BibTex RIS Cite
Year 2019, Volume: 6 Issue: 4, 243 - 249, 31.12.2019
https://doi.org/10.17350/HJSE19030000154

Abstract

References

  • 1. Umut E, Surface modification of nanoparticles used in biomedical applications, in: Mahmood Aliofkhazraei (Ed.), Modern Surface Engineering Treatments, IntechOpen Ltd., London, pp.185-208, 2013.
  • 2. Kim DH, Nikles DE, Brazel CS. Synthesis and characterization of multifunctional chitosan - MnFe2O4 nanoparticles for magnetic hyperthermia and drug delivery. Materials 3 (2010) 4051-4065.
  • 3. Yang H, Zhang C, Shi X, Hu H, Du X, Fang Y, Ma Y, Wu H, Yang S. Water-soluble superparamagnetic manganese ferrite nanoparticles for magnetic resonance imaging. Biomaterials 31 (2010) 3667-3673.
  • 4. Liu C, Zou B, Rondinone AJ, Zhang ZJ. Reverse micelle synthesis and characterization of superparamagnetic MnFe2O4 spinel ferrite nanocrystallites. Journal of Physical Chemistry B 104 (2000) 1141-1145.
  • 5. Liu C, Zhang ZJ. Size-dependent superparamagnetic properties of Mn spinel ferrite nanoparticles synthesized from reverse micelles. Chemistry of Materials 13 (2001) 2092-2096.
  • 6. Rondinone AJ, Liu C, Zhang ZJ, Determination of magnetic anisotropy distribution and anisotropy constant of manganese spinel ferrite nanoparticles. Journal of Physical Chemistry B 105 (2001) 7967-7971.
  • 7. Vestal CR, Song Q, Zhang ZJ. Effects of interparticle interactions upon the magnetic properties of CoFe2O4 and MnFe2O4 nanocrystals. Journal of Physical Chemistry B 108 (2004) 18222-18227.
  • 8. Vestal CR, Zhang ZJ. Effects of surface coordination chemistry on the magnetic properties of MnFe2O4 spinel ferrite nanoparticles. Journal of American Chemical Society 125 (2003) 9828-9833.
  • 9. Yang A, Chinnasamy CN, Greneche JM, Chen Y, Yoon SD, Chen Z, Hsu K, Cai Z, Ziemer K, Vittoria C, Harris VG. Enhanced Neel temperature in Mn ferrite nanoparticles linked to growth-rate-induced cation inversion. Nanotechnology 20 (2009) 185704-185713.
  • 10. Aslibeiki B, Kameli P, Salamati H, Eshraghi M, Tahmasebi, T. Superspin glass state in MnFe2O4 nanoparticles. Journal of Magnetism and Magnetic Materials 322 (2010) 2929-2934.
  • 11. Tromsdorf UI, Bigall NC, Kaul MG, Bruns OT, Nikolic MS, Mollwitz B, Sperling RA, Reimer R, Hohenberg H, Parak WJ, Förster S, Beisiegel U, Adam G, Weller H. Size and surface effects on the MRI relaxivity of manganese ferrite nanoparticle contrast agents. Nano Letters 7 (2007) 2422- 2427.
  • 12. Caruntu D, Remond Y, Chou NH, Jun MJ, Caruntu G, He J, Goloverda G, O’Connor C, Kolesnichenko V. Reactivity of 3D transition metal cations in diethylene glycol solutions: Synthesis of transition metal ferrites with the structure of discrete nanoparticles complexed with longchain carboxylate anions. Inorganic Chemistry 41 (2002) 6137– 6146.
  • 13. Hosseini SH, Mohseni SH, Asadnia A, Kerdari H. Synthesis and microwave absorbing properties of polyaniline / MnFe2O4 nanocomposite. Journal of Alloys and Compounds 509 (2011) 4682–4687.
  • 14. Umut E, Coşkun M, Pineider F, Berti D, Güngüneş H. Nickel ferrite nanoparticles for simultaneous use in magnetic resonance imaging and magnetic fluid hyperthermia,Journal of Colloid and Interface Science 5520 (2019) 199- 209.
  • 15. Dormann JL, Bessais L, Fiorani D. A dynamic study of small interacting particles: superparamagnetic model and spinglass laws. Journal of Physics C 21 (1988) 2015-2034.
  • 16. Vogel H. The law of relation between the viscosity of liquids and the temperature. Physikalische Zeitschrift 22 (1921) 645-646.
  • 17. Fulcher GS. Analysis of recent measurements of viscosity of glasses. Journal of American Ceramics Society 8 (1925) 339-355.
  • 18. Tammann G, Hesse W. The dependence of viscosity upon the temperature of supercooled liquids. Zeitschrift für Anorganische und Allgemeine Chemie 156 (1926) 245-257.
  • 19. Kneller EF, Luborsky FE. Particle size dependence of coercivity and remanence of single-domain particles. Journal of Applied Physics 34 (1963) 656-658.
  • 20. Osman NSE, Moyo T. Temperature dependence of coercivity and magnetization of Sr1/3Mn1/3Co1/3Fe2O4 ferrite nanoparticles. Journal of Superconductivity and Novel Magnetism 29 (2016) 361–366.
  • 21. Chatterjee BK, Ghosh CK, Chattopadhyay KK. Temperature dependence of magnetization and anisotropy in uniaxial NiFe2O4 nanomagnets: Deviation from the Callen-Callen power law. Journal of Applied Physics 116 (2014) 153904.
  • 22. Kaplan H. A spin-wave treatment of the saturation magnetization of ferrites. Physical Review 86 (1952) 121.
  • 23. Masina P, Moyo T, Abdallah HMI. Synthesis, structure and magnetic properties of ZnxMg1-xFe2O4 nanoferrites. Journal of Magnetism and Magnetic Matterials 381 (2015) 41.
  • 24. Gao RR, Zhang Y, Yu W, Xiong R, Shi J. Superparamagnetism and spin-glass like state for the MnFe2O4 nano-particles synthesized by the thermal decomposition method. Journal of Magnetism and Magnetic Matterials 324 (2012) 2534- 2538.
  • 25. Yoshida Y, Langouche G. (Eds.) Mössbauer Spectroscopy. Springer, 2013.
  • 26. Semenov VG, Panchuk VV. Mössbauer Spectra Processing Program MossFit (private communication)

Magnetic Properties of Manganese Ferrite MnFe2O4 Nanoparticles Synthesized by Co-Precipitation Method

Year 2019, Volume: 6 Issue: 4, 243 - 249, 31.12.2019
https://doi.org/10.17350/HJSE19030000154

Abstract

In the presented study, manganese ferrite MnFe2O4 nanoparticles were synthesized by applying a modified co-precipitation method based on the decomposition of metallic precursors in a liquid phase environment in the presence of surfactant oleic acid. The synthesized sample was then characterized with X-ray Diffraction XRD , standard and high resolution Transmission Electron Microscopy TEM and Fourier Transform Infrared Spectroscopy FTIR , which revealed that the as-prepared MnFe2O4 particles are monodispersed nanocrystals with an average size of 4.7 nm and well surrounded with dimeric oleic acid coating. The magnetic properties of nanoparticles were first investigated by means of Superconducting Quantum Interference Device SQUID magnetometry. The temperature and field dependent magnetization measurements showed that the MnFe2O4 nanoparticles exhibit superparamagnetic property with zero coercivity at room temperature and thermal irreversibility. The superparamagnetic behavior of MnFe2O4nanoparticles was further confirmed by conducting zero field Mössbauer Spectroscopy measurements on nanoparticle powders. As to fulfill all the requirements like crystallinity, small size and superparamagnetism, the prepared oleic acid coated MnFe2O4 nanoparticles has the potential to be used in biomedical applications like targeted drug delivery, MRI and hyperthermia

References

  • 1. Umut E, Surface modification of nanoparticles used in biomedical applications, in: Mahmood Aliofkhazraei (Ed.), Modern Surface Engineering Treatments, IntechOpen Ltd., London, pp.185-208, 2013.
  • 2. Kim DH, Nikles DE, Brazel CS. Synthesis and characterization of multifunctional chitosan - MnFe2O4 nanoparticles for magnetic hyperthermia and drug delivery. Materials 3 (2010) 4051-4065.
  • 3. Yang H, Zhang C, Shi X, Hu H, Du X, Fang Y, Ma Y, Wu H, Yang S. Water-soluble superparamagnetic manganese ferrite nanoparticles for magnetic resonance imaging. Biomaterials 31 (2010) 3667-3673.
  • 4. Liu C, Zou B, Rondinone AJ, Zhang ZJ. Reverse micelle synthesis and characterization of superparamagnetic MnFe2O4 spinel ferrite nanocrystallites. Journal of Physical Chemistry B 104 (2000) 1141-1145.
  • 5. Liu C, Zhang ZJ. Size-dependent superparamagnetic properties of Mn spinel ferrite nanoparticles synthesized from reverse micelles. Chemistry of Materials 13 (2001) 2092-2096.
  • 6. Rondinone AJ, Liu C, Zhang ZJ, Determination of magnetic anisotropy distribution and anisotropy constant of manganese spinel ferrite nanoparticles. Journal of Physical Chemistry B 105 (2001) 7967-7971.
  • 7. Vestal CR, Song Q, Zhang ZJ. Effects of interparticle interactions upon the magnetic properties of CoFe2O4 and MnFe2O4 nanocrystals. Journal of Physical Chemistry B 108 (2004) 18222-18227.
  • 8. Vestal CR, Zhang ZJ. Effects of surface coordination chemistry on the magnetic properties of MnFe2O4 spinel ferrite nanoparticles. Journal of American Chemical Society 125 (2003) 9828-9833.
  • 9. Yang A, Chinnasamy CN, Greneche JM, Chen Y, Yoon SD, Chen Z, Hsu K, Cai Z, Ziemer K, Vittoria C, Harris VG. Enhanced Neel temperature in Mn ferrite nanoparticles linked to growth-rate-induced cation inversion. Nanotechnology 20 (2009) 185704-185713.
  • 10. Aslibeiki B, Kameli P, Salamati H, Eshraghi M, Tahmasebi, T. Superspin glass state in MnFe2O4 nanoparticles. Journal of Magnetism and Magnetic Materials 322 (2010) 2929-2934.
  • 11. Tromsdorf UI, Bigall NC, Kaul MG, Bruns OT, Nikolic MS, Mollwitz B, Sperling RA, Reimer R, Hohenberg H, Parak WJ, Förster S, Beisiegel U, Adam G, Weller H. Size and surface effects on the MRI relaxivity of manganese ferrite nanoparticle contrast agents. Nano Letters 7 (2007) 2422- 2427.
  • 12. Caruntu D, Remond Y, Chou NH, Jun MJ, Caruntu G, He J, Goloverda G, O’Connor C, Kolesnichenko V. Reactivity of 3D transition metal cations in diethylene glycol solutions: Synthesis of transition metal ferrites with the structure of discrete nanoparticles complexed with longchain carboxylate anions. Inorganic Chemistry 41 (2002) 6137– 6146.
  • 13. Hosseini SH, Mohseni SH, Asadnia A, Kerdari H. Synthesis and microwave absorbing properties of polyaniline / MnFe2O4 nanocomposite. Journal of Alloys and Compounds 509 (2011) 4682–4687.
  • 14. Umut E, Coşkun M, Pineider F, Berti D, Güngüneş H. Nickel ferrite nanoparticles for simultaneous use in magnetic resonance imaging and magnetic fluid hyperthermia,Journal of Colloid and Interface Science 5520 (2019) 199- 209.
  • 15. Dormann JL, Bessais L, Fiorani D. A dynamic study of small interacting particles: superparamagnetic model and spinglass laws. Journal of Physics C 21 (1988) 2015-2034.
  • 16. Vogel H. The law of relation between the viscosity of liquids and the temperature. Physikalische Zeitschrift 22 (1921) 645-646.
  • 17. Fulcher GS. Analysis of recent measurements of viscosity of glasses. Journal of American Ceramics Society 8 (1925) 339-355.
  • 18. Tammann G, Hesse W. The dependence of viscosity upon the temperature of supercooled liquids. Zeitschrift für Anorganische und Allgemeine Chemie 156 (1926) 245-257.
  • 19. Kneller EF, Luborsky FE. Particle size dependence of coercivity and remanence of single-domain particles. Journal of Applied Physics 34 (1963) 656-658.
  • 20. Osman NSE, Moyo T. Temperature dependence of coercivity and magnetization of Sr1/3Mn1/3Co1/3Fe2O4 ferrite nanoparticles. Journal of Superconductivity and Novel Magnetism 29 (2016) 361–366.
  • 21. Chatterjee BK, Ghosh CK, Chattopadhyay KK. Temperature dependence of magnetization and anisotropy in uniaxial NiFe2O4 nanomagnets: Deviation from the Callen-Callen power law. Journal of Applied Physics 116 (2014) 153904.
  • 22. Kaplan H. A spin-wave treatment of the saturation magnetization of ferrites. Physical Review 86 (1952) 121.
  • 23. Masina P, Moyo T, Abdallah HMI. Synthesis, structure and magnetic properties of ZnxMg1-xFe2O4 nanoferrites. Journal of Magnetism and Magnetic Matterials 381 (2015) 41.
  • 24. Gao RR, Zhang Y, Yu W, Xiong R, Shi J. Superparamagnetism and spin-glass like state for the MnFe2O4 nano-particles synthesized by the thermal decomposition method. Journal of Magnetism and Magnetic Matterials 324 (2012) 2534- 2538.
  • 25. Yoshida Y, Langouche G. (Eds.) Mössbauer Spectroscopy. Springer, 2013.
  • 26. Semenov VG, Panchuk VV. Mössbauer Spectra Processing Program MossFit (private communication)
There are 26 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Evrim Umut This is me

Publication Date December 31, 2019
Published in Issue Year 2019 Volume: 6 Issue: 4

Cite

Vancouver Umut E. Magnetic Properties of Manganese Ferrite MnFe2O4 Nanoparticles Synthesized by Co-Precipitation Method. Hittite J Sci Eng. 2019;6(4):243-9.

Hittite Journal of Science and Engineering is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).