BibTex RIS Cite
Year 2017, , 165 - 168, 28.12.2017
https://doi.org/10.17350/HJSE19030000064

Abstract

References

  • 1. D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Birkhauser 2002.
  • 2. D. E. Blair, T. Koufogiorgos and B. J. Papantoniou, A classification of 3-dimensional contact metric manifolds with , Kodai Math. J. 13 (1990), 391—401
  • 3. D. E. Blair, A. Mihai, Symmetry in complex contact geometry, Rocky Mountain J. Math. 42 (2012), no. 2, 451—465
  • 4. D. E. Blair, A. Mihai, Homogeneity and local symmetry of complex -spaces, Israel J. Math. 187 (2012), no. 2, 451— 464
  • 5. E. Boeckx, A class of locally -symmetric contact metric spaces, Arch. Math. 72 (1999), 466—472
  • 6. E. Boeckx and L. Vanhecke, Characteristic reflections on unit tangent sphere bundles, Houston J. Math. 23 (1997), 427—448
  • 7. B. Foreman, Variational Problems on Complex Contact Manifolds with Applications to Twistor Space Theory, Thesis, Michigan State University 1996.
  • 8. B. Foreman, Boothby-Wang fibrations on complex contact manifolds, Differential Geom. Appl., 13 (2000), 179--196.
  • 9. S. Ishihara, M. Konishi, Complex almost contact structures in a complex contact manifold, Kodai Math. J., 5 (1982), 30--37.
  • 10. S. Kobayashi, Remarks on complex contact manifolds, Proc. Amer. Math. Soc. 10 (1959), 164--167.
  • 11. B. Korkmaz, A nullity condition for complex contact metric manifolds, J. Geom. 77 (2003), 108--128.
  • 12. T. Takahashi, Sasakian -symmetric spaces, Tohoku Math. J. 29 (1977), 91--113.

Symmetry in Complex Contact Manifolds

Year 2017, , 165 - 168, 28.12.2017
https://doi.org/10.17350/HJSE19030000064

Abstract

W ,κ µ-spaces with κ< are locally -symmetric.e define complex locally -symmetric spaces. As an example we prove that complex -spaces with κ

References

  • 1. D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Birkhauser 2002.
  • 2. D. E. Blair, T. Koufogiorgos and B. J. Papantoniou, A classification of 3-dimensional contact metric manifolds with , Kodai Math. J. 13 (1990), 391—401
  • 3. D. E. Blair, A. Mihai, Symmetry in complex contact geometry, Rocky Mountain J. Math. 42 (2012), no. 2, 451—465
  • 4. D. E. Blair, A. Mihai, Homogeneity and local symmetry of complex -spaces, Israel J. Math. 187 (2012), no. 2, 451— 464
  • 5. E. Boeckx, A class of locally -symmetric contact metric spaces, Arch. Math. 72 (1999), 466—472
  • 6. E. Boeckx and L. Vanhecke, Characteristic reflections on unit tangent sphere bundles, Houston J. Math. 23 (1997), 427—448
  • 7. B. Foreman, Variational Problems on Complex Contact Manifolds with Applications to Twistor Space Theory, Thesis, Michigan State University 1996.
  • 8. B. Foreman, Boothby-Wang fibrations on complex contact manifolds, Differential Geom. Appl., 13 (2000), 179--196.
  • 9. S. Ishihara, M. Konishi, Complex almost contact structures in a complex contact manifold, Kodai Math. J., 5 (1982), 30--37.
  • 10. S. Kobayashi, Remarks on complex contact manifolds, Proc. Amer. Math. Soc. 10 (1959), 164--167.
  • 11. B. Korkmaz, A nullity condition for complex contact metric manifolds, J. Geom. 77 (2003), 108--128.
  • 12. T. Takahashi, Sasakian -symmetric spaces, Tohoku Math. J. 29 (1977), 91--113.
There are 12 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Belgin Korkmaz This is me

Publication Date December 28, 2017
Published in Issue Year 2017

Cite

Vancouver Korkmaz B. Symmetry in Complex Contact Manifolds. Hittite J Sci Eng. 2017;4(2):165-8.

Hittite Journal of Science and Engineering is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).