Year 2019,
, 309 - 313, 31.12.2019
Tugba Tetik
Ismail Yalcin Uralcan
References
- 1. Zhang L, Shoji M. Nucleation site interaction in pool boiling on the artificial surface. International Journal of Heat and Mass Transfer 46 (2003) 513-522.
- 2. Qi Y, Klausner JF. Heterogeneous nucleation with artificial cavities. Journal of Heat Transfer 127 (2005) 1189-1196.
- 3. Mchale JP, Garimella SV. Bubble nucleation characteristics in pool boiling of a wetting liquid on smooth and rough surfaces. International Journal of Multiphase Flow 36 (2010) 249-260.
- 4. Moita AS, Teodori E, Moreira ALN. Influence of surface topography in the boiling mechanisms. International Journal of Heat and Fluid Flow 52 (2015) 50-63.
- 5. Bourlioux A. A coupled level-set volume-of-fluid algorithm for tracking material interfaces. Paper presented at 6th International Symposium on Computational Fluid Dynamics. Lake Tahoe, NV, pp. 15-22, 1995.
- 6. Sussman M, Puckett EG. A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible TwoPhase Flows. Journal of Computational Physics 162 (2000) 301-337.
- 7. Wang Z, Yang J, Koo B, Stern F. A coupled level set and volume-offluid method for sharp interface simulation of plunging breaking waves. International Journal of Multiphase Flow 35 (2009) 227-246.
- 8. Son G, Hur N. A coupled level set and volume-of-fluid method for the buoyancy-driven motion of fluid particles. Numerical Heat Transfer, Part B: Fundamentals 42 (2002) 523-542.
- 9. Arienti M, Sussman M. An embedded level set method for sharpinterface multiphase simulations of Diesel injectors. International Journal of Multiphase Flow 59 (2014) 1-14.
- 10. Lamas MI, Sáiz Jabardo JM, Arce A, Fariñas P. Numerical analysis of the bubble detachment diameter in nucleate boiling. Journal of Physics: Conference Series, 395 (2012).
- 11. Zahedi P, Saleh R, Moreno-Atanasio R, Yousefi K. Influence of fluid properties on bubble formation, detachment, rising and collapse; Investigation using volume of fluid method. Korean Journal of Chemical Engineering 31 (2014) 1349-1361.
- 12. Stojanović A, Stevanović V, Petrović M, Živković D, Stanković B. Numerical study of heat transfer during nucleate pool boiling. Advanced Technologies 5 (2016) 73-80.
- 13. Rohsenow WM. A Method of correlating heat transfer data for surface boiling of liquids. Technical Report (1951).
- 14. Fritz W. Berechnung des maximalvolume von dampfblasen. Physikalische Zeitschrift. 36 (1935) 379-388.
- 15. Cole R. Bubble frequencies and departure volumes at subatmospheric pressures. AIChE Journal 13 (1967) 779-783.
- 16. Cole R, Rohsenow WM. Correlation of bubble departure diameters for boiling of saturated liquids. Chemical Engineering Progress Symposium Series 65 (1969) 211-213.
- 17. Wenzel U. Saturated pool boiling and subcooled flow boiling of mixtures at atmospheric pressure. PhD Thesis, The University of Auckland (1992).
- 18. Lee HC, Oh BD, Bae SW, Kim H. Single bubble growth in saturated pool boiling on a constant wall temperature surface. International Journal of Multiphase Flow 29 (2003) 1857-1874.
- 19. Jakob M, Fritz W. Versuche über den verdampfungsvorgang. Forsch Ingenieurwes. 2(1931) 435-447.
- 20. Zuber N. Hydrodynamic aspects of boiling heat transfer. PhD Thesis, University of California (1959).
- 21. Cole R. A photographic study of pool boiling in the region of the critical heat flux. AIChE Journal 6 (1960) 533-538.
Nucleate Pool Boiling on A Plain Surface
Year 2019,
, 309 - 313, 31.12.2019
Tugba Tetik
Ismail Yalcin Uralcan
Abstract
Nucleate pool boiling of distilled water on a plain copper surface has been investigated experimentally and modeled numerically. In the experimental study, bubble behavior on a single nucleation site was observed using high-speed photography and long-distance microscopy. Diameter for a single bubble growth was determined during the ebullition cycle via recordings. Numerical simulations have been carried out using CLSVOF method using ANSYS 18.2. To verify the simulation, the bubble growth period is compared with the results of the experimental study. Data from the numerical results compare reasonably well with the experimental study.
References
- 1. Zhang L, Shoji M. Nucleation site interaction in pool boiling on the artificial surface. International Journal of Heat and Mass Transfer 46 (2003) 513-522.
- 2. Qi Y, Klausner JF. Heterogeneous nucleation with artificial cavities. Journal of Heat Transfer 127 (2005) 1189-1196.
- 3. Mchale JP, Garimella SV. Bubble nucleation characteristics in pool boiling of a wetting liquid on smooth and rough surfaces. International Journal of Multiphase Flow 36 (2010) 249-260.
- 4. Moita AS, Teodori E, Moreira ALN. Influence of surface topography in the boiling mechanisms. International Journal of Heat and Fluid Flow 52 (2015) 50-63.
- 5. Bourlioux A. A coupled level-set volume-of-fluid algorithm for tracking material interfaces. Paper presented at 6th International Symposium on Computational Fluid Dynamics. Lake Tahoe, NV, pp. 15-22, 1995.
- 6. Sussman M, Puckett EG. A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible TwoPhase Flows. Journal of Computational Physics 162 (2000) 301-337.
- 7. Wang Z, Yang J, Koo B, Stern F. A coupled level set and volume-offluid method for sharp interface simulation of plunging breaking waves. International Journal of Multiphase Flow 35 (2009) 227-246.
- 8. Son G, Hur N. A coupled level set and volume-of-fluid method for the buoyancy-driven motion of fluid particles. Numerical Heat Transfer, Part B: Fundamentals 42 (2002) 523-542.
- 9. Arienti M, Sussman M. An embedded level set method for sharpinterface multiphase simulations of Diesel injectors. International Journal of Multiphase Flow 59 (2014) 1-14.
- 10. Lamas MI, Sáiz Jabardo JM, Arce A, Fariñas P. Numerical analysis of the bubble detachment diameter in nucleate boiling. Journal of Physics: Conference Series, 395 (2012).
- 11. Zahedi P, Saleh R, Moreno-Atanasio R, Yousefi K. Influence of fluid properties on bubble formation, detachment, rising and collapse; Investigation using volume of fluid method. Korean Journal of Chemical Engineering 31 (2014) 1349-1361.
- 12. Stojanović A, Stevanović V, Petrović M, Živković D, Stanković B. Numerical study of heat transfer during nucleate pool boiling. Advanced Technologies 5 (2016) 73-80.
- 13. Rohsenow WM. A Method of correlating heat transfer data for surface boiling of liquids. Technical Report (1951).
- 14. Fritz W. Berechnung des maximalvolume von dampfblasen. Physikalische Zeitschrift. 36 (1935) 379-388.
- 15. Cole R. Bubble frequencies and departure volumes at subatmospheric pressures. AIChE Journal 13 (1967) 779-783.
- 16. Cole R, Rohsenow WM. Correlation of bubble departure diameters for boiling of saturated liquids. Chemical Engineering Progress Symposium Series 65 (1969) 211-213.
- 17. Wenzel U. Saturated pool boiling and subcooled flow boiling of mixtures at atmospheric pressure. PhD Thesis, The University of Auckland (1992).
- 18. Lee HC, Oh BD, Bae SW, Kim H. Single bubble growth in saturated pool boiling on a constant wall temperature surface. International Journal of Multiphase Flow 29 (2003) 1857-1874.
- 19. Jakob M, Fritz W. Versuche über den verdampfungsvorgang. Forsch Ingenieurwes. 2(1931) 435-447.
- 20. Zuber N. Hydrodynamic aspects of boiling heat transfer. PhD Thesis, University of California (1959).
- 21. Cole R. A photographic study of pool boiling in the region of the critical heat flux. AIChE Journal 6 (1960) 533-538.