Research Article
BibTex RIS Cite
Year 2022, , 219 - 224, 28.09.2022
https://doi.org/10.17350/HJSE19030000274

Abstract

References

  • Prausnitz MR, Langer R. Transdermal drug delivery. Nature Biotechnology 26 (2008) 1261–1268. https://doi.org/10.1038/nbt.1504
  • Gill HS, Prausnitz MR. Does needle size matters?. Journal of Diabetes Science and Technology 1 (2007) 725–729. https://doi.org/10.1177/193229680700100517
  • Ingrole RSJ, Azizoglu A, Dul M, Birchall JC, Gill, HS, Prausnitz MR. Trends of microneedle technology in the scientific literature, patents, clinical trials and internet activity. Biomaterials 267 (2021) 120491 1–24. https://doi.org/10.1016/j.biomaterials.2020.120491
  • Waghule T, Singhvi G, Dubey SK, Pandey MM, Gupta G, Singh M, Dua K. Microneedles: a smart approach and increasing potential for transdermal drug delivery system. Biomedicine & Pharmacotherapy 109 (2019) 1249–1258. https://doi.org/10.1016/j.biopha.2018.10.078
  • Mukerjee EV, Collins SD, Isseroff RR, Smith RL. Microneedle array for transdermal biological fluid extraction and in situ analysis. Sensors and Actuators A 114 (2004) 267–275. https://doi.org/10.1016/j.sna.2003.11.008
  • Windmiller JR, Valdes-Ramirez G, Zhou N, Zhou M, Miller PR, Jin C, Brozik SM, Polsky R, Katz E, Narayan R, Wang J. Bicomponent microneedle array biosensor for minimally-invasive glutamate monitoring. Electroanalysis 23 (2011) 2303–2309. https://doi.org/10.1002/elan.201100361
  • Jiang X, Lillehoj PB. Microneedle-based skin patch for blood-free rapid diagnostic testing. Microsystems & Nanoengineering 6 (2020) 96 1–11. https://doi.org/10.1038/s41378-020-00206-1
  • Resnik D, Mozek M, Pecar B, Janez A, Urbancic V, Iliescu C, Vrtacnik D. In vivo experimental study of noninvasive insulin microinjection through hollow Si microneedle array. Micromachines 9 (2018) 40 1–17. https://doi.org/10.3390/mi9010040
  • Economidou SN, Uddin MJ, Marques MJ, Douroumis D, Sow WT, Li H, Reid A, Windmill JFC, Podoleanu A. A novel 3D printed hollow microneedle microelectromechanical system for controlled, personalized transdermal drug delivery. Additive Manufacturing 38 (2021) 101815 1–11. https://doi.org/10.1016/j.addma.2020.101815
  • Farias C, Lyman R, Hemingway C, Chau H, Mahacek A, Bouzos E, Mobed-Miremadi M. Three-dimensional (3D) printed microneedles for microencapsulated cell extrusion. Bioengineering 5 (2018) 59 1–26. https://doi.org/10.3390/bioengineering5030059
  • Carcamo-Martinez A, Mallon B, Dominguez-Robles J, Vora LK, Anjani QK, Donnely RF. Hollow microneedles: a perspective in biomedical applications. International Journal of Pharmaceutics 599 (2021) 120455 1–18. https://doi.org/10.1016/j.ijpharm.2021.120455
  • Wang PC, Wester BA, Rajaraman S, Paik SJ, Kim SH, Allen MG. Hollow polymer microneedle array fabricated by photolithography process combined with micromolding technique. Annual International Conference of the IEEE Engineering in Medicine and Biological Society (2009) 7026-709. doi: 10.1109/IEMBS.2009.5333317
  • Dardano P, De Martino S, Battisti M, Miranda B, Rea I, De Stefano L. One-shot fabrication of polymeric hollow microneedles by standard photolithography. Polymers 9;13(4):520 (2021) 1–13. doi: 10.3390/polym13040520
  • Bolton CJW, Howells O, Blayney GJ, Eng PF, Birchall JC, Gualeni B, Roberts K, Ashraf H, Guy OJ. Hollow silicon microneedle fabrication using advanced plasma etch technologies for applications in transdermal drug delivery. Lab on a Chip 20 (2020) 2788–2795. doi.org/10.1039/D0LC00567C
  • Li Y, Zhang H, Yang R, Laffitte Y, Schmill U, Hu W, Kaddoura M, Blondeel EJM, Cui B. Fabrication of sharp silicon hollow microneedles by deep-reactive ion etching towards minimally invasive diagnostics. Microsystems & Nanoengineering 5 (2019) 41 1–11. doi: 10.1038/s41378-019-0077-y
  • Khumpuang S, Ruther P, Paul O. Micromolding methods for hollow microneedle arrays using megasonically enhanced casting. TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference, 2009, pp. 220-223, doi: 10.1109/SENSOR.2009.5285525
  • Wang P, Paik S, Kim S, Allen MG. Hypodermic-needle-like hollow polymer microneedle array: fabrication and characterization. Journal of Microelectromechanical Systems, vol. 23, no. 4, pp. 991-998, Aug. 2014, doi: 10.1109/JMEMS.2014.2307320
  • Mansoor I, Hafeli UO, Stoeber B. Hollow out-of-plane polymer microneedles made by solvent casting for transdermal drug delivery. Journal of Microelectromechanical Systems, vol. 21, no. 1, pp. 44-52, Feb. 2012, https://doi: 10.1109/JMEMS.2011.2174429
  • Szeto B, Aksit A, Valentini C, Yu M, Werth EG, Goeta S, Tang C, Brown LM, Olson ES, Kysar JW, Lalwani AK. Novel 3D-printed hollow microneedles facilitate safe, reliable, and informative sampling of perilymph from guinea pigs. Hearing Research 400 (2021) 108141 1–10. doi: 10.1016/j.heares.2020.108141
  • Rad ZF, Prewett PD, Davies GJ. Parametric optimization of two-photon direct laser writing process for manufacturing polymeric microneedles. Additive Manufacturing 56 (2022) 102953 1–14. https://doi.org/10.1016/j.addma.2022.102953
  • Perennes F, Marmiroli B, Matteucci M, Tormen M, Vaccari L, Di Fabrizio E. Sharp beveled tip hollow microneedle arrays fabricated by LIGA and 3D soft lithography with polyvinyl alcohol. Journal of Micromechanics and Microengineering 16 (2006) 473–479. doi:10.1088/0960-1317/16/3/001
  • Rad ZF, Prewett PD, Davies GJ. Rapid prototyping and customizable microneedle design: Ultra-sharp microneedle fabrication using two-photon polymerization and low-cost micromolding techniques. Manufacturing Letters 20 (2021) 39–43. https://doi.org/10.1016/j.mfglet.2021.10.007
  • Trautmann A, Roth GL, Nujiqi B, Walther T, Hellmann R. Towards a versatile point-of-care system combining femtosecond laser generated microfluidic channels and direct laser written microneedle arrays. Microsystems & Nanoengineering 5 (2019) 6 1–9. doi: 10.1038/s41378-019-0046-5
  • Li R, Liu X, Yuan X, Wu S, Li L, Jiang X, Li B, Jiang X, Gou M. Fast Customization of Hollow Microneedle Patches for Insulin Delivery. International Journal of Bioprinting 8(2) (2022) 124–135. doi: 10.18063/ijb.v8i2.553
  • Wu T, You X, Chen Z. Hollow Microneedles on a Paper Fabricated by Standard Photolithography for the Screening Test of Prediabetes. Sensors (Basel). 22(11) (2022) 4253 1–11. doi: 10.3390/s22114253
  • Ye X, Cai D, Ruan X, Cai A. Research on the selective adhesion characteristics of polydimethylsiloxane layer. AIP Advances 8 (2018) 095004 1–8. https://doi.org/10.1063/1.5041867
  • Gill HS, Denson DD, Burris BA, Prausnitz MR. Effect of microneedle design on pain in human volunteers. The Clinical Journal of Pain 24(7) (2008) 585-594. doi: 10.1097/AJP.0b013e31816778f9
  • Chaudhri BP, Ceyssens F., de Moor P, van Hoof C, Puers R. A high aspect ratio SU-8 fabrication technique for hollow microneedles for transdermal drug delivery and blood extraction. Journal of Micromechanics and Microengineering 20 (2010) 064006 1–6. doi:10.1088/0960-1317/20/6/064006
  • Zhou R, Chang HC. Capillary penetration failure of blood suspensions. Journal of Colloid and Interface Science 287 (2005) 647–656. doi: 10.1016/j.jcis.2005.02.023. PMID: 15925633
  • Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Advanced Drug Delivery Reviews 64 (2012) 1547–1568. doi: 10.1016/j.addr.2012.04.005
  • McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu H, Schueller OJ, Whitesides GM. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21 (2000) 27–40. doi: 10.1002/(SICI)1522-2683(20000101)21:1<27::AID-ELPS27>3.0.CO;2-C
  • Sia SK, Whitesides GM. Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 24 (2003) 3563–3576. https://doi.org/10.1002/elps.200305584
  • Raj M K, Chakraborty S. PDMS microfluidics: A mini review. Journal of Applied Polymer Science 137(27) (2020) 48958 1–14
  • Murata Y, Sasaki N, Miyamoto E, Kawashima S. Use of floating alginate gel beads for stomach-specific drug delivery. European Journal of Pharmaceutics and Biopharmaceutics 50 (2000) 221–226. doi: 10.1016/s0939-6411(00)00110-7
  • Rashidzadeh B, Shokri E, Mahdavinia GR, Moradi R, Mohamadi-Aghdam S, Abdi S. Preparation and characterization of antibacterial magnetic-/pH-sensitive alginate/Ag/Fe3O4 hydrogel beads for controlled drug release. International Journal of Biological Macromolecules 154 (2020) 134–141. https://doi.org/10.1016/j.ijbiomac.2020.03.028
  • Armutcu C, Piskin S. Evaluation of controlled hydroxychloroquine releasingperformance from calcium-alginate beads. Hittite Journal of Science and Engineering 8(3) (2021) 255–263. DOI: 10.17350/HJSE19030000236
  • Zhou H, Xu HH. The fast release of stem cells from alginate-fibrin microbeads in injectable scaffolds for bone tissue engineering. Biomaterials 32 (2011) 7503–7513. doi: 10.1016/j.biomaterials.2011.06.045
  • Zeng Q, Han Y, Li H, Chang J. Bioglass/alginate composite hydrogel beads as cell carriers for bone regeneration. Journal of Biomedical Materials Research Part B Applied Biomaterials. 102B (2014) 42–51. doi: 10.1002/jbm.b.32978
  • Agarwal T, Kabiraj P, Narayana GH, Kulanthaivel S, Kasiviswanathan U, Pal K, Giri S, Maiti TK, Banerjee I. Alginate bead based hexagonal close packed 3d implant for bone tissue engineering. ACS Applied Materials & Interfaces 8 (2016) 32132–32145. DOI: 10.1021/acsami.6b08512

One Step Fabrication of Hollow and Highly Flexible Polydimethylsiloxane Microneedles

Year 2022, , 219 - 224, 28.09.2022
https://doi.org/10.17350/HJSE19030000274

Abstract

In this study, the hollow and highly flexible polydimethylsiloxane microneedles were fabricated in a one step and simple design. For this purpose, a commercial dermastamping device (Dermastamp® 140 DRS) was used as a mold to obtain highly flexible PDMS microneedles containing channels. With the proposed design, microneedles with a total height of 1500 μm, 1500 μm center-to-center spacing and 150 μm channel diameter was successfully fabricated. These data are all compatible with the dimensions and the geometry of the mold used. Then, a syringe adapter was fabricated with a 3D printer and combined with the hollow PDMS microneedle patch for the high-throughput production of alginate beads. After the adapter and the hollow PDMS microneedle patch combination was placed into the syringe pump, the mostly spherical alginate beads with a mean diameter of 2.0 ± 0.3 mm was produced. To sum up, the proposed design and fabrication scheme first offer a novel and simple strategy for the fabrication of hollow polymeric microneedles. Moreover, this system has the potential to be used not only for the high-throughput microfluidic fabrication of polymeric beads, but also in controlled drug delivery systems and cell encapsulation studies.

References

  • Prausnitz MR, Langer R. Transdermal drug delivery. Nature Biotechnology 26 (2008) 1261–1268. https://doi.org/10.1038/nbt.1504
  • Gill HS, Prausnitz MR. Does needle size matters?. Journal of Diabetes Science and Technology 1 (2007) 725–729. https://doi.org/10.1177/193229680700100517
  • Ingrole RSJ, Azizoglu A, Dul M, Birchall JC, Gill, HS, Prausnitz MR. Trends of microneedle technology in the scientific literature, patents, clinical trials and internet activity. Biomaterials 267 (2021) 120491 1–24. https://doi.org/10.1016/j.biomaterials.2020.120491
  • Waghule T, Singhvi G, Dubey SK, Pandey MM, Gupta G, Singh M, Dua K. Microneedles: a smart approach and increasing potential for transdermal drug delivery system. Biomedicine & Pharmacotherapy 109 (2019) 1249–1258. https://doi.org/10.1016/j.biopha.2018.10.078
  • Mukerjee EV, Collins SD, Isseroff RR, Smith RL. Microneedle array for transdermal biological fluid extraction and in situ analysis. Sensors and Actuators A 114 (2004) 267–275. https://doi.org/10.1016/j.sna.2003.11.008
  • Windmiller JR, Valdes-Ramirez G, Zhou N, Zhou M, Miller PR, Jin C, Brozik SM, Polsky R, Katz E, Narayan R, Wang J. Bicomponent microneedle array biosensor for minimally-invasive glutamate monitoring. Electroanalysis 23 (2011) 2303–2309. https://doi.org/10.1002/elan.201100361
  • Jiang X, Lillehoj PB. Microneedle-based skin patch for blood-free rapid diagnostic testing. Microsystems & Nanoengineering 6 (2020) 96 1–11. https://doi.org/10.1038/s41378-020-00206-1
  • Resnik D, Mozek M, Pecar B, Janez A, Urbancic V, Iliescu C, Vrtacnik D. In vivo experimental study of noninvasive insulin microinjection through hollow Si microneedle array. Micromachines 9 (2018) 40 1–17. https://doi.org/10.3390/mi9010040
  • Economidou SN, Uddin MJ, Marques MJ, Douroumis D, Sow WT, Li H, Reid A, Windmill JFC, Podoleanu A. A novel 3D printed hollow microneedle microelectromechanical system for controlled, personalized transdermal drug delivery. Additive Manufacturing 38 (2021) 101815 1–11. https://doi.org/10.1016/j.addma.2020.101815
  • Farias C, Lyman R, Hemingway C, Chau H, Mahacek A, Bouzos E, Mobed-Miremadi M. Three-dimensional (3D) printed microneedles for microencapsulated cell extrusion. Bioengineering 5 (2018) 59 1–26. https://doi.org/10.3390/bioengineering5030059
  • Carcamo-Martinez A, Mallon B, Dominguez-Robles J, Vora LK, Anjani QK, Donnely RF. Hollow microneedles: a perspective in biomedical applications. International Journal of Pharmaceutics 599 (2021) 120455 1–18. https://doi.org/10.1016/j.ijpharm.2021.120455
  • Wang PC, Wester BA, Rajaraman S, Paik SJ, Kim SH, Allen MG. Hollow polymer microneedle array fabricated by photolithography process combined with micromolding technique. Annual International Conference of the IEEE Engineering in Medicine and Biological Society (2009) 7026-709. doi: 10.1109/IEMBS.2009.5333317
  • Dardano P, De Martino S, Battisti M, Miranda B, Rea I, De Stefano L. One-shot fabrication of polymeric hollow microneedles by standard photolithography. Polymers 9;13(4):520 (2021) 1–13. doi: 10.3390/polym13040520
  • Bolton CJW, Howells O, Blayney GJ, Eng PF, Birchall JC, Gualeni B, Roberts K, Ashraf H, Guy OJ. Hollow silicon microneedle fabrication using advanced plasma etch technologies for applications in transdermal drug delivery. Lab on a Chip 20 (2020) 2788–2795. doi.org/10.1039/D0LC00567C
  • Li Y, Zhang H, Yang R, Laffitte Y, Schmill U, Hu W, Kaddoura M, Blondeel EJM, Cui B. Fabrication of sharp silicon hollow microneedles by deep-reactive ion etching towards minimally invasive diagnostics. Microsystems & Nanoengineering 5 (2019) 41 1–11. doi: 10.1038/s41378-019-0077-y
  • Khumpuang S, Ruther P, Paul O. Micromolding methods for hollow microneedle arrays using megasonically enhanced casting. TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference, 2009, pp. 220-223, doi: 10.1109/SENSOR.2009.5285525
  • Wang P, Paik S, Kim S, Allen MG. Hypodermic-needle-like hollow polymer microneedle array: fabrication and characterization. Journal of Microelectromechanical Systems, vol. 23, no. 4, pp. 991-998, Aug. 2014, doi: 10.1109/JMEMS.2014.2307320
  • Mansoor I, Hafeli UO, Stoeber B. Hollow out-of-plane polymer microneedles made by solvent casting for transdermal drug delivery. Journal of Microelectromechanical Systems, vol. 21, no. 1, pp. 44-52, Feb. 2012, https://doi: 10.1109/JMEMS.2011.2174429
  • Szeto B, Aksit A, Valentini C, Yu M, Werth EG, Goeta S, Tang C, Brown LM, Olson ES, Kysar JW, Lalwani AK. Novel 3D-printed hollow microneedles facilitate safe, reliable, and informative sampling of perilymph from guinea pigs. Hearing Research 400 (2021) 108141 1–10. doi: 10.1016/j.heares.2020.108141
  • Rad ZF, Prewett PD, Davies GJ. Parametric optimization of two-photon direct laser writing process for manufacturing polymeric microneedles. Additive Manufacturing 56 (2022) 102953 1–14. https://doi.org/10.1016/j.addma.2022.102953
  • Perennes F, Marmiroli B, Matteucci M, Tormen M, Vaccari L, Di Fabrizio E. Sharp beveled tip hollow microneedle arrays fabricated by LIGA and 3D soft lithography with polyvinyl alcohol. Journal of Micromechanics and Microengineering 16 (2006) 473–479. doi:10.1088/0960-1317/16/3/001
  • Rad ZF, Prewett PD, Davies GJ. Rapid prototyping and customizable microneedle design: Ultra-sharp microneedle fabrication using two-photon polymerization and low-cost micromolding techniques. Manufacturing Letters 20 (2021) 39–43. https://doi.org/10.1016/j.mfglet.2021.10.007
  • Trautmann A, Roth GL, Nujiqi B, Walther T, Hellmann R. Towards a versatile point-of-care system combining femtosecond laser generated microfluidic channels and direct laser written microneedle arrays. Microsystems & Nanoengineering 5 (2019) 6 1–9. doi: 10.1038/s41378-019-0046-5
  • Li R, Liu X, Yuan X, Wu S, Li L, Jiang X, Li B, Jiang X, Gou M. Fast Customization of Hollow Microneedle Patches for Insulin Delivery. International Journal of Bioprinting 8(2) (2022) 124–135. doi: 10.18063/ijb.v8i2.553
  • Wu T, You X, Chen Z. Hollow Microneedles on a Paper Fabricated by Standard Photolithography for the Screening Test of Prediabetes. Sensors (Basel). 22(11) (2022) 4253 1–11. doi: 10.3390/s22114253
  • Ye X, Cai D, Ruan X, Cai A. Research on the selective adhesion characteristics of polydimethylsiloxane layer. AIP Advances 8 (2018) 095004 1–8. https://doi.org/10.1063/1.5041867
  • Gill HS, Denson DD, Burris BA, Prausnitz MR. Effect of microneedle design on pain in human volunteers. The Clinical Journal of Pain 24(7) (2008) 585-594. doi: 10.1097/AJP.0b013e31816778f9
  • Chaudhri BP, Ceyssens F., de Moor P, van Hoof C, Puers R. A high aspect ratio SU-8 fabrication technique for hollow microneedles for transdermal drug delivery and blood extraction. Journal of Micromechanics and Microengineering 20 (2010) 064006 1–6. doi:10.1088/0960-1317/20/6/064006
  • Zhou R, Chang HC. Capillary penetration failure of blood suspensions. Journal of Colloid and Interface Science 287 (2005) 647–656. doi: 10.1016/j.jcis.2005.02.023. PMID: 15925633
  • Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Advanced Drug Delivery Reviews 64 (2012) 1547–1568. doi: 10.1016/j.addr.2012.04.005
  • McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu H, Schueller OJ, Whitesides GM. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21 (2000) 27–40. doi: 10.1002/(SICI)1522-2683(20000101)21:1<27::AID-ELPS27>3.0.CO;2-C
  • Sia SK, Whitesides GM. Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 24 (2003) 3563–3576. https://doi.org/10.1002/elps.200305584
  • Raj M K, Chakraborty S. PDMS microfluidics: A mini review. Journal of Applied Polymer Science 137(27) (2020) 48958 1–14
  • Murata Y, Sasaki N, Miyamoto E, Kawashima S. Use of floating alginate gel beads for stomach-specific drug delivery. European Journal of Pharmaceutics and Biopharmaceutics 50 (2000) 221–226. doi: 10.1016/s0939-6411(00)00110-7
  • Rashidzadeh B, Shokri E, Mahdavinia GR, Moradi R, Mohamadi-Aghdam S, Abdi S. Preparation and characterization of antibacterial magnetic-/pH-sensitive alginate/Ag/Fe3O4 hydrogel beads for controlled drug release. International Journal of Biological Macromolecules 154 (2020) 134–141. https://doi.org/10.1016/j.ijbiomac.2020.03.028
  • Armutcu C, Piskin S. Evaluation of controlled hydroxychloroquine releasingperformance from calcium-alginate beads. Hittite Journal of Science and Engineering 8(3) (2021) 255–263. DOI: 10.17350/HJSE19030000236
  • Zhou H, Xu HH. The fast release of stem cells from alginate-fibrin microbeads in injectable scaffolds for bone tissue engineering. Biomaterials 32 (2011) 7503–7513. doi: 10.1016/j.biomaterials.2011.06.045
  • Zeng Q, Han Y, Li H, Chang J. Bioglass/alginate composite hydrogel beads as cell carriers for bone regeneration. Journal of Biomedical Materials Research Part B Applied Biomaterials. 102B (2014) 42–51. doi: 10.1002/jbm.b.32978
  • Agarwal T, Kabiraj P, Narayana GH, Kulanthaivel S, Kasiviswanathan U, Pal K, Giri S, Maiti TK, Banerjee I. Alginate bead based hexagonal close packed 3d implant for bone tissue engineering. ACS Applied Materials & Interfaces 8 (2016) 32132–32145. DOI: 10.1021/acsami.6b08512
There are 39 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Soner Cakmak 0000-0003-2245-8322

Publication Date September 28, 2022
Submission Date July 25, 2022
Published in Issue Year 2022

Cite

Vancouver Cakmak S. One Step Fabrication of Hollow and Highly Flexible Polydimethylsiloxane Microneedles. Hittite J Sci Eng. 2022;9(3):219-24.

Hittite Journal of Science and Engineering is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).