BibTex RIS Cite
Year 2020, Volume: 7 Issue: 2, 115 - 123, 26.06.2020
https://doi.org/10.17350/HJSE19030000180

Abstract

References

  • 1. Nex F, Remondino F. UAV for 3D mapping applications: a review. Applied Geomatics 6 (2014) 1-15.
  • 2. Krause S, Sanders TGM, Mund JP, Greve K. UAV-based photogrammetric tree height measurement for intensive forest monitoring. Remote Sensing 11 (2019) 758.
  • 3. Akturk E, Altunel AO. Accuracy assessment of a low-cost UAV derived digital elevation model (DEM) in a highly broken and vegetated terrain. Measurement 136 (2018) 382-386.
  • 4. Barba S, Barbarella M, Benedetto AD, Fiani M, Limongiello M. Quality assessment of UAV photogrammetric archaeological survey. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII(2)/ W9 (2019) 93-100.
  • 5. Bemis SP, Mickletwaite S, Turner D, James MR, Akciz S, Thiele ST, Bangash HA. Ground-based and UAV-based photogrammetry: a multi-scale, high resolution mapping tool for structural geometry and paleoseismology. Journal of Structural Geology 69 (2014) 163-178.
  • 6. Uysal M, Toprak AS, Polat N. DEM generation with UAV photogrammetry and accuracy analysis in Sahitler Hill. Measurement 73 (2015) 539-543.
  • 7. Fernandez T, Perez JL, Cardenal J, Gomez JM, Colomo C, Delgado J. Analysis of landslide evolution affecting olive groves using UAV and photogrammetric techniques. Remote Sensing 8 (2016) 837.
  • 8. Tomastík J, Mokros M, Salon S, Chudy F, Tunak D. Accuracy of photogrammetric UAV-based point clouds under conditions of partially-open forest canopy. Forests 8(5) (2017) 151.
  • 9. Eisenbess H, Sauerbier M. Investigation of UAV systems and flight modes for photogrammetric applications. The Photogrammetric Record 26(136) (2011) 400-421.
  • 10. Jiang S, Jiang W, Huang W, Yang L. UAV-based oblique photogrammetry for outdoor data acquisition and offsite visual inspection of transmission line. Remote Sensing 9 (2017) 278.
  • 11. Dominici D, Alicandro M, Massimi V. UAV photogrammetry in the post-earthquake scenario: case studies in L’Aquila. Geomatics, Natural Hazards and Risks 8(1) (2017) 87-103.
  • 12. Franco CD, Buttazzo G. Coverage path planning for UAVs photogrammetry with energy and resolution constraints. Journal of Intelligent & Robotic Systems 83 (2016) 445- 462.
  • 13. Cabreira TM, Franco CD, Ferreira Jr PR, Buttazzo GC. Energy-aware spiral coverage path planning for UAV photogrammetric applications. IEEE Robotics and Automation Letters 3(4) (2018) 3662-3668.
  • 14. Martinez-Carricondo P, Agüera-Vega F, Carvajal-Ramirez F, Mesas-Carrascosa FJ, Garcia-Ferrer A, Perez-Porras FJ. Assessment of UAV-photogrammetric mapping accuracy based on variation of ground control points. International Journal of Applied Earth Observation and Geoinformation 72 (2018) 1-10.
  • 15. Gonçalves JA, Henriques R. UAV photogrammetry for topographic monitoring of coastal areas. ISPRS Journal of Photogrammetry and Remote Sensing 104 (2015) 101-111.
  • 16. Chudley TR, Christoffersen P, Doyle SH, Abellan A, Snooke N. High-accuracy UAV photogrammetry of ice sheet dynamics with no ground control. The Cryosphere 13 (2019) 955-968.
  • 17. https://www.pix4d.com/blog/GCP-accuracydrone-maps (last visited: 10.02.2020).
  • 18. https: //www8.c s.umu.se/ kurser/5DV115/ VT14/handouts/fundamentals_of_photogrammetry.pdf (last visited: 10.02.2020).
  • 19. Zhang C, Yao W. The comparisons of 3D analysis between photogrammetry and computer vision. Paper Presented at XXIst ISPRS Congress Technical Commission III, Beijing, 3-11 July, pp. 33-36, 2008.
  • 20. https://support.pix4d.com/hc/en-us/articles/205327965- Menu-Process-Processing-Options-1-Initial-ProcessingCalibration (last visited: 10.02.2020).
  • 21. https://www.hkmo.org.tr/resimler/ekler/466222ca92eae cb_ek.pdf (last visited: 10.02.2020).
  • 22. www.arcgis.com (last visited: 10.02.2020).
  • 23. http://trl.trimble.com/docushare/dsweb/Get/Document844535/SG-SP80-Br-v2.pdf (last visited:10.02.2020).
  • 24. https://www.tusaga-aktif.gov.tr/Sayfalar/ IstasyonKonumBilgileri.aspx (last visited: 10.02.2020).
  • 25. Aykut NO, Gülal E, Akpinar B. Performance of single base RTK GNSS method versus network RTK. Earth Sciences Research Journal 19(2) (2015) 135-139.
  • 26. https://www.tkgm.gov.tr/sites/default/files/icerik/ ekleri/tusaga-aktif_2018.pdf (last visited: 10.02.2020).
  • 27. Spectra Precision Focus 8 total station user manual
  • 28. https://www.dji.com/phantom-4-pro (last visited: 10.02.2020).
  • 29. h t t p s : //s u p p o r t . p i x4 d . c o m / h c /e n - u s / articles/205327965-Menu-Process-ProcessingOptions-1-Initial-Processing-Calibration (last visited: 10.02.2020).

2D and 3D Positioning Performance of UAV-Based Photogrammetry in Residential Regions

Year 2020, Volume: 7 Issue: 2, 115 - 123, 26.06.2020
https://doi.org/10.17350/HJSE19030000180

Abstract

UAVs Unmanned Aerial Vehicles are commonly used in photogrammetric observations in research fields like agriculture, archaeology, industry and construction of base maps. They present several advantages like low-cost platforms, rapid results, high positioning accuracy and less labor effort in the field. In this study, we evaluate the positioning accuracy of UAV based photogrammetry with conventional observation techniques in a sample area. Our main motivation is to examine if the final model of a low altitude UAV can reach the positioning accuracy of conventional observation techniques, especially in residential regions. For this purpose, we evaluate the results of 3 separate photogrammetric flights in a pre-observed field. Results indicate that low-altitude UAV flights can provide high accuracy both in 2D and 3D positioning in residential and densely constructed areas.

References

  • 1. Nex F, Remondino F. UAV for 3D mapping applications: a review. Applied Geomatics 6 (2014) 1-15.
  • 2. Krause S, Sanders TGM, Mund JP, Greve K. UAV-based photogrammetric tree height measurement for intensive forest monitoring. Remote Sensing 11 (2019) 758.
  • 3. Akturk E, Altunel AO. Accuracy assessment of a low-cost UAV derived digital elevation model (DEM) in a highly broken and vegetated terrain. Measurement 136 (2018) 382-386.
  • 4. Barba S, Barbarella M, Benedetto AD, Fiani M, Limongiello M. Quality assessment of UAV photogrammetric archaeological survey. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII(2)/ W9 (2019) 93-100.
  • 5. Bemis SP, Mickletwaite S, Turner D, James MR, Akciz S, Thiele ST, Bangash HA. Ground-based and UAV-based photogrammetry: a multi-scale, high resolution mapping tool for structural geometry and paleoseismology. Journal of Structural Geology 69 (2014) 163-178.
  • 6. Uysal M, Toprak AS, Polat N. DEM generation with UAV photogrammetry and accuracy analysis in Sahitler Hill. Measurement 73 (2015) 539-543.
  • 7. Fernandez T, Perez JL, Cardenal J, Gomez JM, Colomo C, Delgado J. Analysis of landslide evolution affecting olive groves using UAV and photogrammetric techniques. Remote Sensing 8 (2016) 837.
  • 8. Tomastík J, Mokros M, Salon S, Chudy F, Tunak D. Accuracy of photogrammetric UAV-based point clouds under conditions of partially-open forest canopy. Forests 8(5) (2017) 151.
  • 9. Eisenbess H, Sauerbier M. Investigation of UAV systems and flight modes for photogrammetric applications. The Photogrammetric Record 26(136) (2011) 400-421.
  • 10. Jiang S, Jiang W, Huang W, Yang L. UAV-based oblique photogrammetry for outdoor data acquisition and offsite visual inspection of transmission line. Remote Sensing 9 (2017) 278.
  • 11. Dominici D, Alicandro M, Massimi V. UAV photogrammetry in the post-earthquake scenario: case studies in L’Aquila. Geomatics, Natural Hazards and Risks 8(1) (2017) 87-103.
  • 12. Franco CD, Buttazzo G. Coverage path planning for UAVs photogrammetry with energy and resolution constraints. Journal of Intelligent & Robotic Systems 83 (2016) 445- 462.
  • 13. Cabreira TM, Franco CD, Ferreira Jr PR, Buttazzo GC. Energy-aware spiral coverage path planning for UAV photogrammetric applications. IEEE Robotics and Automation Letters 3(4) (2018) 3662-3668.
  • 14. Martinez-Carricondo P, Agüera-Vega F, Carvajal-Ramirez F, Mesas-Carrascosa FJ, Garcia-Ferrer A, Perez-Porras FJ. Assessment of UAV-photogrammetric mapping accuracy based on variation of ground control points. International Journal of Applied Earth Observation and Geoinformation 72 (2018) 1-10.
  • 15. Gonçalves JA, Henriques R. UAV photogrammetry for topographic monitoring of coastal areas. ISPRS Journal of Photogrammetry and Remote Sensing 104 (2015) 101-111.
  • 16. Chudley TR, Christoffersen P, Doyle SH, Abellan A, Snooke N. High-accuracy UAV photogrammetry of ice sheet dynamics with no ground control. The Cryosphere 13 (2019) 955-968.
  • 17. https://www.pix4d.com/blog/GCP-accuracydrone-maps (last visited: 10.02.2020).
  • 18. https: //www8.c s.umu.se/ kurser/5DV115/ VT14/handouts/fundamentals_of_photogrammetry.pdf (last visited: 10.02.2020).
  • 19. Zhang C, Yao W. The comparisons of 3D analysis between photogrammetry and computer vision. Paper Presented at XXIst ISPRS Congress Technical Commission III, Beijing, 3-11 July, pp. 33-36, 2008.
  • 20. https://support.pix4d.com/hc/en-us/articles/205327965- Menu-Process-Processing-Options-1-Initial-ProcessingCalibration (last visited: 10.02.2020).
  • 21. https://www.hkmo.org.tr/resimler/ekler/466222ca92eae cb_ek.pdf (last visited: 10.02.2020).
  • 22. www.arcgis.com (last visited: 10.02.2020).
  • 23. http://trl.trimble.com/docushare/dsweb/Get/Document844535/SG-SP80-Br-v2.pdf (last visited:10.02.2020).
  • 24. https://www.tusaga-aktif.gov.tr/Sayfalar/ IstasyonKonumBilgileri.aspx (last visited: 10.02.2020).
  • 25. Aykut NO, Gülal E, Akpinar B. Performance of single base RTK GNSS method versus network RTK. Earth Sciences Research Journal 19(2) (2015) 135-139.
  • 26. https://www.tkgm.gov.tr/sites/default/files/icerik/ ekleri/tusaga-aktif_2018.pdf (last visited: 10.02.2020).
  • 27. Spectra Precision Focus 8 total station user manual
  • 28. https://www.dji.com/phantom-4-pro (last visited: 10.02.2020).
  • 29. h t t p s : //s u p p o r t . p i x4 d . c o m / h c /e n - u s / articles/205327965-Menu-Process-ProcessingOptions-1-Initial-Processing-Calibration (last visited: 10.02.2020).
There are 29 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Mehmet Nurullah Alkan This is me

Kayhan Aladogan This is me

Zafer Kose This is me

Oyku Alkan This is me

Publication Date June 26, 2020
Published in Issue Year 2020 Volume: 7 Issue: 2

Cite

Vancouver Alkan MN, Aladogan K, Kose Z, Alkan O. 2D and 3D Positioning Performance of UAV-Based Photogrammetry in Residential Regions. Hittite J Sci Eng. 2020;7(2):115-23.

Hittite Journal of Science and Engineering is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).