of S-phase cell cycle progression using 5-ethynyl-2′-deoxyuridine incorporation with click chemistry, an alternative to using 5-bromo-2′-deoxyuridine antibodies. BioTechniques, 44(7), 927–929. https://doi. org/10.2144/000112812
  • Bultinck, P., Carbó-Dorca, R., & Langenaeker, W. (2003). Negative Fukui functions: New insights based on electronegativity equalization. Journal of Chemical Physics, 118(10), 4349–4356. https://doi.org/10.1063/1.1542875
  • Cavanagh, B. L., Walker, T., Norazit, A., & Meedeniya, A. C. B. (2011). Thymidine Analogues for Tracking DNA Synthesis. Molecules, 16(9), 7980–7993. https://doi.org/10.3390/molecules16097980
  • Cieślar-Pobuda, A., & Łos, M. J. (2013). Prospects and limitations of “Click-Chemistry”-based DNA labeling technique employing 5-ethynyl-2′deoxyuridine (EdU). Cytometry Part A, 83(11), 977–978. https://doi.org/10.1002/cyto.a.22394
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • DeLano, W. L. (n.d.). The PyMOL Molecular Graphics System (Version 3.0). Schrödinger, LLC.
  • Dennington, R., Keith, T., & Millam, J. (2009). GaussView Version 5 (Version 4.1.2.). Semichem Inc.
  • Dvořáčková, M., & Fajkus, J. (2018). Visualization of the Nucleolus Using Ethynyl Uridine. Frontiers in Plant Science, 9. https://doi. org/10.3389/fpls.2018.00177
  • El-Kattan, A., Asbill, C. S., & Haidar, S. (2000). Transdermal testing: practical aspects and methods. Pharmaceutical Science & Technology Today, 3(12), 426–430. https://doi.org/10.1016/ S1461-5347(00)00316-3
  • Fedorov, D. G. (2019). Solvent Screening in Zwitterions Analyzed with the Fragment Molecular Orbital Method. Journal of Chemical Theory and Computation, 15(10), 5404–5416. https://doi.org/10.1021/acs.jctc.9b00715
  • Frisch, M.J., et. al. (2009). Gaussian 09. Gaussian Inc. Fuster, F., Sevin, A., & Silvi, B. (2000). Topological Analysis of the Electron Localization Function (ELF) Applied to the Electrophilic Aromatic Substitution. The Journal of Physical Chemistry A, 104(4), 852–858. https://doi.org/10.1021/jp992783k
  • Honório, K. M., & Da Silva, A. B. F. (2003). An AM1 study on the electron‐donating and electron‐accepting character of biomolecules. International Journal of Quantum Chemistry, 95(2), 126–132. https://doi.org/10.1002/qua.10661
  • Hua, H., & Kearsey, S. E. (2011). Monitoring DNA replication in fission yeast by incorporation of 5-ethynyl-2′-deoxyuridine. Nucleic Acids Research, 39(9), e60–e60. https://doi.org/10.1093/ nar/gkr063
  • Kitchen, D. B., Decornez, H., Furr, J. R., & Bajorath, J. (2004). Docking and scoring in virtual screening for drug discovery: methods and applications. Nature Reviews Drug Discovery, 3(11), 935–949. https://doi.org/10.1038/nrd1549
  • Kohlmeier, F., Maya-Mendoza, A., & Jackson, D. A. (2013). EdU induces DNA damage response and cell death in mESC in culture. Chromosome Research, 21(1), 87–100. https://doi. org/10.1007/s10577-013-9340-5
  • Kujawski, J., Popielarska, H., Myka, A., Drabińska, B., & Bernard, M. (2012). The log P Parameter as a Molecular Descriptor in the Computer-aided Drug Design – an Overview. Computational Methods in Science and Technology, 18(2), 81–88. https://doi. org/10.12921/cmst.2012.18.02.81-88
  • Kumar, S., & Kumar, S. (2019). Molecular Docking: A Structure- Based Approach for Drug Repurposing. In In Silico Drug Design (pp. 161–189). Elsevier. https://doi.org/10.1016/B978-0-12- 816125-8.00006-7
  • Liu, F., Liu, J., & Wang, L. (2020). Panchromatic Organoboron Molecules with Tunable Absorption Spectra. Chemistry – An Asian Journal, 15(20), 3314–3320. https://doi.org/10.1002/ asia.202000958
  • Lu, T., & Chen, F. (2012). Multiwfn: A multifunctional wavefunction analyzer. Journal of Computational Chemistry, 33(5), 580–592. https://doi.org/10.1002/jcc.22885
  • Manallack, D. T. (2007). The pK(a) Distribution of Drugs: Application to Drug Discovery. Perspectives in Medicinal Chemistry, 1, 25–38. http://www.ncbi.nlm.nih.gov/pubmed/19812734
  • Mary, Y. S., Mary, Y. S., Resmi, K. S., & Thomas, R. (2019). DFT and molecular docking investigations of oxicam derivatives. Heliyon, 5(7), e02175. https://doi.org/10.1016/j.heliyon.2019. e02175
  • Marziano, M., Tonello, S., Cantù, E., Abate, G., Vezzoli, M., Rungratanawanich, W., Serpelloni, M., Lopomo, N. F., Memo,
  • M., Sardini, E., & Uberti, D. (2019). Monitoring Caco-2 to enterocyte- like cells differentiation by means of electric impedance analysis on printed sensors. Biochimica et Biophysica Acta (BBA) - General Subjects, 1863(5), 893–902. https://doi. org/10.1016/j.bbagen.2019.02.008
  • Meng, X.-Y., Zhang, H.-X., Mezei, M., & Cui, M. (2011). Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery. Current Computer Aided-Drug Design, 7(2), 146– 157. https://doi.org/10.2174/157340911795677602
  • Nahoum, V., Roux, G., Anton, V., Rougé, P., Puigserver, A., Bischoff, H., Henrissat, B., & Payan, F. (2000). Crystal structures of human pancreatic α-amylase in complex with carbohydrate and proteinaceous inhibitors. Biochemical Journal, 346(1), 201– 208. https://doi.org/10.1042/bj3460201
  • Nakajima, H., Takahashi, O., & Kikuchi, O. (1996). Rapid evaluation of molecular electrostatic potential maps for amino acids, peptides, and proteins by empirical functions. Journal of Computational Chemistry, 17(7), 790–805. https://doi. org /10.1002/(SICI)1096-987X(199605)17:7<790::AIDJCC4> 3.0.CO;2-N
  • Parr, R. G., & Yang, W. (1984). Density functional approach to the frontier-electron theory of chemical reactivity. Journal of the American Chemical Society, 106(14), 4049–4050. https://doi. org/10.1021/ja00326a036
  • Rieder, U., & Luedtke, N. W. (2014). Alkene-Tetrazine Ligation for Imaging Cellular DNA. Angewandte Chemie International Edition, 53(35), 9168–9172. https://doi.org/10.1002/ anie.201403580
  • Ring, C. S., Sun, E., McKerrow, J. H., Lee, G. K., Rosenthal, P. J., Kuntz, I. D., & Cohen, F. E. (1993). Structure-based inhibitor design by using protein models for the development of antiparasitic agents. Proceedings of the National Academy of Sciences, 90(8), 3583–3587. https://doi.org/10.1073/pnas.90.8.3583
  • Roig-Zamboni, V., Cobucci-Ponzano, B., Iacono, R., Ferrara, M. C., Germany, S., Bourne, Y., Parenti, G., Moracci, M., & Sulzenbacher, G. (2017). Structure of human lysosomal acid α-glucosidase–a guide for the treatment of Pompe disease. Nature Communications, 8(1), 1111. https://doi.org/10.1038/ s41467-017-01263-3
  • Roy, R. K., Krishnamurti, S., Geerlings, P., & Pal, S. (1998). Local Softness and Hardness Based Reactivity Descriptors for Predicting Intra- and Intermolecular Reactivity Sequences: Carbonyl Compounds. The Journal of Physical Chemistry A, 102(21), 3746–3755. https://doi.org/10.1021/jp973450v
  • Sakaue-Sawano, A., Kurokawa, H., Morimura, T., Hanyu, A., Hama, H., Osawa, H., Kashiwagi, S., Fukami, K., Miyata, T., Miyoshi, H., Imamura, T., Ogawa, M., Masai, H., & Miyawaki, A. (2008). Visualizing Spatiotemporal Dynamics of Multicellular Cell-Cycle Progression. Cell, 132(3), 487–498. https://doi.org/10.1016/j. cell.2007.12.033
  • Savin, A., Silvi, B., & Colonna, F. (1996). Topological analysis of the electron localization function applied to delocalized bonds. Canadian Journal of Chem
  • Sendovski, M., Kanteev, M., Ben-Yosef, V. S., Adir, N., & Fishman, A. (2011). First Structures of an Active Bacterial Tyrosinase Reveal Copper Plasticity. Journal of Molecular Biology, 405(1), 227–237. https://doi.org/10.1016/j.jmb.2010.10.048
  • Seo, S., Onizuka, K., Nishioka, C., Takahashi, E., Tsuneda, S., Abe, H., & Ito, Y. (2015). Phosphorylated 5-ethynyl-2′-deoxyuridine for advanced DNA labeling. Organic & Biomolecular Chemistry, 13(15), 4589–4595. https://doi.org/10.1039/C5OB00199D
  • Sliwoski, G., Kothiwale, S., Meiler, J., & Lowe, E. W. (2014). Computational Methods in Drug Discovery. Pharmacological Reviews, 66(1), 334–395. https://doi.org/10.1124/pr.112.007336
  • Soliman, S. M., Abu-Youssef, M. A. M., Kassem, T. S., & Assem, R. (2015). Synthesis of two new silver(I) complexes with 3-bromoquinoline: Molecular structure, spectroscopic characterizations and DFT studies. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 149, 352–362. https://doi.org/10.1016/j.saa.2015.04.078
  • Sridevi, C., & Velraj, G. (2012). Investigation of molecular structure, vibrational, electronic, NMR and NBO analysis of 5-chloro-1- methyl-4-nitro-1H-imidazole (CMNI) using ab initio HF and DFT calculations. Journal of Molecular Structure, 1019, 50–60. https://doi.org/10.1016/j.molstruc.2012.03.040
  • SwissADME. (n.d.). A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness. Retrieved May 7, 2025, from http://www.swissadme.ch
  • Tasi, G., & Pálinkó, I. (1995). Using molecular electrostatic potential maps for similarity studies (pp. 45–71). https://doi. org/10.1007/3-540-58672-5_23
  • Torres, P. H. M., Sodero, A. C. R., Jofily, P., & Silva-Jr, F. P. (2019). Key Topics in Molecular Docking for Drug Design. International Journal of Molecular Sciences, 20(18), 4574. https://doi. org/10.3390/ijms20184574
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Valle, F., Sandal, M., & Samorì, B. (2007). The interplay between chemistry and mechanics in the transduction of a mechanical signal into a biochemical function. Physics of Life Reviews, 4(3), 157–188. https://doi.org/10.1016/j.plrev.2007.06.001
  • Welch, G. C., & Bazan, G. C. (2011). Lewis Acid Adducts of Narrow Band Gap Conjugated Polymers. Journal of the American Chemical Society, 133(12), 4632–4644. https://doi. org/10.1021/ja110968m
  • Yang, W., & Mortier, W. J. (1986). The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines. Journal of the American Chemical Society, 108(19), 5708–5711. https://doi.org/10.1021/ja00279a008
  • Zhao, H., Halicka, H. D., Li, J., Biela, E., Berniak, K., Dobrucki, J., & Darzynkiewicz, Z. (2013). DNA damage signaling, impairment of cell cycle progression, and apoptosis triggered by 5-ethynyl- 2′-deoxyuridine incorporated into DNA. Cytometry Part A, 83(11), 979–988. https://doi.org/10.1002/cyto.a.22396 Zhitenev, N. B., Fulton, T. A., Yacoby, A., Hess, H. F., Pfeiffer, L. N., &
  • West, K. W. (2000). Imaging of localized electronic states in the quantum Hall regime. Nature, 404(6777), 473–476. https:// doi.org/10.1038/35006591
There are 52 citations in total.

Details

Primary Language English
Subjects Endocrinology, Health Physics
Journal Section Research Articles
Authors

Meryem Alp 0000-0001-6821-6252

Publication Date August 31, 2025
Submission Date May 11, 2025
Acceptance Date August 2, 2025
Published in Issue Year 2025 Volume: 15 Issue: 2

Cite

APA Alp, M. (2025). Computational Investigation of 5-Ethynyl-2’-deoxyuridine (EdU) as a Biologically Active Nucleoside Analogue: Insights from Molecular Docking, ADMET Profiling, and DFT Analyses. Yükseköğretim Ve Bilim Dergisi, 15(2), 310-321. https://doi.org/10.5961/higheredusci.1697221
AMA Alp M. Computational Investigation of 5-Ethynyl-2’-deoxyuridine (EdU) as a Biologically Active Nucleoside Analogue: Insights from Molecular Docking, ADMET Profiling, and DFT Analyses. J Higher Edu Sci. August 2025;15(2):310-321. doi:10.5961/higheredusci.1697221
Chicago Alp, Meryem. “Computational Investigation of 5-Ethynyl-2’-Deoxyuridine (EdU) As a Biologically Active Nucleoside Analogue: Insights from Molecular Docking, ADMET Profiling, and DFT Analyses”. Yükseköğretim Ve Bilim Dergisi 15, no. 2 (August 2025): 310-21. https://doi.org/10.5961/higheredusci.1697221.
EndNote Alp M (August 1, 2025) Computational Investigation of 5-Ethynyl-2’-deoxyuridine (EdU) as a Biologically Active Nucleoside Analogue: Insights from Molecular Docking, ADMET Profiling, and DFT Analyses. Yükseköğretim ve Bilim Dergisi 15 2 310–321.
IEEE M. Alp, “Computational Investigation of 5-Ethynyl-2’-deoxyuridine (EdU) as a Biologically Active Nucleoside Analogue: Insights from Molecular Docking, ADMET Profiling, and DFT Analyses”, J Higher Edu Sci, vol. 15, no. 2, pp. 310–321, 2025, doi: 10.5961/higheredusci.1697221.
ISNAD Alp, Meryem. “Computational Investigation of 5-Ethynyl-2’-Deoxyuridine (EdU) As a Biologically Active Nucleoside Analogue: Insights from Molecular Docking, ADMET Profiling, and DFT Analyses”. Yükseköğretim ve Bilim Dergisi 15/2 (August2025), 310-321. https://doi.org/10.5961/higheredusci.1697221.
JAMA Alp M. Computational Investigation of 5-Ethynyl-2’-deoxyuridine (EdU) as a Biologically Active Nucleoside Analogue: Insights from Molecular Docking, ADMET Profiling, and DFT Analyses. J Higher Edu Sci. 2025;15:310–321.
MLA Alp, Meryem. “Computational Investigation of 5-Ethynyl-2’-Deoxyuridine (EdU) As a Biologically Active Nucleoside Analogue: Insights from Molecular Docking, ADMET Profiling, and DFT Analyses”. Yükseköğretim Ve Bilim Dergisi, vol. 15, no. 2, 2025, pp. 310-21, doi:10.5961/higheredusci.1697221.
Vancouver Alp M. Computational Investigation of 5-Ethynyl-2’-deoxyuridine (EdU) as a Biologically Active Nucleoside Analogue: Insights from Molecular Docking, ADMET Profiling, and DFT Analyses. J Higher Edu Sci. 2025;15(2):310-21.