Research Article
BibTex RIS Cite
Year 2015, , 115 - 125, 01.07.2015
https://doi.org/10.17350/HJSE19030000013

Abstract

References

  • Hettlich, F. and Rundell, W.: A second degree method for non-linear inverse problem. SIAM J. Numer. Anal. , 587–620 (2000).
  • Ivanyshyn, O. and Johansson, T.: Boundary integral equations for acoustical inverse sound-soft scattering. J. Inverse Ill-Posed Probl. , 1–14 (2007).
  • Ivanyshyn, O. and Kress, R.: Non-linear integral equations in inverse obstacle scattering. In: Mathematical Methods in Scattering Theory and Biomedical Engineering (Fotiatis, Massalas, eds). World Scientific, Singapore, 39-50 (2006).
  • Ivanyshyn, O., Kress, R. and Serranho, R.: Huygens’ principle and iterative methods in inverse obstacle scattering. Advances in Computational Mathematics , 413–429 (2010).
  • Johansson, T. and Sleeman, B.: Reconstruction of an acoustically sound-soft obstacle from one incident field and the far-field pattern. IMA Jour. Appl. Math. , 96–112 (2007).
  • Kirsch, A. and Kress, R.: Uniqueness in inverse obstacle scattering. Inverse Problems , 285–299 (1993).
  • Kress, R.: On the numerical solution of a hypersingular integral equation in scattering theory. J. Comp. Appl. Math., 345–360 (1995).
  • Kress, R.: Integral Equations. 2nd. ed Springer Verlag, Berlin 1998.
  • Kress, R. and Lee, K.M. : A second degree Newton method for an inverse obstacle scattering problem J. Comp. Phys. 7661–7669 (2011).
  • Kress, R. and Roach, G.F.: Transmission problems for the Helmholtz equation. J. Math. Phys. , 1433–1437 (1978) .
  • Kress, R. and Rundell, W.: Non-linear integral equations and the iterative solution for an inverse boundary value problem. Inverse Problems , 1207–1223 (2005).
  • Kress, R. and Sloan, I.H.: On the numerical solution of a logarithmic integral equation of the first kind for the Helmholtz equation. Numerische Mathematik , 199–214 (1993).
  • Kress, R., Tezel, N., and Yaman, F. : A second order Newton Method for sound soft inverse obstacle scattering. J. Inverse and Ill-posed Problems , 173-185 (2009).
  • McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press 2000.

A second degree Newton method for an inverse scattering problem for a dielectric cylinder

Year 2015, , 115 - 125, 01.07.2015
https://doi.org/10.17350/HJSE19030000013

Abstract

The inverse obstacle scattering problem we are interested is to reconstruct the image of an infinitely long homogeneous dielectric cylinder from the far field pattern for scattering of a time-harmonic E-polarized electromagnetic plane wave. We extend the approach suggested by Kress and Lee [18] that combines the ideas of Hettlich and Rundell [10] and Johansson and Sleeman [14] for the case of the inverse problem for a perfectly conducting scatterer to the case of penetrable scatterer. The inverse problem is depended on a system of non-linear boundary integral equations associated with a single layer approach to solve the direct scattering problem. We show the mathematical foundations of the method and illustrate its feasibility by numerical examples

References

  • Hettlich, F. and Rundell, W.: A second degree method for non-linear inverse problem. SIAM J. Numer. Anal. , 587–620 (2000).
  • Ivanyshyn, O. and Johansson, T.: Boundary integral equations for acoustical inverse sound-soft scattering. J. Inverse Ill-Posed Probl. , 1–14 (2007).
  • Ivanyshyn, O. and Kress, R.: Non-linear integral equations in inverse obstacle scattering. In: Mathematical Methods in Scattering Theory and Biomedical Engineering (Fotiatis, Massalas, eds). World Scientific, Singapore, 39-50 (2006).
  • Ivanyshyn, O., Kress, R. and Serranho, R.: Huygens’ principle and iterative methods in inverse obstacle scattering. Advances in Computational Mathematics , 413–429 (2010).
  • Johansson, T. and Sleeman, B.: Reconstruction of an acoustically sound-soft obstacle from one incident field and the far-field pattern. IMA Jour. Appl. Math. , 96–112 (2007).
  • Kirsch, A. and Kress, R.: Uniqueness in inverse obstacle scattering. Inverse Problems , 285–299 (1993).
  • Kress, R.: On the numerical solution of a hypersingular integral equation in scattering theory. J. Comp. Appl. Math., 345–360 (1995).
  • Kress, R.: Integral Equations. 2nd. ed Springer Verlag, Berlin 1998.
  • Kress, R. and Lee, K.M. : A second degree Newton method for an inverse obstacle scattering problem J. Comp. Phys. 7661–7669 (2011).
  • Kress, R. and Roach, G.F.: Transmission problems for the Helmholtz equation. J. Math. Phys. , 1433–1437 (1978) .
  • Kress, R. and Rundell, W.: Non-linear integral equations and the iterative solution for an inverse boundary value problem. Inverse Problems , 1207–1223 (2005).
  • Kress, R. and Sloan, I.H.: On the numerical solution of a logarithmic integral equation of the first kind for the Helmholtz equation. Numerische Mathematik , 199–214 (1993).
  • Kress, R., Tezel, N., and Yaman, F. : A second order Newton Method for sound soft inverse obstacle scattering. J. Inverse and Ill-posed Problems , 173-185 (2009).
  • McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press 2000.
There are 14 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Ahmet Altundag This is me

Publication Date July 1, 2015
Submission Date May 17, 2015
Published in Issue Year 2015

Cite

Vancouver Altundag A. A second degree Newton method for an inverse scattering problem for a dielectric cylinder. Hittite J Sci Eng. 2015;2(1):115-2.

Cited By

Hittite Journal of Science and Engineering Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı (CC BY NC) ile lisanslanmıştır.