Research Article
BibTex RIS Cite

The Effect of Wick Permeability and Porous Radius on Capillary and Entrainment Limit in A Heat Pipe Reactor

Year 2023, , 279 - 285, 31.12.2023
https://doi.org/10.17350/HJSE19030000317

Abstract

For heat extraction in nuclear systems, interest in the design of nuclear reactors with heat pipes has increased. The determination of heat limitations is one of the remarkable factors for safety when heat pipes are used for nuclear systems. In this study, capillary and entrainment limit values for the heat pipe were calculated in a heat pipe reactor with potassium working fluid operating at 650 K. Five different effective porous radii (10.1x10-6, 10.225x10-6, 10.35x10-6, 10.425x10-6 and 10.6x10-6 m) and five different wick permeability (4.75x10-12, 5x10-12, 5.25x10-11, 5.5x10-12 and 5.75x10-12 m2) is considered for sintered copper wick heat pipe. While the effects of effective porosity radius, wick permeability, and wick radius on the capillary barrier were studied, only the effects of effective porosity radius were studied. While the effects of effective porosity radius, wick permeability, and wick radius on the capillary barrier are studied, only the effects of effective porosity radius are studied. The highest values of the capillary and entrainment limits are obtained when the porosity radius is 10.1x10-6 m. Besides, maximum capillary limits are achieved when the wick permeability is 5.75x10-12 m2 and the effective porosity radius is 10.1x10-6. This study aims to determine the optimum effective porous radius and wick permeability for this reactor and investigate the effect of effective porous radius and wick permeability on the heat pipe limitations.

References

  • 1. Wright SA, Lipinski RJ, Pandya T, Peters. Proposed design and operation of a heat pipe reactor using the Sandia National Laboratories Annular Core test facility and existing UZrH fuel pins. Space Technology and Applications International Forum-Staif. 2005,746; 449–60. doi:10.1063/1.1867161
  • 2. Koenig DR, Ranken WA, Salmi EW. Heat-pipe reactors for space power applications. Journal of Energy. 1977, 237–43. doi:10.2514/3.62334
  • 3. Greenspan E. Solid Core Heat-Pipe Nuclear Battery Type Reactor, University of California. 2008.doi:10.2172/940911.
  • 4. Ma Y, Chen E, Yu H, Zhong R, Deng J, Chai X, Huang S, Ding S, Zhang Z. Heat pipe failure accident analysis in megawatt heat pipe cooled reactor. Annals of Nuclear Energy. 2020, 149; 107755. doi: 10.1016/j.anucene.2020.107755
  • 5. Sun H, Wang C, Ma P, Tian W, Qiu S, Su G. Conceptual design and analysis of a multipurpose micro nuclear reactor power source. Annals of Nuclear Energy. 2018,121; 118–27. doi:10.1016/j. anucene.2018.07.025
  • 6. Zhang W, Zhang D, Liu X, Tian S, Qiu S, Su G. Thermal-hydraulic analysis of the thermoelectric space reactor power system with a potassium heat pipe radiator. Annals of Nuclear Energy. 2020, 136;19-25. doi: 10.1016/j.net.2019.06.021
  • 7. Liu X, Sun H, Tang S, Wang C, Tian W, Qiu S, Su G. Thermalhydraulic design features of a micronuclear reactor power source applied for multipurpose. International Journal of Energy Research. 2019, 43; 4170–183. doi: 10.1002/er.4542
  • 8. Wang C, Liu M, Zhang D, Qiu S, Su GH, Tian W. Experimental study on transient performance of heat pipe-cooled passive residual heat removal system of a molten salt reactor. Progress in Nuclear Energy. 2020, 118; 103113. doi: 10.1016/j. pnucene.2019.103113
  • 9. Wang C, Sun H, Yang S, et al., Thermal-hydraulic analysis of a new conceptual heat pipe cooled small nuclear reactor system. Nuclear Engineering and Technology. 2020, 52; 19-26. doi: 10.1016/ j.net.2019.06.021
  • 10. Guilen DP, Turner CG, Assessment of Screen-Covered Grooved Sodium Heat Pipes for Microreactor Applications. Nuclear Technology. 2022, 208; 1301–310. doi:10.1080/00295450.2021 .1977085.
  • 11. Subedi B, Kim SY, Jang SP, Kedzierski MA. Effect of mesh wick geometry on the maximum heat transfer rate of flat-micro heat pipes with multi-heat sources and sinks. International Journal of Heat and Mass Transfer. 2019, 131; 537–45. doi: 10.1016/ j.ijheatmasstransfer.2018.11.086
  • 12. Yu M, Diallo TMO, Zhao X, Zhou J, Du Z, Ji J, Chen Y, Analytical study of impact of the wick’s fractal parameters on the heat transfer capacity of a novel micro-channel loop heat pipe. Energy. 2018, 158; 746-759. Doi: 10.1016/j. energy.2018.06.075
  • 13. Xin F, Ma T, Wang Q, Thermal performance analysis of flat heat pipe with graded mini-grooves wick. Applied Energy. 2018, 228; 2129–139. Doi: 10.1016/ j.apenergy.2018.07.053
  • 14. Zhou W, Li Y, Chen Z, Effect of the passage area ratio of liquid to vapor on an ultra-thin flattened heat pipe, Applied Thermal Engineering. 2019, 162; 114215.
  • 15. Zhang J, Lian L, Liu Y, Wang R, The heat transfer capability predictio n of heat pipes based on capillary rise test of wicks. International Journal of Heat and Mass Transfer. 2021, 164; 120536. doi: 10.1016/j.ijheatmasstransfer.2020.120536
  • 16. Meseguer J, P‐rez-Grande I, Sanz-Andr‐s, A. Heat pipes. Spacecraft Thermal Control. 2012, 175-207. Doi: 10.1533/9780857096081
  • 17. Sandeep SS, Prakash SB. Design of heat pipe based on capillary and entrainment limitations. AIP Conference Proceedings. 2019, 2200(1). Doi: 10.1063/1.5141239
  • 18. Mansour M, Heat Transport Limitations and Overall Heat Transfer Coefficient for a Heat Pipe. International Journal of Engineering and Advanced Technology (IJEAT). 2016 ,5(4); 119-23.
  • 19. El-Genk, MS, Space nuclear reactor concepts for avoidance of a single point failure. Nuclear Energy and Design. 2008, 238; 2245–255.
  • 20. Yuan Y, Shan JQ, Zhang B, Gou J, Bo Z, Lu T,Ge L, Yang Z. Accident analysis of heat pipe cooled and AMTEC conversion space reactor system. Annals of Nuclear Energy. 2016, 94; 706–71. doi: 10.1016/j.anucene.2016.04.017
  • 21. Zhang Y, Guo K, Wang C, Tang S, Zhang D, Tian W, Su GH. Numerical analysis of segmented thermoelectric generators applied in the heat pipe cooled nuclear reactor. Applied Thermal Engineering. 2022, 204; 117949. Doi: 10.1016/j. applthermaleng.2021.117949
  • 22. Peterson G. An overview of micro heat pipe research and development. Journal Applied Mechanics Review. 1992, 45; 175–189. doi: 10.1115/1.3119755
  • 23. Karabulut K, Alnak DE. Investigation of heat transfer and flow properties in separated flow and reattachment regions for liquid sodium flow at fast reactors. Nuclear Engineering and Design. 2021, 379; 1–5. Doi: 10.1016/j. nucengdes.2021.111224
  • 24. Faghri A, Zhang Y. Transport phenomena in multiphase systems. Elsevier, Burlington, MA, 2006, 1030.
  • 25. Faghri A, Zhang Y, Howell J, Advanced heat and mass transfer. 1st ed., Global Digital Press, Columbia, MO, 2010, 934.
  • 26. Ivanovskii MN, Sorokin VP, Yagodkin IV. The physical principles of heat pipes. Clarendon Press, Oxford, United Kingdom, 1982, 268.
  • 27. Vargaftik NB. Handbook of physical properties of liquids and gases. Hemisphere, New York, NY, 1975, 758.
  • 28. Chi W. Heat pipe theory and practice. Hemisphere Publishing Corporation, New York, 1976, 242.
  • 29. Deng D, Liang D, Tang Y, Evaluation of capillary performance of sintered porous wicks for loop heat pipe. Experimental Thermal and Fluid Science. 2013, 50; 1-9. doi: 10.1016/j. expthermflusci.2013.04.014
  • 30. Semenic T, Lin YY, Catton I, Thermophysical properties of biporous heat pipe evaporators, ASME Journal of Heat Transfer. 2008, 130; 022602. doi: 10.1115/1.2790020
  • 31. Dominguez Espinosa FA, Peters TB, Brisson JG. Effect of fabrication parameters on the thermophysical properties of sintered wicks for heat pipe applications. International Journal of Heat Mass Transfer. 2012, 55; 7471-7486. doi: 10.1016/j.ijheatmasstransfer.2012.07.037
  • 32. Busse CA. Theory of the ultimate transfer of cylindrical heat pipes. International Journal of Heat and Mass Transfer. 1973, 16; 169–186. Doi: 10.1016/0017-9310(73)90260-3
  • 33. Ochterbeck JM, Heat pipes, Heat Transfer Handbook, 1st ed., 2003, 1481.
  • 34. Williams RR, Harris DK, A device and technique to measure the heat transfer limit of a planar heat pipe wick. Experimental Thermal and Fluid Science. 2006, 3; 277-284. Doi: 10.1016/j. expthermflusci.2005.07.008
  • 35. Holley B, Faghri A. Permeability and effective pore radius measurements for heat pipe and fuel cell applications. Applied Thermal Engineering. 2006, 26; 448-462. Doi: 10.1016/j. applthermaleng.2005.05.023.
  • 36. Carnogurská M, P‐íhoda M, Brestovi‐ T, Molínek J, Pyszko R. Determination of permeability and inertial resistance coefficient of filter inserts used in the cleaning of natural gas. Journal of Mechanical Science and Technology. 2012, 26; 103-111. Doi: 10.1007/s12206-011-0937-3.
Year 2023, , 279 - 285, 31.12.2023
https://doi.org/10.17350/HJSE19030000317

Abstract

References

  • 1. Wright SA, Lipinski RJ, Pandya T, Peters. Proposed design and operation of a heat pipe reactor using the Sandia National Laboratories Annular Core test facility and existing UZrH fuel pins. Space Technology and Applications International Forum-Staif. 2005,746; 449–60. doi:10.1063/1.1867161
  • 2. Koenig DR, Ranken WA, Salmi EW. Heat-pipe reactors for space power applications. Journal of Energy. 1977, 237–43. doi:10.2514/3.62334
  • 3. Greenspan E. Solid Core Heat-Pipe Nuclear Battery Type Reactor, University of California. 2008.doi:10.2172/940911.
  • 4. Ma Y, Chen E, Yu H, Zhong R, Deng J, Chai X, Huang S, Ding S, Zhang Z. Heat pipe failure accident analysis in megawatt heat pipe cooled reactor. Annals of Nuclear Energy. 2020, 149; 107755. doi: 10.1016/j.anucene.2020.107755
  • 5. Sun H, Wang C, Ma P, Tian W, Qiu S, Su G. Conceptual design and analysis of a multipurpose micro nuclear reactor power source. Annals of Nuclear Energy. 2018,121; 118–27. doi:10.1016/j. anucene.2018.07.025
  • 6. Zhang W, Zhang D, Liu X, Tian S, Qiu S, Su G. Thermal-hydraulic analysis of the thermoelectric space reactor power system with a potassium heat pipe radiator. Annals of Nuclear Energy. 2020, 136;19-25. doi: 10.1016/j.net.2019.06.021
  • 7. Liu X, Sun H, Tang S, Wang C, Tian W, Qiu S, Su G. Thermalhydraulic design features of a micronuclear reactor power source applied for multipurpose. International Journal of Energy Research. 2019, 43; 4170–183. doi: 10.1002/er.4542
  • 8. Wang C, Liu M, Zhang D, Qiu S, Su GH, Tian W. Experimental study on transient performance of heat pipe-cooled passive residual heat removal system of a molten salt reactor. Progress in Nuclear Energy. 2020, 118; 103113. doi: 10.1016/j. pnucene.2019.103113
  • 9. Wang C, Sun H, Yang S, et al., Thermal-hydraulic analysis of a new conceptual heat pipe cooled small nuclear reactor system. Nuclear Engineering and Technology. 2020, 52; 19-26. doi: 10.1016/ j.net.2019.06.021
  • 10. Guilen DP, Turner CG, Assessment of Screen-Covered Grooved Sodium Heat Pipes for Microreactor Applications. Nuclear Technology. 2022, 208; 1301–310. doi:10.1080/00295450.2021 .1977085.
  • 11. Subedi B, Kim SY, Jang SP, Kedzierski MA. Effect of mesh wick geometry on the maximum heat transfer rate of flat-micro heat pipes with multi-heat sources and sinks. International Journal of Heat and Mass Transfer. 2019, 131; 537–45. doi: 10.1016/ j.ijheatmasstransfer.2018.11.086
  • 12. Yu M, Diallo TMO, Zhao X, Zhou J, Du Z, Ji J, Chen Y, Analytical study of impact of the wick’s fractal parameters on the heat transfer capacity of a novel micro-channel loop heat pipe. Energy. 2018, 158; 746-759. Doi: 10.1016/j. energy.2018.06.075
  • 13. Xin F, Ma T, Wang Q, Thermal performance analysis of flat heat pipe with graded mini-grooves wick. Applied Energy. 2018, 228; 2129–139. Doi: 10.1016/ j.apenergy.2018.07.053
  • 14. Zhou W, Li Y, Chen Z, Effect of the passage area ratio of liquid to vapor on an ultra-thin flattened heat pipe, Applied Thermal Engineering. 2019, 162; 114215.
  • 15. Zhang J, Lian L, Liu Y, Wang R, The heat transfer capability predictio n of heat pipes based on capillary rise test of wicks. International Journal of Heat and Mass Transfer. 2021, 164; 120536. doi: 10.1016/j.ijheatmasstransfer.2020.120536
  • 16. Meseguer J, P‐rez-Grande I, Sanz-Andr‐s, A. Heat pipes. Spacecraft Thermal Control. 2012, 175-207. Doi: 10.1533/9780857096081
  • 17. Sandeep SS, Prakash SB. Design of heat pipe based on capillary and entrainment limitations. AIP Conference Proceedings. 2019, 2200(1). Doi: 10.1063/1.5141239
  • 18. Mansour M, Heat Transport Limitations and Overall Heat Transfer Coefficient for a Heat Pipe. International Journal of Engineering and Advanced Technology (IJEAT). 2016 ,5(4); 119-23.
  • 19. El-Genk, MS, Space nuclear reactor concepts for avoidance of a single point failure. Nuclear Energy and Design. 2008, 238; 2245–255.
  • 20. Yuan Y, Shan JQ, Zhang B, Gou J, Bo Z, Lu T,Ge L, Yang Z. Accident analysis of heat pipe cooled and AMTEC conversion space reactor system. Annals of Nuclear Energy. 2016, 94; 706–71. doi: 10.1016/j.anucene.2016.04.017
  • 21. Zhang Y, Guo K, Wang C, Tang S, Zhang D, Tian W, Su GH. Numerical analysis of segmented thermoelectric generators applied in the heat pipe cooled nuclear reactor. Applied Thermal Engineering. 2022, 204; 117949. Doi: 10.1016/j. applthermaleng.2021.117949
  • 22. Peterson G. An overview of micro heat pipe research and development. Journal Applied Mechanics Review. 1992, 45; 175–189. doi: 10.1115/1.3119755
  • 23. Karabulut K, Alnak DE. Investigation of heat transfer and flow properties in separated flow and reattachment regions for liquid sodium flow at fast reactors. Nuclear Engineering and Design. 2021, 379; 1–5. Doi: 10.1016/j. nucengdes.2021.111224
  • 24. Faghri A, Zhang Y. Transport phenomena in multiphase systems. Elsevier, Burlington, MA, 2006, 1030.
  • 25. Faghri A, Zhang Y, Howell J, Advanced heat and mass transfer. 1st ed., Global Digital Press, Columbia, MO, 2010, 934.
  • 26. Ivanovskii MN, Sorokin VP, Yagodkin IV. The physical principles of heat pipes. Clarendon Press, Oxford, United Kingdom, 1982, 268.
  • 27. Vargaftik NB. Handbook of physical properties of liquids and gases. Hemisphere, New York, NY, 1975, 758.
  • 28. Chi W. Heat pipe theory and practice. Hemisphere Publishing Corporation, New York, 1976, 242.
  • 29. Deng D, Liang D, Tang Y, Evaluation of capillary performance of sintered porous wicks for loop heat pipe. Experimental Thermal and Fluid Science. 2013, 50; 1-9. doi: 10.1016/j. expthermflusci.2013.04.014
  • 30. Semenic T, Lin YY, Catton I, Thermophysical properties of biporous heat pipe evaporators, ASME Journal of Heat Transfer. 2008, 130; 022602. doi: 10.1115/1.2790020
  • 31. Dominguez Espinosa FA, Peters TB, Brisson JG. Effect of fabrication parameters on the thermophysical properties of sintered wicks for heat pipe applications. International Journal of Heat Mass Transfer. 2012, 55; 7471-7486. doi: 10.1016/j.ijheatmasstransfer.2012.07.037
  • 32. Busse CA. Theory of the ultimate transfer of cylindrical heat pipes. International Journal of Heat and Mass Transfer. 1973, 16; 169–186. Doi: 10.1016/0017-9310(73)90260-3
  • 33. Ochterbeck JM, Heat pipes, Heat Transfer Handbook, 1st ed., 2003, 1481.
  • 34. Williams RR, Harris DK, A device and technique to measure the heat transfer limit of a planar heat pipe wick. Experimental Thermal and Fluid Science. 2006, 3; 277-284. Doi: 10.1016/j. expthermflusci.2005.07.008
  • 35. Holley B, Faghri A. Permeability and effective pore radius measurements for heat pipe and fuel cell applications. Applied Thermal Engineering. 2006, 26; 448-462. Doi: 10.1016/j. applthermaleng.2005.05.023.
  • 36. Carnogurská M, P‐íhoda M, Brestovi‐ T, Molínek J, Pyszko R. Determination of permeability and inertial resistance coefficient of filter inserts used in the cleaning of natural gas. Journal of Mechanical Science and Technology. 2012, 26; 103-111. Doi: 10.1007/s12206-011-0937-3.
There are 36 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Gizem Bakır 0000-0002-2406-6376

Publication Date December 31, 2023
Submission Date January 30, 2023
Published in Issue Year 2023

Cite

Vancouver Bakır G. The Effect of Wick Permeability and Porous Radius on Capillary and Entrainment Limit in A Heat Pipe Reactor. Hittite J Sci Eng. 2023;10(4):279-85.

Hittite Journal of Science and Engineering is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).