BibTex RIS Cite
Year 2017, , 117 - 123, 28.12.2017
https://doi.org/10.17350/HJSE19030000057

Abstract

References

  • 1. Counter SA, Buchanan LH, Ortega F, Laurell G. Elevated blood mercury and neuro-otological observations in children of the Ecuadorian gold mines. Journal of Toxicology and Environmental Health-Part A65 (2002) 149-163.
  • 2. Ratcliffe HE, Swanson GM, Fischer LJ. Human exposure to mercury: A critical assessment of the evidence of adverse health effects. Journal of Toxicology and Environmental Health 49 (1996) 221-270.
  • 3. Sweet LI, Zelikoff JT. Toxicology and immunotoxicology of mercury: A comparative review in fish and humans. Journal of Toxicology and Environmental Health-Part B-Critical Reviews 4 (2001) 161-205.
  • 4. Branco V, Caito S, Farina M, Teixeira da Rocha J, Aschner M, Carvalho C. Biomarkers of mercury toxicity: Past, present, and future trends. Journal of Toxicology and Environmental Health - Part B: Critical Reviews (2017) 1-36.
  • 5. de Souza SS, Campiglia AD, Barbosa Jr F. A simple method for methylmercury, inorganic mercury and ethylmercury determination in plasma samples by high performance liquid chromatography–cold-vapor-inductively coupled plasma mass spectrometry. Analytica Chimica Acta 761 (2013)11- 17.
  • 6. Fu L, Shi S-Y, Chen X-Q. Multi-element analysis of water decoction of medicine food homology plants using inductively coupled plasma-tandem mass spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 133 (2017) 34-39.
  • 7. Gu W, Pei X, Cheng Y, Zhang C, Zhang J, Yan Y, et al. Black Phosphorus Quantum Dots as the Ratiometric Fluorescence Probe for Trace Mercury Ion Detection Based on Inner Filter Effect. ACS Sensors 2 (2017) 576-582.
  • 8. Zhang JR, Huang WT, Zeng AL, Luo HQ, Li NB. Ethynyl and π-stacked thymine–Hg2+–thymine base pairs enhanced fluorescence quenching via photoinduced electron transfer and simple and sensitive mercury ion sensing. Biosensors and Bioelectronics 64 (2015) 597-604.
  • 9. Liu Y-M, Zhang F-P, Jiao B-Y, Rao J-Y, Leng G. Automated dispersive liquid-liquid microextraction coupled to high performance liquid chromatography - cold vapour atomic fluorescence spectroscopy for the determination of mercury species in natural water samples. Journal of Chromatography A 1493 (2017) 1-9.
  • 10. Ren W, Zhang Y, Chen HG, Gao ZF, Li NB, Luo HQ. Ultrasensitive Label-Free Resonance Rayleigh Scattering Aptasensor for Hg2+ Using Hg2+-Triggered Exonuclease IIIAssisted Target Recycling and Growth of G-Wires for Signal Amplification. Analytical Chemistry 88 (2016) 1385-1390.
  • 11. Botasini S, Heijo G, Méndez E. Toward decentralized analysis of mercury (II) in real samples. A critical review on nanotechnology-based methodologies. Analytica Chimica Acta 800 (2013) 1-11.
  • 12. Ding Y, Wang S, Li J, Chen L. Nanomaterial-based optical sensors for mercury ions. TrAC Trends in Analytical Chemistry 82 (2016) 175-190.
  • 13. Xu X, Li Y-F, Zhao J, Li Y, Lin J, Li B, et al. Nanomaterialbased approaches for the detection and speciation of mercury. Analyst 140 (2015) 7841-7853.
  • 14. Farhadi K, Forough M, Molaei R, Hajizadeh S, Rafipour A. Highly selective Hg2+ colorimetric sensor using green synthesized and unmodified silver nanoparticles. Sensors and Actuators B: Chemical 161 (2012) 880-885.
  • 15. Katok KV, Whitby RLD, Fukuda T, Maekawa T, Bezverkhyy I, Mikhalovsky SV, et al. Hyperstoichiometric Interaction Between Silver and Mercury at the Nanoscale. Angewandte Chemie International Edition 51 (2012) 2632-2635.
  • 16. Ono A, Togashi H. Highly Selective Oligonucleotide-Based Sensor for Mercury(II) in Aqueous Solutions. Angewandte Chemie International Edition 43 (2004) 4300-4302.
  • 17. Li H, Zhang Y, Wang X, Gao Z. A luminescent nanosensor for Hg(II) based on functionalized CdSe/ZnS quantum dots. Microchimica Acta 160 (2008) 119-123. 18. Diez I, Ras RHA. Fluorescent silver nanoclusters. Nanoscale 3 (2011)1963-1970.
  • 19. Zhang H, Liu Q, Wang T, Yun Z, Li G, Liu J, et al. Facile preparation of glutathione-stabilized gold nanoclusters for selective determination of chromium (III) and chromium (VI) in environmental water samples. Analytica Chimica Acta 770 (2013) 140-146.
  • 20. Chin PTK, van der Linden M, van Harten EJ, Barendregt A, Rood MTM, Koster AJ, et al. Enhanced luminescence of Ag nanoclusters via surface modification. Nanotechnology 24 (2013) 075703/1-/7, 7 pp.
  • 21. Shang ZB, Wang Y, Jin WJ. Triethanolamine-capped CdSe quantum dots as fluorescent sensors for reciprocal recognition of mercury (II) and iodide in aqueous solution. Talanta 78 (2009) 364-369.

Optical Sensing of Mercury Using Fluorescent Silver and Gold Nanoclusters

Year 2017, , 117 - 123, 28.12.2017
https://doi.org/10.17350/HJSE19030000057

Abstract

n this study, gold and silver nanoclusters were employed for optical sensing of mercury. Nanoclusters used in this research had different chemical properties and showed different interactions with mercury producing specific optical responses including UV-Vis absorbance and fluorescence. These responses were quantitatively studied in the solution phase. The sensitive methods developed in this study were tested using mercury standards and accurate and precise results were obtained. Optical responses could also be monitored by naked eye. Finally, portable and simple glass fiber pads were developed for mercury sensing.

References

  • 1. Counter SA, Buchanan LH, Ortega F, Laurell G. Elevated blood mercury and neuro-otological observations in children of the Ecuadorian gold mines. Journal of Toxicology and Environmental Health-Part A65 (2002) 149-163.
  • 2. Ratcliffe HE, Swanson GM, Fischer LJ. Human exposure to mercury: A critical assessment of the evidence of adverse health effects. Journal of Toxicology and Environmental Health 49 (1996) 221-270.
  • 3. Sweet LI, Zelikoff JT. Toxicology and immunotoxicology of mercury: A comparative review in fish and humans. Journal of Toxicology and Environmental Health-Part B-Critical Reviews 4 (2001) 161-205.
  • 4. Branco V, Caito S, Farina M, Teixeira da Rocha J, Aschner M, Carvalho C. Biomarkers of mercury toxicity: Past, present, and future trends. Journal of Toxicology and Environmental Health - Part B: Critical Reviews (2017) 1-36.
  • 5. de Souza SS, Campiglia AD, Barbosa Jr F. A simple method for methylmercury, inorganic mercury and ethylmercury determination in plasma samples by high performance liquid chromatography–cold-vapor-inductively coupled plasma mass spectrometry. Analytica Chimica Acta 761 (2013)11- 17.
  • 6. Fu L, Shi S-Y, Chen X-Q. Multi-element analysis of water decoction of medicine food homology plants using inductively coupled plasma-tandem mass spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 133 (2017) 34-39.
  • 7. Gu W, Pei X, Cheng Y, Zhang C, Zhang J, Yan Y, et al. Black Phosphorus Quantum Dots as the Ratiometric Fluorescence Probe for Trace Mercury Ion Detection Based on Inner Filter Effect. ACS Sensors 2 (2017) 576-582.
  • 8. Zhang JR, Huang WT, Zeng AL, Luo HQ, Li NB. Ethynyl and π-stacked thymine–Hg2+–thymine base pairs enhanced fluorescence quenching via photoinduced electron transfer and simple and sensitive mercury ion sensing. Biosensors and Bioelectronics 64 (2015) 597-604.
  • 9. Liu Y-M, Zhang F-P, Jiao B-Y, Rao J-Y, Leng G. Automated dispersive liquid-liquid microextraction coupled to high performance liquid chromatography - cold vapour atomic fluorescence spectroscopy for the determination of mercury species in natural water samples. Journal of Chromatography A 1493 (2017) 1-9.
  • 10. Ren W, Zhang Y, Chen HG, Gao ZF, Li NB, Luo HQ. Ultrasensitive Label-Free Resonance Rayleigh Scattering Aptasensor for Hg2+ Using Hg2+-Triggered Exonuclease IIIAssisted Target Recycling and Growth of G-Wires for Signal Amplification. Analytical Chemistry 88 (2016) 1385-1390.
  • 11. Botasini S, Heijo G, Méndez E. Toward decentralized analysis of mercury (II) in real samples. A critical review on nanotechnology-based methodologies. Analytica Chimica Acta 800 (2013) 1-11.
  • 12. Ding Y, Wang S, Li J, Chen L. Nanomaterial-based optical sensors for mercury ions. TrAC Trends in Analytical Chemistry 82 (2016) 175-190.
  • 13. Xu X, Li Y-F, Zhao J, Li Y, Lin J, Li B, et al. Nanomaterialbased approaches for the detection and speciation of mercury. Analyst 140 (2015) 7841-7853.
  • 14. Farhadi K, Forough M, Molaei R, Hajizadeh S, Rafipour A. Highly selective Hg2+ colorimetric sensor using green synthesized and unmodified silver nanoparticles. Sensors and Actuators B: Chemical 161 (2012) 880-885.
  • 15. Katok KV, Whitby RLD, Fukuda T, Maekawa T, Bezverkhyy I, Mikhalovsky SV, et al. Hyperstoichiometric Interaction Between Silver and Mercury at the Nanoscale. Angewandte Chemie International Edition 51 (2012) 2632-2635.
  • 16. Ono A, Togashi H. Highly Selective Oligonucleotide-Based Sensor for Mercury(II) in Aqueous Solutions. Angewandte Chemie International Edition 43 (2004) 4300-4302.
  • 17. Li H, Zhang Y, Wang X, Gao Z. A luminescent nanosensor for Hg(II) based on functionalized CdSe/ZnS quantum dots. Microchimica Acta 160 (2008) 119-123. 18. Diez I, Ras RHA. Fluorescent silver nanoclusters. Nanoscale 3 (2011)1963-1970.
  • 19. Zhang H, Liu Q, Wang T, Yun Z, Li G, Liu J, et al. Facile preparation of glutathione-stabilized gold nanoclusters for selective determination of chromium (III) and chromium (VI) in environmental water samples. Analytica Chimica Acta 770 (2013) 140-146.
  • 20. Chin PTK, van der Linden M, van Harten EJ, Barendregt A, Rood MTM, Koster AJ, et al. Enhanced luminescence of Ag nanoclusters via surface modification. Nanotechnology 24 (2013) 075703/1-/7, 7 pp.
  • 21. Shang ZB, Wang Y, Jin WJ. Triethanolamine-capped CdSe quantum dots as fluorescent sensors for reciprocal recognition of mercury (II) and iodide in aqueous solution. Talanta 78 (2009) 364-369.
There are 20 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Mehmet Gokhan Caglayan This is me

Publication Date December 28, 2017
Published in Issue Year 2017

Cite

Vancouver Caglayan MG. Optical Sensing of Mercury Using Fluorescent Silver and Gold Nanoclusters. Hittite J Sci Eng. 2017;4(2):117-23.

Hittite Journal of Science and Engineering is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).