BibTex RIS Cite
Year 2020, Volume: 7 Issue: 2, 89 - 97, 26.06.2020
https://doi.org/10.17350/HJSE19030000177

Abstract

References

  • 1. Abo El-Maali N, Ghandour M a., Kauffmann JM. Cephalosporin antibiotics at carbon paste and modified carbon paste electrodes in both aqueous and biological media. Bioelectrochemistry and Bioenergetics 38 (1995) 91–97. DOI: 10.1016/0302-4598(95)01822-V.
  • 2. Facca B, Frame B, Triesenberg S. Population pharmacokinetics of ceftizoxime administered by continuous infusion in clinically ill adult patients. Antimicrobial Agents and Chemotherapy 42 (1998) 1783–1787.
  • 3. Wiseman LR, Benfield P. Cefprozil: A Review of its Antibacterial Activity, Pharmacokinetic Properties, and Therapeutic Potential. Drugs 45 (1993) 295–317. DOI: 10.2165/00003495-199345020- 00008.
  • 4. Jain R, Gupta VK, Jadon N, Radhapyari K. Voltammetric determination of cefixime in pharmaceuticals and biological fluids. Analytical Biochemistry 407 (2010) 79–88. DOI: 10.1016/j. ab.2010.07.027.
  • 5. Ferreira SMZMD, Domingos GP, Ferreira DDS, Rocha TGR, Serakides R, De Faria Rezende CM, et al. Technetium-99m-labeled ceftizoxime loaded long-circulating and pH-sensitive liposomes used to identify osteomyelitis. Bioorganic and Medicinal Chemistry Letters 22 (2012) 4605–4608. DOI: 10.1016/j.bmcl.2012.05.105.
  • 6. Sanli S, Sanli N, Gumustas M, Ozkan S a., Karadas N, Aboul-Enein HY. Simultaneous estimation of ceftazidime and ceftizoxime in pharmaceutical formulations by HPLC method. Chromatographia 74 (2011) 549–558. DOI: 10.1007/s10337-011-2116-1.
  • 7. Moore CM, Sato K, Hattori H, Katsumata Y. Improved HPLC method for the determination of cephalosporins in human plasma and a new solid-phase extraction procedure for cefazolin and ceftizoxime. Clinica Chimica Acta 190 (1990) 121–123. DOI: 10.1016/0009-8981(90)90290-9.
  • 8. Péhourcq F, Jarry C. Determination of third-generation cephalosporins by high-performance liquid chromatography in connection with pharmacokinetic studies. Journal of Chromatography A 812 (1998) 159–178. DOI: 10.1016/S0021- 9673(98)00265-9.
  • 9. Wang L, Zheng X, Zhong W, Chen J, Jiang J, Hu P. Validation and Application of an LC–MS-MS Method for the Determination of Ceftizoxime in Human Serum and Urine. Journal of Chromatographic Science 54 (2016) 713–719. DOI: 10.1093/ chromsci/bmv243.
  • 10. Al-Momani I. Spectrophotometric determination of selected cephalosporins in drug formulations using flow injection analysis. Journal of Pharmaceutical and Biomedical Analysis 25 (2001) 751– 757. DOI: 10.1016/S0731-7085(01)00368-5.
  • 11. Jain R, Rather JA, Dwivedi A, Vikas. Highly Sensitive and Selective Voltammetric Sensor Fullerene Modified Glassy Carbon Electrode for Determination of Cefitizoxime in Solubilized System. Electroanalysis 22 (2010) 2600–2606. DOI: 10.1002/elan.201000243.
  • 12. Shahrokhian S, Ranjbar, S, Ghalkhani, M.. Modification of the Electrode Surface by Ag Nanoparticles Decorated Nano Diamond‐ graphite for Voltammetric Determination of Ceftizoxime. Electroanalysis, 28, (2016) 469-476. DOI: 10.1002/elan.201500377
  • 13. Ojani R, Raoof JB, Zamani S. A novel sensor for cephalosporins based on electrocatalytic oxidation by poly(o-anisidine)/SDS/Ni modified carbon paste electrode. Talanta 81 (2010) 1522–1528. DOI: 10.1016/j.talanta.2010.02.062.
  • 14. Erdem A, Papakonstantinou P, Murphy H. Direct DNA hybridization at disposable graphite electrodes modified with carbon nanotubes. Analytical Chemistry 78 (2006) 6656–6659. DOI: 10.1021/ac060202z.
  • 15. Pumera M, Ambrosi A, Bonanni A, Chng ELK, Poh HL. Graphene for electrochemical sensing and biosensing. TrAC-Trends in Analytical Chemistry 29 (2010) 954–965. DOI: 10.1016/j. trac.2010.05.011.
  • 16. Yuan B, Xu C, Deng D, Xing Y, Liu L, Pang H, et al. Graphene oxide/ nickel oxide modified glassy carbon electrode for supercapacitor and nonenzymatic glucose sensor. Electrochimica Acta 88 (2013) 708–712. DOI: 10.1016/j.electacta.2012.10.102.
  • 17. Promphet N, Rattanarat P, Rangkupan R, Chailapakul O, Rodthongkum N. An electrochemical sensor based on graphene/ polyaniline/polystyrene nanoporous fibers modified electrode for simultaneous determination of lead and cadmium. Sensors and Actuators B: Chemical 207 (2015) 526–534. DOI: 10.1016/j. snb.2014.10.126.
  • 18. Tiwari I, Singh M, Pandey CM, Sumana G. Electrochemical genosensor based on graphene oxide modified iron oxidechitosan hybrid nanocomposite for pathogen detection. Sensors and Actuators, B: Chemical 206 (2015) 276–283. DOI: 10.1016/j. snb.2014.09.056.
  • 19. Gan T, Sun J, Huang K, Song L, Li Y. A graphene oxide-mesoporous MnO2 nanocomposite modified glassy carbon electrode as a novel and efficient voltammetric sensor for simultaneous determination of hydroquinone and catechol. Sensors and Actuators, B: Chemical 177 (2013) 412–418. DOI: 10.1016/j.snb.2012.11.033.
  • 20. Cheemalapati S, Palanisamy S, Mani V, Chen SM. Simultaneous electrochemical determination of dopamine and paracetamol on multiwalled carbon nanotubes/graphene oxide nanocompositemodified glassy carbon electrode. Talanta 117 (2013) 297–304. DOI: 10.1016/j.talanta.2013.08.041.
  • 21. Yaman YT, Abaci S. Sensitive adsorptive voltammetric method for determination of Bisphenol A by gold nanoparticle/ polyvinylpyrrolidone-modified pencil graphite electrode. Sensors (Switzerland) 16 (2016) 756. DOI: 10.3390/s16060756.
  • 22. Suea-Ngam A, Rattanarat P, Wongravee K, Chailapakul O, SrisaArt M. Droplet-based glucosamine sensor using gold nanoparticles and polyaniline-modified electrode. Talanta 158 (2016) 134–141. DOI: 10.1016/j.talanta.2016.05.052.
  • 23. Afkhami A, Bahiraei A, Madrakian T. Gold nanoparticle/multiwalled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium. Materials Science and Engineering C 59 (2016) 168–176. DOI: 10.1016/j.msec.2015.09.097.
  • 24. Saengsookwaow C, Rangkupan R, Chailapakul O, Rodthongkum N. Nitrogen-doped graphene-polyvinylpyrrolidone/gold nanoparticles modified electrode as a novel hydrazine sensor. Sensors and Actuators, B: Chemical 227 (2016) 524–532. DOI: 10.1016/j.snb.2015.12.091.
  • 25. Kanyong P, Rawlinson S, Davis J. Gold nanoparticle modified screen-printed carbon arrays for the simultaneous electrochemical analysis of lead and copper in tap water. Microchimica Acta 183 2016 2361–2368. DOI: 10.1007/s00604-016-1879-3.
  • 26. Mani V, Periasamy A P, Chen S. Highly selective amperometric nitrite sensor based on chemically reduced graphene oxide modified electrode. Electrochemistry Communications 17 2012 75- 78. DOI: 10.1016/j.elecom.2012.02.009
  • 27. Yavuz S, Erkal A, Af İ, Solak AO. Carbonaceous Materials-12 : a Novel Highly Sensitive Graphene Oxide-Based Carbon Electrode : Preparation , Characterization and Heavy Metal Analysis in Food Samples 9 (2016) 322-331. DOI: 10.1007/s12161-015-0198-3.
  • 28. Sleegers N, Van Nuijs ALN, Van Den Berg M, De Wael K. Cephalosporin Antibiotics: Electrochemical Fingerprints and Core Structure Reactions Investigated by LC-MS/MS. Analytical Chemistry 91 (2019) 2035–2041. DOI: 10.1021/acs. analchem.8b04487.
  • 29. Rodríguez J, Castañeda G, Lizcano I. Electrochemical sensor for leukemia drug imatinib determination in urine by adsorptive striping square wave voltammetry using modified screen-printed electrodes. Electrochimica Acta 269 (2018) 668–675. DOI: 10.1016/j. electacta.2018.03.051.
  • 30. Santos AM, Wong A, Cincotto FH, Moraes FC, Fatibello-Filho O. Square-wave adsorptive anodic stripping voltammetric determination of norfloxacin using a glassy carbon electrode modified with carbon black and CdTe quantum dots in a chitosan film. Microchimica Acta 186 (2019) 148. DOI: 10.1007/s00604-019- 3268-1.
  • 31. Temerk YM, Ibrahim HSM, Schuhmann W. Square Wave Cathodic Adsorptive Stripping Voltammetric Determination of the Anticancer Drugs Flutamide and Irinotecan in Biological Fluids Using Renewable Pencil Graphite Electrodes 28 (2016) 372–379. DOI: 10.1002/elan.201500329.
  • 32. Beytur M, Kardaş F, Akyıldırım O, Özkan A, Bankoğlu B, Yüksek H, et al. PT. Journal of Molecular Liquids 251 (2017) 212-217. DOI:10.1016/j.molliq.2017.12.060.
  • 33. Azadmehr F, Zarei K. Ultrasensitive determination of ceftizoxime using pencil graphite electrode modified by hollow gold nanoparticles / reduced graphene oxide. Arabian Journal of Chemistry 2018, (in press). DOI: 10.1016/j.arabjc.2018.02.004.

Gold Nanoparticles/Graphene Oxide Based Disposable Sensor System for Voltammetric Detection of Ceftizoxime

Year 2020, Volume: 7 Issue: 2, 89 - 97, 26.06.2020
https://doi.org/10.17350/HJSE19030000177

Abstract

In this study, gold nanoparticles AuNPs were deposited onto graphene oxide GO modified pencil graphite electrode PGE in order to construct a disposable sensor platform for the electrochemical detection of ceftizoxime CFX . Initially, electrode surface was covered with GO by physical adsorption and then AuNPs were deposited on the surface by electro-deposition method. Morphological feature of the developed sensor was investigated by scanning electron microscope. The parameters effecting the experimental conditions such as adsorption time of graphene oxide, deposition time of gold nanoparticles, supporting electrolyte pH, pre-concentrating potential/time were optimized. Under optimum experimental conditions, good linearity was obtained for CFX response in the range between 0.02-2.0 μM of CFX concentrations with a low detection limit 0.442 nM by stripping voltammetry. The AuNPs/GO modified PGE was implemented to pharmaceutical samples with good recovery values. This study results proved that developed disposable sensor is a good alternative for the practical application of CFX analysis.

References

  • 1. Abo El-Maali N, Ghandour M a., Kauffmann JM. Cephalosporin antibiotics at carbon paste and modified carbon paste electrodes in both aqueous and biological media. Bioelectrochemistry and Bioenergetics 38 (1995) 91–97. DOI: 10.1016/0302-4598(95)01822-V.
  • 2. Facca B, Frame B, Triesenberg S. Population pharmacokinetics of ceftizoxime administered by continuous infusion in clinically ill adult patients. Antimicrobial Agents and Chemotherapy 42 (1998) 1783–1787.
  • 3. Wiseman LR, Benfield P. Cefprozil: A Review of its Antibacterial Activity, Pharmacokinetic Properties, and Therapeutic Potential. Drugs 45 (1993) 295–317. DOI: 10.2165/00003495-199345020- 00008.
  • 4. Jain R, Gupta VK, Jadon N, Radhapyari K. Voltammetric determination of cefixime in pharmaceuticals and biological fluids. Analytical Biochemistry 407 (2010) 79–88. DOI: 10.1016/j. ab.2010.07.027.
  • 5. Ferreira SMZMD, Domingos GP, Ferreira DDS, Rocha TGR, Serakides R, De Faria Rezende CM, et al. Technetium-99m-labeled ceftizoxime loaded long-circulating and pH-sensitive liposomes used to identify osteomyelitis. Bioorganic and Medicinal Chemistry Letters 22 (2012) 4605–4608. DOI: 10.1016/j.bmcl.2012.05.105.
  • 6. Sanli S, Sanli N, Gumustas M, Ozkan S a., Karadas N, Aboul-Enein HY. Simultaneous estimation of ceftazidime and ceftizoxime in pharmaceutical formulations by HPLC method. Chromatographia 74 (2011) 549–558. DOI: 10.1007/s10337-011-2116-1.
  • 7. Moore CM, Sato K, Hattori H, Katsumata Y. Improved HPLC method for the determination of cephalosporins in human plasma and a new solid-phase extraction procedure for cefazolin and ceftizoxime. Clinica Chimica Acta 190 (1990) 121–123. DOI: 10.1016/0009-8981(90)90290-9.
  • 8. Péhourcq F, Jarry C. Determination of third-generation cephalosporins by high-performance liquid chromatography in connection with pharmacokinetic studies. Journal of Chromatography A 812 (1998) 159–178. DOI: 10.1016/S0021- 9673(98)00265-9.
  • 9. Wang L, Zheng X, Zhong W, Chen J, Jiang J, Hu P. Validation and Application of an LC–MS-MS Method for the Determination of Ceftizoxime in Human Serum and Urine. Journal of Chromatographic Science 54 (2016) 713–719. DOI: 10.1093/ chromsci/bmv243.
  • 10. Al-Momani I. Spectrophotometric determination of selected cephalosporins in drug formulations using flow injection analysis. Journal of Pharmaceutical and Biomedical Analysis 25 (2001) 751– 757. DOI: 10.1016/S0731-7085(01)00368-5.
  • 11. Jain R, Rather JA, Dwivedi A, Vikas. Highly Sensitive and Selective Voltammetric Sensor Fullerene Modified Glassy Carbon Electrode for Determination of Cefitizoxime in Solubilized System. Electroanalysis 22 (2010) 2600–2606. DOI: 10.1002/elan.201000243.
  • 12. Shahrokhian S, Ranjbar, S, Ghalkhani, M.. Modification of the Electrode Surface by Ag Nanoparticles Decorated Nano Diamond‐ graphite for Voltammetric Determination of Ceftizoxime. Electroanalysis, 28, (2016) 469-476. DOI: 10.1002/elan.201500377
  • 13. Ojani R, Raoof JB, Zamani S. A novel sensor for cephalosporins based on electrocatalytic oxidation by poly(o-anisidine)/SDS/Ni modified carbon paste electrode. Talanta 81 (2010) 1522–1528. DOI: 10.1016/j.talanta.2010.02.062.
  • 14. Erdem A, Papakonstantinou P, Murphy H. Direct DNA hybridization at disposable graphite electrodes modified with carbon nanotubes. Analytical Chemistry 78 (2006) 6656–6659. DOI: 10.1021/ac060202z.
  • 15. Pumera M, Ambrosi A, Bonanni A, Chng ELK, Poh HL. Graphene for electrochemical sensing and biosensing. TrAC-Trends in Analytical Chemistry 29 (2010) 954–965. DOI: 10.1016/j. trac.2010.05.011.
  • 16. Yuan B, Xu C, Deng D, Xing Y, Liu L, Pang H, et al. Graphene oxide/ nickel oxide modified glassy carbon electrode for supercapacitor and nonenzymatic glucose sensor. Electrochimica Acta 88 (2013) 708–712. DOI: 10.1016/j.electacta.2012.10.102.
  • 17. Promphet N, Rattanarat P, Rangkupan R, Chailapakul O, Rodthongkum N. An electrochemical sensor based on graphene/ polyaniline/polystyrene nanoporous fibers modified electrode for simultaneous determination of lead and cadmium. Sensors and Actuators B: Chemical 207 (2015) 526–534. DOI: 10.1016/j. snb.2014.10.126.
  • 18. Tiwari I, Singh M, Pandey CM, Sumana G. Electrochemical genosensor based on graphene oxide modified iron oxidechitosan hybrid nanocomposite for pathogen detection. Sensors and Actuators, B: Chemical 206 (2015) 276–283. DOI: 10.1016/j. snb.2014.09.056.
  • 19. Gan T, Sun J, Huang K, Song L, Li Y. A graphene oxide-mesoporous MnO2 nanocomposite modified glassy carbon electrode as a novel and efficient voltammetric sensor for simultaneous determination of hydroquinone and catechol. Sensors and Actuators, B: Chemical 177 (2013) 412–418. DOI: 10.1016/j.snb.2012.11.033.
  • 20. Cheemalapati S, Palanisamy S, Mani V, Chen SM. Simultaneous electrochemical determination of dopamine and paracetamol on multiwalled carbon nanotubes/graphene oxide nanocompositemodified glassy carbon electrode. Talanta 117 (2013) 297–304. DOI: 10.1016/j.talanta.2013.08.041.
  • 21. Yaman YT, Abaci S. Sensitive adsorptive voltammetric method for determination of Bisphenol A by gold nanoparticle/ polyvinylpyrrolidone-modified pencil graphite electrode. Sensors (Switzerland) 16 (2016) 756. DOI: 10.3390/s16060756.
  • 22. Suea-Ngam A, Rattanarat P, Wongravee K, Chailapakul O, SrisaArt M. Droplet-based glucosamine sensor using gold nanoparticles and polyaniline-modified electrode. Talanta 158 (2016) 134–141. DOI: 10.1016/j.talanta.2016.05.052.
  • 23. Afkhami A, Bahiraei A, Madrakian T. Gold nanoparticle/multiwalled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium. Materials Science and Engineering C 59 (2016) 168–176. DOI: 10.1016/j.msec.2015.09.097.
  • 24. Saengsookwaow C, Rangkupan R, Chailapakul O, Rodthongkum N. Nitrogen-doped graphene-polyvinylpyrrolidone/gold nanoparticles modified electrode as a novel hydrazine sensor. Sensors and Actuators, B: Chemical 227 (2016) 524–532. DOI: 10.1016/j.snb.2015.12.091.
  • 25. Kanyong P, Rawlinson S, Davis J. Gold nanoparticle modified screen-printed carbon arrays for the simultaneous electrochemical analysis of lead and copper in tap water. Microchimica Acta 183 2016 2361–2368. DOI: 10.1007/s00604-016-1879-3.
  • 26. Mani V, Periasamy A P, Chen S. Highly selective amperometric nitrite sensor based on chemically reduced graphene oxide modified electrode. Electrochemistry Communications 17 2012 75- 78. DOI: 10.1016/j.elecom.2012.02.009
  • 27. Yavuz S, Erkal A, Af İ, Solak AO. Carbonaceous Materials-12 : a Novel Highly Sensitive Graphene Oxide-Based Carbon Electrode : Preparation , Characterization and Heavy Metal Analysis in Food Samples 9 (2016) 322-331. DOI: 10.1007/s12161-015-0198-3.
  • 28. Sleegers N, Van Nuijs ALN, Van Den Berg M, De Wael K. Cephalosporin Antibiotics: Electrochemical Fingerprints and Core Structure Reactions Investigated by LC-MS/MS. Analytical Chemistry 91 (2019) 2035–2041. DOI: 10.1021/acs. analchem.8b04487.
  • 29. Rodríguez J, Castañeda G, Lizcano I. Electrochemical sensor for leukemia drug imatinib determination in urine by adsorptive striping square wave voltammetry using modified screen-printed electrodes. Electrochimica Acta 269 (2018) 668–675. DOI: 10.1016/j. electacta.2018.03.051.
  • 30. Santos AM, Wong A, Cincotto FH, Moraes FC, Fatibello-Filho O. Square-wave adsorptive anodic stripping voltammetric determination of norfloxacin using a glassy carbon electrode modified with carbon black and CdTe quantum dots in a chitosan film. Microchimica Acta 186 (2019) 148. DOI: 10.1007/s00604-019- 3268-1.
  • 31. Temerk YM, Ibrahim HSM, Schuhmann W. Square Wave Cathodic Adsorptive Stripping Voltammetric Determination of the Anticancer Drugs Flutamide and Irinotecan in Biological Fluids Using Renewable Pencil Graphite Electrodes 28 (2016) 372–379. DOI: 10.1002/elan.201500329.
  • 32. Beytur M, Kardaş F, Akyıldırım O, Özkan A, Bankoğlu B, Yüksek H, et al. PT. Journal of Molecular Liquids 251 (2017) 212-217. DOI:10.1016/j.molliq.2017.12.060.
  • 33. Azadmehr F, Zarei K. Ultrasensitive determination of ceftizoxime using pencil graphite electrode modified by hollow gold nanoparticles / reduced graphene oxide. Arabian Journal of Chemistry 2018, (in press). DOI: 10.1016/j.arabjc.2018.02.004.
There are 33 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Gulcin Bolat This is me

Yesim Tugce Yaman This is me

Ceren Yardimci This is me

Serdar Abaci This is me

Publication Date June 26, 2020
Published in Issue Year 2020 Volume: 7 Issue: 2

Cite

Vancouver Bolat G, Yaman YT, Yardimci C, Abaci S. Gold Nanoparticles/Graphene Oxide Based Disposable Sensor System for Voltammetric Detection of Ceftizoxime. Hittite J Sci Eng. 2020;7(2):89-97.

Hittite Journal of Science and Engineering is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).