Research Article
BibTex RIS Cite
Year 2020, , 297 - 311, 31.12.2020
https://doi.org/10.17350/HJSE19030000199

Abstract

References

  • 1. Budavari S. Propylene. The Merck Index, 12th ed., New Jersey: Merck & Co., 1996, p. 1348–1349.
  • 2. Ren Y, Zhang F, Hua W, Yue Y, Gao Z. “ZnO supported on high silica HZSM-5 as new catalysts for dehydrogenation of propane to propene in the presence of CO2,” Catalysis Today, 2009; 148(3-4): 316-322.
  • 3. Yan L, Zhen H, Jing L, Kang-Nian F. “Periodic Density Functional Theory Study of Propane Dehydrogenation over Perfect Ga2O3 (100),” Surface, J. Phys. Chem. C, 2008, 112(51):20382–20392.
  • 4. Ming L, Yi A, Xing G, Zhi J, De C. “First-Principles Calculations of Propane Dehydrogenation over PtSn Catalysts,” ACS Catalysis, 2012, 2(6):1247–1258.
  • 5. Lauri N, Karoliina H. “Selectivity in Propene Dehydrogenation on Pt and Pt3Sn Surfaces from First Principles,” ACS Catalysis, 2013, 3(1):3026−3030.
  • 6. Timothy H. “Computational study of the catalytic dehydrogenation of propane on Pt and Pt3Ga catalysts,” Doctoral Thesis, 2015.
  • 7. Stephanie S, Maarten K, Vladimir V, Evgeniy A, Marie-Françoise R, Guy B. “The Positive Role of Hydrogen on the Dehydrogenation of Propane on Pt (111),” ACS Catalysis, 2017, 7(11): 7495–7508.
  • 8. Biloen P, Dautzenberg F, Sachtler W. “Catalytic dehydrogenation of propane to propene over platinum and platinum-gold alloys,” Journal of Catalysis, 1977, 50(1): 77-86.
  • 9. Benco L, Bucko T, Hafner J. “Dehydrogenation of propane over ZnMOR. Static and dynamic reaction energy diagram,” Journal of catalysis, 2011, 277(1): 104-116.
  • 10. Li H, Yue Y, Miao C, Xie Z, Hua W, Gao Z. “Dehydrogenation of ethylbenzene and propane over Ga2O3–ZrO2 catalysts in the presence of CO2,” Catalysis Communications, 2007, 8(9): 1317-1322.
  • 11. Ming-Lei Y, Yi-An Z, Chen F, Zhi-Jun S, De C, Xing-Gui Z. “DFT study of propane dehydrogenation on Pt catalyst: effects of step sites,” Physical Chemistry, Chemical Physics, 2011, 13(1): 3257–3267.
  • 12. Oyegoke T, Dabai FN, Uzairu A, Jibril BY. “Insight from the Study of Acidity and Reactivity of Cr2O3 Catalyst in Propane Dehydrogenation: A Computational Approach,” Bayero Journal of Pure and Applied Sciences, 2018, 11(1): 178-184.
  • 13. Gascón J, Téllez C, Herguido J, Menéndez M. “Propane dehydrogenation over a Cr2O3/Al2O3 catalyst: transient kinetic modeling of propene and coke formation,” Applied Catalysis A: General, 2003, 248(1-2): 105-116.
  • 14. Parthasarathi R, Subramanian V, Royb D, Chattaraj P. “Electrophilicity index as a possible descriptor of biological activity,” Bioorganic & Medicinal Chemistry, 2004, 12(1): 5533-5543.
  • 15. Bendjeddou A, Abbas T, Gouasmia AK, Villemin D. “Molecular structure, HOMO-LUMO, MEP, and Fukui function analysis of some TTF donor substituted molecules using DFT (B3LYP) calculations,” Int Res J Pure Appl Chem, 2016, 12(1):1-9.
  • 16. Parr R, Szentpály L, Liu S. “Electrophilicity Index,” J. Am. Chem. Soc., 1999, 121(1): 1922-1924.
  • 17. Pratim K, Utpal S, Debesh R, “Electrophilicity Index,” Chemical Review, 2006, 106(1): 2065-2091.
  • 18. Domingo L, Ríos-Gutiérrez M, Pérez P. “Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity,” Molecules, 2016, 21(748): 1-22.
  • 19. Robert G, La´szlo V, Shubin L. “Electrophilicity Index,” J. Am. Chem. Soc., 1999, 121(1): 1922-1924.
  • 20. Compere C, Costa D, Jolly LH, Maugerc E, Giessner–Prettre C. “Modeling of the adsorption on Cr2O3 clusters of small molecules and ions present in seawater. A preliminary non-empirical study,” New J. of Chem, 2000, 24(12): 993-998.
  • 21. Yanbiao W, Xinxin G, Jinla W. “Comparative DFT Study of Structure and Magnetism of TMnOm (TM = Sc - Mn, n = 1 - 2, m = 1 - 6) Clusters,” Physical Chemistry Chemical Physics, 2010, 12 (1): 2471-2477.
  • 22. Veliah S, Xiang K, Pandey R, Recio J, Newsam J. “Density Functional Study of Chromium Oxide Clusters: Structures, Bonding, Vibrations, and Stability,” J. Phys. Chem. B, 1997, 102(1): 1126-1135.
  • 23. Garrain PA, Costa D, Marcus P. “Biomaterial− biomolecule interaction: DFT-D study of glycine adsorption on Cr2O3.,” The Journal of Physical Chemistry C, 2010, 115(3): 719-727.
  • 24. Shah EV, Roy DR. “Magnetic switching in Crx (x= 2–8) and its oxide cluster series,” Journal of Magnetism and Magnetic Materials, 2018, 451: 32-37.
  • 25. Dzade N, Roldan A, de Leeuw N. “A density functional theory study of the adsorption of benzene on hematite (α-Fe2O3) surfaces,” Minerals, 2014, 4(1): 89-115.
  • 26. Lau KC, Kandalam AK, Costales A, Pandey R. “Equilibrium geometry and electron detachment energies of anionic Cr2O4, Cr2O5, and Cr2O6 clusters,” Chemical physics letters, 2004, 393 (1-3): 112-117.
  • 27. Warren J. A Guide to Molecular Mechanics and Quantum Chemical Calculations, Irvine, CA: Wavefunction, 2003.
  • 28. Warren H, Sean O. Spartan 16 for Windows, Macintosh and Linux: User Guide and Tutorial, CA: Wavefunction, 2017, pp. 435-518.
  • 29. Maldonado F, Stashans A. “DFT modeling of benzoyl peroxide adsorption on α-Cr2O3 (0001) surface,” Surface Review and Letters, 2016, 23(5): 1650037.
  • 30. Guo-Liang D, Zhen-Hua L, Jing L, Wen-Ning W, Kang-Nian F. “Deep Oxidation in the Oxidative Dehydrogenation Reaction of Propane over V2O5(001): Periodic DFT Study,” The Journal of Physical Chemistry C, 2012, 116 (1): 807-817.
  • 31. Satyajit D, Nand K, Plaban J, Ramesh C. “DFT Insight on Oxygen Adsorbed Pt Trimer Cluster (Pt3) for CO Oxidation,” Computational and Theoretical Chemistry, 2017, 1114(1): 1-7.
  • 32. Liu C, Li G., Emiel E, Hensen J, Pidko E. “Relationship between acidity and catalytic reactivity of faujasite zeolite: A periodic DFT study,” Journal of Catalysis, 2016, 344(1): 570–577.
  • 33. Liu C, Tranca I, van Santen RA, Hensen RJ, Pidko EA. “Scaling relations for acidity and reactivity of zeolites,” The Journal of Physical Chemistry C, 2017, 121(42): 23520-23530.
  • 34. David R. “CRC Handbook of Chemistry and Physics, 84th Edition.,” in Section 10, Atomic, Molecular, and Optical Physics; Ionization Potentials of Atoms and Atomic Ions, 84th ed., Boca Raton, Florida: CRC Press., 2003, pp. (10-178)-(10-179).
  • 35. Fukui K., “Role of frontier orbitals in chemical reactions,” Science, 1982, 218(4574): 747-754.
  • 36. Lillehaug S., “A Theoretical Study of Cr/oxide Catalysts for Dehydrogenation of Short Alkanes,” The University of Bergen, Department of Chemistry, 2006.
  • 37. Lugo HJ, Lunsford JH. “The dehydrogenation of ethane over chromium catalysts,” Journal of Catalysis, 1985, 91(1): 155-166.
  • 38. Michorczyk P, Ogonowski J, Kuśtrowski P, Chmielarz L. “Chromium oxide supported on MCM-41 as a highly active and selective catalyst for dehydrogenation of propane with CO2,” Applied Catalysis A: General, 2008, 349(1-2): 62-69.
  • 39. Michorczyk P, Ogonowski J, Zeńczak K. “Activity of chromium oxide deposited on different silica supports in the dehydrogenation of propane with CO2–a comparative study,” Journal of Molecular Catalysis A: Chemical, 2011, 349(1-2): 1-12.
  • 40. Bailey BC, Schrock RR, Kundu S, Goldman AS, Huang Z, Brookhart M. “Evaluation of Molybdenum and Tungsten Metathesis Catalysts for Homogeneous Tandem Alkane Metathesis,” Organometallics, 2009, 28(1): 355-360.
  • 41. Chen K, Bell AT, Iglesia E., “Kinetics and Mechanism of Oxidative Dehydrogenation of Propane on Vanadium, Molybdenum, and Tungsten Oxides,” Journal of Physical Chemistry B, 2000, 104(1): 1292-1299.
  • 42. Jupp A, Johnstone T, Stephan D. “The Global Electrophilicity Index as a Metric for Lewis Acidity,” Dalton Transactions, 2018, 45(1): 1-7.
  • 43. Yun Y, Araujo JR, Melaet G, Baek J, Archanjo BS, Oh M, Alivisatos AP, Somorjai GA. “Activation of Tungsten Oxide for Propane Dehydrogenation and Its High Catalytic Activity and Selectivity,” Catalysis Letters, 2017, 147(3): 622–632.
  • 44. Salamanca-Guzmán M, Licea-Fonseca YE, Echavarría-Isaza A, Faro A, Palacio-Santos LA. “Oxidative dehydrogenation of propane with cobalt, tungsten and molybdenum based materials,” Revista Facultad de Ingeniería Universidad de Antioquia, 2017, 84(1): 97-104.

Quantum Mechanics Calculation of Molybdenum and Tungsten Influence on the CrM-oxide Catalyst Acidity

Year 2020, , 297 - 311, 31.12.2020
https://doi.org/10.17350/HJSE19030000199

Abstract

Semi-empirical calculations were employed to understand the effects of introducing promoters such as molybdenum (Mo) and tungsten (W) on chromium (III) oxide catalyst for the dehydrogenation of propane into propylene. For this purpose, we investigated CrM-oxide (M = Cr, Mo, and W) catalysts. In this study, the Lewis acidity of the catalyst was examined using Lewis acidity parameters (Ac), including ammonia and pyridine adsorption energy. The results obtained from this study of overall acidity across all sites of the catalysts studied reveal Mo-modified catalyst as the one with the least acidity while the W-modified catalyst was found to have shown the highest acidity signifies that the introduction of Mo would reduce acidity while W accelerates it. The finding, therefore, confirms tungsten (W) to be more influential and would be more promising when compared to molybdenum (Mo) due to the better avenue that is offered by W for the promotion of electron exchange and its higher acidity(s). The suitability of some molecular descriptors for acidity prediction as a potential alternative to the current use of adsorption energies of the probes was also reported.

References

  • 1. Budavari S. Propylene. The Merck Index, 12th ed., New Jersey: Merck & Co., 1996, p. 1348–1349.
  • 2. Ren Y, Zhang F, Hua W, Yue Y, Gao Z. “ZnO supported on high silica HZSM-5 as new catalysts for dehydrogenation of propane to propene in the presence of CO2,” Catalysis Today, 2009; 148(3-4): 316-322.
  • 3. Yan L, Zhen H, Jing L, Kang-Nian F. “Periodic Density Functional Theory Study of Propane Dehydrogenation over Perfect Ga2O3 (100),” Surface, J. Phys. Chem. C, 2008, 112(51):20382–20392.
  • 4. Ming L, Yi A, Xing G, Zhi J, De C. “First-Principles Calculations of Propane Dehydrogenation over PtSn Catalysts,” ACS Catalysis, 2012, 2(6):1247–1258.
  • 5. Lauri N, Karoliina H. “Selectivity in Propene Dehydrogenation on Pt and Pt3Sn Surfaces from First Principles,” ACS Catalysis, 2013, 3(1):3026−3030.
  • 6. Timothy H. “Computational study of the catalytic dehydrogenation of propane on Pt and Pt3Ga catalysts,” Doctoral Thesis, 2015.
  • 7. Stephanie S, Maarten K, Vladimir V, Evgeniy A, Marie-Françoise R, Guy B. “The Positive Role of Hydrogen on the Dehydrogenation of Propane on Pt (111),” ACS Catalysis, 2017, 7(11): 7495–7508.
  • 8. Biloen P, Dautzenberg F, Sachtler W. “Catalytic dehydrogenation of propane to propene over platinum and platinum-gold alloys,” Journal of Catalysis, 1977, 50(1): 77-86.
  • 9. Benco L, Bucko T, Hafner J. “Dehydrogenation of propane over ZnMOR. Static and dynamic reaction energy diagram,” Journal of catalysis, 2011, 277(1): 104-116.
  • 10. Li H, Yue Y, Miao C, Xie Z, Hua W, Gao Z. “Dehydrogenation of ethylbenzene and propane over Ga2O3–ZrO2 catalysts in the presence of CO2,” Catalysis Communications, 2007, 8(9): 1317-1322.
  • 11. Ming-Lei Y, Yi-An Z, Chen F, Zhi-Jun S, De C, Xing-Gui Z. “DFT study of propane dehydrogenation on Pt catalyst: effects of step sites,” Physical Chemistry, Chemical Physics, 2011, 13(1): 3257–3267.
  • 12. Oyegoke T, Dabai FN, Uzairu A, Jibril BY. “Insight from the Study of Acidity and Reactivity of Cr2O3 Catalyst in Propane Dehydrogenation: A Computational Approach,” Bayero Journal of Pure and Applied Sciences, 2018, 11(1): 178-184.
  • 13. Gascón J, Téllez C, Herguido J, Menéndez M. “Propane dehydrogenation over a Cr2O3/Al2O3 catalyst: transient kinetic modeling of propene and coke formation,” Applied Catalysis A: General, 2003, 248(1-2): 105-116.
  • 14. Parthasarathi R, Subramanian V, Royb D, Chattaraj P. “Electrophilicity index as a possible descriptor of biological activity,” Bioorganic & Medicinal Chemistry, 2004, 12(1): 5533-5543.
  • 15. Bendjeddou A, Abbas T, Gouasmia AK, Villemin D. “Molecular structure, HOMO-LUMO, MEP, and Fukui function analysis of some TTF donor substituted molecules using DFT (B3LYP) calculations,” Int Res J Pure Appl Chem, 2016, 12(1):1-9.
  • 16. Parr R, Szentpály L, Liu S. “Electrophilicity Index,” J. Am. Chem. Soc., 1999, 121(1): 1922-1924.
  • 17. Pratim K, Utpal S, Debesh R, “Electrophilicity Index,” Chemical Review, 2006, 106(1): 2065-2091.
  • 18. Domingo L, Ríos-Gutiérrez M, Pérez P. “Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity,” Molecules, 2016, 21(748): 1-22.
  • 19. Robert G, La´szlo V, Shubin L. “Electrophilicity Index,” J. Am. Chem. Soc., 1999, 121(1): 1922-1924.
  • 20. Compere C, Costa D, Jolly LH, Maugerc E, Giessner–Prettre C. “Modeling of the adsorption on Cr2O3 clusters of small molecules and ions present in seawater. A preliminary non-empirical study,” New J. of Chem, 2000, 24(12): 993-998.
  • 21. Yanbiao W, Xinxin G, Jinla W. “Comparative DFT Study of Structure and Magnetism of TMnOm (TM = Sc - Mn, n = 1 - 2, m = 1 - 6) Clusters,” Physical Chemistry Chemical Physics, 2010, 12 (1): 2471-2477.
  • 22. Veliah S, Xiang K, Pandey R, Recio J, Newsam J. “Density Functional Study of Chromium Oxide Clusters: Structures, Bonding, Vibrations, and Stability,” J. Phys. Chem. B, 1997, 102(1): 1126-1135.
  • 23. Garrain PA, Costa D, Marcus P. “Biomaterial− biomolecule interaction: DFT-D study of glycine adsorption on Cr2O3.,” The Journal of Physical Chemistry C, 2010, 115(3): 719-727.
  • 24. Shah EV, Roy DR. “Magnetic switching in Crx (x= 2–8) and its oxide cluster series,” Journal of Magnetism and Magnetic Materials, 2018, 451: 32-37.
  • 25. Dzade N, Roldan A, de Leeuw N. “A density functional theory study of the adsorption of benzene on hematite (α-Fe2O3) surfaces,” Minerals, 2014, 4(1): 89-115.
  • 26. Lau KC, Kandalam AK, Costales A, Pandey R. “Equilibrium geometry and electron detachment energies of anionic Cr2O4, Cr2O5, and Cr2O6 clusters,” Chemical physics letters, 2004, 393 (1-3): 112-117.
  • 27. Warren J. A Guide to Molecular Mechanics and Quantum Chemical Calculations, Irvine, CA: Wavefunction, 2003.
  • 28. Warren H, Sean O. Spartan 16 for Windows, Macintosh and Linux: User Guide and Tutorial, CA: Wavefunction, 2017, pp. 435-518.
  • 29. Maldonado F, Stashans A. “DFT modeling of benzoyl peroxide adsorption on α-Cr2O3 (0001) surface,” Surface Review and Letters, 2016, 23(5): 1650037.
  • 30. Guo-Liang D, Zhen-Hua L, Jing L, Wen-Ning W, Kang-Nian F. “Deep Oxidation in the Oxidative Dehydrogenation Reaction of Propane over V2O5(001): Periodic DFT Study,” The Journal of Physical Chemistry C, 2012, 116 (1): 807-817.
  • 31. Satyajit D, Nand K, Plaban J, Ramesh C. “DFT Insight on Oxygen Adsorbed Pt Trimer Cluster (Pt3) for CO Oxidation,” Computational and Theoretical Chemistry, 2017, 1114(1): 1-7.
  • 32. Liu C, Li G., Emiel E, Hensen J, Pidko E. “Relationship between acidity and catalytic reactivity of faujasite zeolite: A periodic DFT study,” Journal of Catalysis, 2016, 344(1): 570–577.
  • 33. Liu C, Tranca I, van Santen RA, Hensen RJ, Pidko EA. “Scaling relations for acidity and reactivity of zeolites,” The Journal of Physical Chemistry C, 2017, 121(42): 23520-23530.
  • 34. David R. “CRC Handbook of Chemistry and Physics, 84th Edition.,” in Section 10, Atomic, Molecular, and Optical Physics; Ionization Potentials of Atoms and Atomic Ions, 84th ed., Boca Raton, Florida: CRC Press., 2003, pp. (10-178)-(10-179).
  • 35. Fukui K., “Role of frontier orbitals in chemical reactions,” Science, 1982, 218(4574): 747-754.
  • 36. Lillehaug S., “A Theoretical Study of Cr/oxide Catalysts for Dehydrogenation of Short Alkanes,” The University of Bergen, Department of Chemistry, 2006.
  • 37. Lugo HJ, Lunsford JH. “The dehydrogenation of ethane over chromium catalysts,” Journal of Catalysis, 1985, 91(1): 155-166.
  • 38. Michorczyk P, Ogonowski J, Kuśtrowski P, Chmielarz L. “Chromium oxide supported on MCM-41 as a highly active and selective catalyst for dehydrogenation of propane with CO2,” Applied Catalysis A: General, 2008, 349(1-2): 62-69.
  • 39. Michorczyk P, Ogonowski J, Zeńczak K. “Activity of chromium oxide deposited on different silica supports in the dehydrogenation of propane with CO2–a comparative study,” Journal of Molecular Catalysis A: Chemical, 2011, 349(1-2): 1-12.
  • 40. Bailey BC, Schrock RR, Kundu S, Goldman AS, Huang Z, Brookhart M. “Evaluation of Molybdenum and Tungsten Metathesis Catalysts for Homogeneous Tandem Alkane Metathesis,” Organometallics, 2009, 28(1): 355-360.
  • 41. Chen K, Bell AT, Iglesia E., “Kinetics and Mechanism of Oxidative Dehydrogenation of Propane on Vanadium, Molybdenum, and Tungsten Oxides,” Journal of Physical Chemistry B, 2000, 104(1): 1292-1299.
  • 42. Jupp A, Johnstone T, Stephan D. “The Global Electrophilicity Index as a Metric for Lewis Acidity,” Dalton Transactions, 2018, 45(1): 1-7.
  • 43. Yun Y, Araujo JR, Melaet G, Baek J, Archanjo BS, Oh M, Alivisatos AP, Somorjai GA. “Activation of Tungsten Oxide for Propane Dehydrogenation and Its High Catalytic Activity and Selectivity,” Catalysis Letters, 2017, 147(3): 622–632.
  • 44. Salamanca-Guzmán M, Licea-Fonseca YE, Echavarría-Isaza A, Faro A, Palacio-Santos LA. “Oxidative dehydrogenation of propane with cobalt, tungsten and molybdenum based materials,” Revista Facultad de Ingeniería Universidad de Antioquia, 2017, 84(1): 97-104.
There are 44 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Oyegoke Toyese 0000-0002-2026-6864

Fadimatu Dabai This is me 0000-0001-8708-4726

Adamu Uzairu This is me 0000-0002-6973-6361

Baba Jibril This is me 0000-0002-0323-2726

Publication Date December 31, 2020
Submission Date June 18, 2020
Published in Issue Year 2020

Cite

Vancouver Toyese O, Dabai F, Uzairu A, Jibril B. Quantum Mechanics Calculation of Molybdenum and Tungsten Influence on the CrM-oxide Catalyst Acidity. Hittite J Sci Eng. 2020;7(4):297-311.

Hittite Journal of Science and Engineering is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).