BibTex RIS Cite
Year 2018, , 137 - 140, 29.06.2018
https://doi.org/10.17350/HJSE19030000085

Abstract

References

  • 1. Goodenough, J.B.; Park, K.S.; J. Am. Chem. Soc 2013, 135, 1167–1176
  • 2. Horiba, T.; Maeshima, T.; Matsumura, Koseki, M.; Arai, J.; Murananka, Y., Journal of Power Sources 2005, 146, 107- 110.
  • 3. Johnson, B. A.; White, R. E., Journal of Power Sources 1998, 70, 48-54.
  • 4. Chan C.K., Peng H., Liu G., McIlwrath K., Zhang X.F., Huggins R.A., Nat Nanotechnol 2008, 3, 31 – 35.
  • 5. Peng K.; Jie J.; Zhang W.; Appl Phys Lett 2008, 93, 033105.
  • 6. Al-Maghrabi, M.A.; Thorne, J.S.; Sanderson, R.J.; Byers, J.N.; Dahn, J.R.; Dunlap, R.A.; J., Electrochem. Soc. 2012, 159, A119–A711.
  • 7. Zhang, W.-J.; J. Power Sources 2011, 196, 13–24.
  • 8. Yue, L.; Zhong, H.; Tang, D.; Zhang, L.; J. Solid State Electrochem. 2013, 17, 961– 968.
  • 9. Astrova, E.V.; Fedulova, G.V.; Smirnova, I.A.; Remenyuk, A.D.; Kulova, T.L.; Skundin, A.M.; Technol. Phys. Lett. 2011, 37, 731–734.
  • 10. Wang, M.S.; Fan L.Z.; J. Power Sources 2013, 244 570–574.
  • 11. Zhang, K.; Zhao, Q.; Tao, Z.; J. Chen, Nano Res 2013, 6, 38–46.
  • 12. Hu, Y.S.; Demir-Cakan, R.; Titirici, M.M.; Muller, J.O.; Schlogl, R.; Antonietti, M.; J. Maier, Angew. Chem. 2008, 47, 1645–1649.
  • 13. Liu, W.R.; Yen, Y.C.; Wu, H.C.; Winter, M.; Wu, N.L.; J. Appl. Electrochem 2009, 39, 1643–1649.
  • 14. Vadchenko, S.G.; Sytschev, A.E.; Kovalev, D.Y.; Shchukin, A.S.; Konovalikhin, S.V.; Nanotechnologies in Russia 2015, 10, 67–74.
  • 15. Konovalikhin, S.V.; Kovalev, D.Y.; Sytschev, A.E.; Vadchenko, S.G.; Shchukin, A.S.; Int. J. Self-Propag. High-Temp. Synth 2014, 23, 217–221.
  • 16. Jia, H.; Stock, C.; Kloepsch, R.; He, X.; Badillo, J.P.; Fromm, O.; Vortmann, B.; Winter, M.; Placke T.; ACS Appl. Mat. Interfaces 2015, 7, 1508–1515.
  • 17. Wang, X.; Wen, Z.; Liu, Y.; Xu, X.; Lin, J.; Journal of Power Sources 2009, 189 121–126.
  • 18. Chen, Y.; Qian, J.; Cao, Y.; Yang, H.; Ai, X.; ACS Appl. Mat. Interfaces 2012, 4, 3753–3758.
  • 19. Park, H.; Lee, S.; Yoo, S.; Shin, M.; Kim, J.; Chun, M.; Choi, N.S.; Park, S.; ACS Appl. Mat. Interfaces 2014, 6, 16360– 16367.
  • 20. Huggins, R. A., Advanced Batteries: Materials Science Aspects 1sted.; Springer, LLC: New York, NY, 2009.
  • 21. Wang, J.; Wang, Y.; Zhang, P.; Zhang, D.; Ren, X.; Journal of Alloys and Compounds 2014, 610, 308–314.
  • 22. Deng, D.; Energy Science and Engineering 2015, 3, 385–418.
  • 23. Horiba, T.; Maeshima, T.; Matsumura, Koseki, M.; Arai, J.; Murananka, Y., Journal of Power Sources 2005, 146, 107- 110.
  • 24. Johnson, B. A.; White, R. E., Journal of Power Sources 1998, 70 48-54.
  • 25. Kim, H.; Choi, J.; Sohn, H.J.; Kang, T.; J. Electrochem. Soc. 1999, 146(12), 4401–4405.
  • 26. Moriga, T.; Watanabe, K.; Tsuji, D.; Massaki, S.; Nakabayashi, I.; J. Solid State Chem. 2000, 153(2), 386–390.
  • 27. Roberts, G.A.; Cairns, E.J.; Reimer, J.A.; J. Power Sources 2002, 110(2), 424–429.

Preparation of Silicon-Antimony based Anode Materials for Lithium-Ion Batteries

Year 2018, , 137 - 140, 29.06.2018
https://doi.org/10.17350/HJSE19030000085

Abstract

I n this study, SixSb immiscible composite blend as anode materials have been synthesized using micron-sized silicone and antimony particles in different compositions through chemical reduction-mechanical alloying method CR-MA . The obtained microstructures have been investigated by X-ray diffraction XRD and Scanning Electron Microscopy SEM with Energy Dispersive X-Ray analysis EDX . Spectroscopic characterizations of the composite materials showed that a traditional intermetallic compound could not be achieved. However a novel immiscible composite blend system have been developed. One of the newly prepared composite materials, Si0.65Sb, exhibits an initial capacity of 790 mAh g-1 and a good cyclic stability compared to the pure silicone. The battery performance results of the micron-sized Si0.65Sb blend system have been compared with the commercially used graphite and the nano-sized Si/Sb alloy systems. The cycling stability of the micron-sized Si0.65Sb blend system showed an improvement compared to nano-sized Si/Sb alloy systems. Moreover its specific capacity is slightly higher than the commercial graphite anode material. These results portray the importance of micron sized Si/Sb system in large-scale applications due to its low cost.

References

  • 1. Goodenough, J.B.; Park, K.S.; J. Am. Chem. Soc 2013, 135, 1167–1176
  • 2. Horiba, T.; Maeshima, T.; Matsumura, Koseki, M.; Arai, J.; Murananka, Y., Journal of Power Sources 2005, 146, 107- 110.
  • 3. Johnson, B. A.; White, R. E., Journal of Power Sources 1998, 70, 48-54.
  • 4. Chan C.K., Peng H., Liu G., McIlwrath K., Zhang X.F., Huggins R.A., Nat Nanotechnol 2008, 3, 31 – 35.
  • 5. Peng K.; Jie J.; Zhang W.; Appl Phys Lett 2008, 93, 033105.
  • 6. Al-Maghrabi, M.A.; Thorne, J.S.; Sanderson, R.J.; Byers, J.N.; Dahn, J.R.; Dunlap, R.A.; J., Electrochem. Soc. 2012, 159, A119–A711.
  • 7. Zhang, W.-J.; J. Power Sources 2011, 196, 13–24.
  • 8. Yue, L.; Zhong, H.; Tang, D.; Zhang, L.; J. Solid State Electrochem. 2013, 17, 961– 968.
  • 9. Astrova, E.V.; Fedulova, G.V.; Smirnova, I.A.; Remenyuk, A.D.; Kulova, T.L.; Skundin, A.M.; Technol. Phys. Lett. 2011, 37, 731–734.
  • 10. Wang, M.S.; Fan L.Z.; J. Power Sources 2013, 244 570–574.
  • 11. Zhang, K.; Zhao, Q.; Tao, Z.; J. Chen, Nano Res 2013, 6, 38–46.
  • 12. Hu, Y.S.; Demir-Cakan, R.; Titirici, M.M.; Muller, J.O.; Schlogl, R.; Antonietti, M.; J. Maier, Angew. Chem. 2008, 47, 1645–1649.
  • 13. Liu, W.R.; Yen, Y.C.; Wu, H.C.; Winter, M.; Wu, N.L.; J. Appl. Electrochem 2009, 39, 1643–1649.
  • 14. Vadchenko, S.G.; Sytschev, A.E.; Kovalev, D.Y.; Shchukin, A.S.; Konovalikhin, S.V.; Nanotechnologies in Russia 2015, 10, 67–74.
  • 15. Konovalikhin, S.V.; Kovalev, D.Y.; Sytschev, A.E.; Vadchenko, S.G.; Shchukin, A.S.; Int. J. Self-Propag. High-Temp. Synth 2014, 23, 217–221.
  • 16. Jia, H.; Stock, C.; Kloepsch, R.; He, X.; Badillo, J.P.; Fromm, O.; Vortmann, B.; Winter, M.; Placke T.; ACS Appl. Mat. Interfaces 2015, 7, 1508–1515.
  • 17. Wang, X.; Wen, Z.; Liu, Y.; Xu, X.; Lin, J.; Journal of Power Sources 2009, 189 121–126.
  • 18. Chen, Y.; Qian, J.; Cao, Y.; Yang, H.; Ai, X.; ACS Appl. Mat. Interfaces 2012, 4, 3753–3758.
  • 19. Park, H.; Lee, S.; Yoo, S.; Shin, M.; Kim, J.; Chun, M.; Choi, N.S.; Park, S.; ACS Appl. Mat. Interfaces 2014, 6, 16360– 16367.
  • 20. Huggins, R. A., Advanced Batteries: Materials Science Aspects 1sted.; Springer, LLC: New York, NY, 2009.
  • 21. Wang, J.; Wang, Y.; Zhang, P.; Zhang, D.; Ren, X.; Journal of Alloys and Compounds 2014, 610, 308–314.
  • 22. Deng, D.; Energy Science and Engineering 2015, 3, 385–418.
  • 23. Horiba, T.; Maeshima, T.; Matsumura, Koseki, M.; Arai, J.; Murananka, Y., Journal of Power Sources 2005, 146, 107- 110.
  • 24. Johnson, B. A.; White, R. E., Journal of Power Sources 1998, 70 48-54.
  • 25. Kim, H.; Choi, J.; Sohn, H.J.; Kang, T.; J. Electrochem. Soc. 1999, 146(12), 4401–4405.
  • 26. Moriga, T.; Watanabe, K.; Tsuji, D.; Massaki, S.; Nakabayashi, I.; J. Solid State Chem. 2000, 153(2), 386–390.
  • 27. Roberts, G.A.; Cairns, E.J.; Reimer, J.A.; J. Power Sources 2002, 110(2), 424–429.
There are 27 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Asuman Celik Kucuk This is me

Samet Ozturk This is me

Baris Cem Alpay This is me

Mine Yorulmaz This is me

Publication Date June 29, 2018
Published in Issue Year 2018

Cite

Vancouver Kucuk AC, Ozturk S, Alpay BC, Yorulmaz M. Preparation of Silicon-Antimony based Anode Materials for Lithium-Ion Batteries. Hittite J Sci Eng. 2018;5(2):137-40.

Hittite Journal of Science and Engineering is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).