BibTex RIS Cite
Year 2018, Volume: 5 , 51 - 58, 07.09.2018
https://doi.org/10.17350/HJSE19030000118

Abstract

References

  • 1. Bejan, A., Tsatsaronis, G., Moran, M., 1996, Thermal Design And Optimization, Wiley Pub.
  • 2. Boyce, M.P., 2002 Handbook For Cogeneration And Combined Cycle Power Plants, Asme Press, 42-220.
  • 3. Cerqueira, S.A.G., Nebra, S.A., 1999, Cost Attribution Methodologies In Cogeneration Systems, Energy Convers. Mgmt., 40, 1587-1597.
  • 4. Çengel, Y.A., Boles, M.A., 2000, Mühendislik Yaklaşımıyla Termodinamik, Mc Graw Hill.
  • 5. Çetinkaya, S., 1999, Gaz Türbinleri, Nobel Yayın Dağıtım.
  • 6. El-Sayed, Y.M., Gaggioli, R.A., 1989, A Critical Review Of Second Law Costing Methods- I: Background And Algebraic Procedures, ASME J. Energy Resour. Technol., 111.
  • 7. Frangopoulos, C., 1993, Application Of The Thermoeconomic Functional Approach To The CGAM Problem, Energy Vol:19 No:3.
  • 8. Karaali, Rabi, Öztürk, İlhan Tekin, 2015, Thermoeconomic Optimization of Gas Turbine Cogeneration Plants, Energy 80, 474- 485.
  • 9. Kehlhofet, R., Bachmann, R., Nielsen, H., Warner, J., 1999, Combined Cycle Gas Steam Turbine Power Plants, Penwell P.C.
  • 10. Kwak, H.Y., Byun, G.T., Kwon, Y.H., Yang, H., 2004, Cost Structure Of CGAM Cogeneration System, İnternational Journal Of Energy Research., 28,1145-1158.
  • 11. Kwon, Y.H., Kwak, H.Y., Oh, S.D., 2001, Exergoeconomic analysis Of Gas Turbine Cogeneration Systems, Exergy, An International Journal., 1 (1) 31-40.
  • 12. Lazzeratto, A., Tsatsaronis, G., 2006, SPECO: A Systematic And General Methodology For Calculating Efficiencies And Costs In Thermal Systems, Energy 31, 1257-1289.
  • 13. Lazzeratto, A., Toffolo, A., Morandin, M., Spakovsky, M.R.V., 2010, Criteria For The Decomposition Of Energy Systems In Local / Global Optimization, Energy 35, 1157-1163.
  • 14. Moran, J.M., Tsatsaronis, G., 2000, The CRC Handbook Of Thermal Engineering, CRC Press LLC., 15-109.
  • 15. Özahi, E., Tozlu, A. and Abusoglu, A., 2017, Thermodynamic Performance Assessment of Different Fluids in a Typical Organic Rankine Cycle for Usage in Municipal Solid Waste Power Plant, ACTA PHYSICA POLONICA A, V. 132, No. 3-II, p:807-812.
  • 16. Rosen, M.A., Dincer, I., 2003, Exergy-Cost-Energy-Mass Analysis Of Thermal Systems And Processes, Energy Convers. Mgmt., 44, 1633-1651.
  • 17. Spakovsky, M., 1993, Application Of Engineering Functional Analysis To The Analysis And Optimization Of The CGAM Problem, Energy, Vol:19, No:3.
  • 18. Taner, T., Sivrioğlu, M., 2017, A techno-economic & cost analysis of a turbine power plant: A case study for sugar plant, Renewable and Sustainable Energy Reviews V. 78, p:722–730.
  • 19. Tozlu, A., Abusoglu, A., and Özahi, E., 2017, Thermoeconomic Analysis and Assessment of Gaziantep Municipal Solid Waste Power Plant, ACTA PHYSICA POLONICA A, V 132, No 3, p:513- 517.
  • 20. Tsatsaronis G., Moran, M.J., 1997, Exergy Aided Cost Minimization, Energy Convers. Mgmt., 38.
  • 21. Tsatsaronis, G., 1993, Thermoeconomic Analysis And Optimization Of Energy Systems, Progress Energy Combustion Sci., Vol:19-3.
  • 22. Valero, A., Torres, C., Lozano, M.A., 1989, On The Unification Of Thermoeconomic Theories, AES Vol:9 ASME Book.
  • 23. Vieira, L., S., Donatelli, J., L., Cruz, M.,E., 2004, Integration Of An Iterative Methodology For Exergoeconomic Improvement Of Thermal Systems With A Process Simulator, Energy Convers. Mgmt., 45.
  • 24. Wang, F.J., Chiou, JS., 2002, Performance Improvement For a Simple Cycle Gas Turbine GENSET-a Retrofitting Example, Applied Thermal Engineering, 22.
  • 25. Wilkinson, B.W., Barnes, R.W., 1993, Cogeneration Of Electricity And Useful Heat, CRC Pres.
  • 26. http://w w w.nyethermodynamics.com/trader/outprice.htm (Ziyaret tarihi: 15 Kasım 2015)
  • 27. http://www.ere.com.tr (Ziyaret tarihi: 5 Şubat 2015)

Analysis of Steam Injection into Combustion Chamber of Gas Turbine Cogeneration Cycles

Year 2018, Volume: 5 , 51 - 58, 07.09.2018
https://doi.org/10.17350/HJSE19030000118

Abstract

Cogeneration is known as the generation of heat energy and electricity at same time by using the fuel's energy. There are various cogeneration systems, and steam injection is made into combustion chamber to increase the efficiency of the cycle and to reduce nitrogen oxide emissions. The most fundamental thermodynamic, operational, economical and thermo-economic factors must be considered when choosing the appropriate cogeneration system and designing the system. For the thermodynamic factors, such as the amount of fuel to be consumed, the electric heat rate, the artificial thermal efficiency, the fuel energy gain rate must be found for the unit amount of electric power to be obtained. The cost and availability of the fuel to be used must also be estimated by considering the problems will be affected by repair maintenance and economic fluctuations. In economic factors, the annual cash flow of the system and the amortization itself are calculated. In the thermo-economic factors, the investment costs depend on the exergy efficiency and the exergy of the products of the devices and the fuel required to operate are calculated. In this study, the analysis of steam injection into cogeneration systems according to performance and evaluation criteria was done using energy, exergy and economic methods. To calculate the energy and exergy values of the flows, a program was written by the authors in the FORTRAN programming language and the results obtained by running them were used. The results obtained were compared with the literature values and correctness was observed.

References

  • 1. Bejan, A., Tsatsaronis, G., Moran, M., 1996, Thermal Design And Optimization, Wiley Pub.
  • 2. Boyce, M.P., 2002 Handbook For Cogeneration And Combined Cycle Power Plants, Asme Press, 42-220.
  • 3. Cerqueira, S.A.G., Nebra, S.A., 1999, Cost Attribution Methodologies In Cogeneration Systems, Energy Convers. Mgmt., 40, 1587-1597.
  • 4. Çengel, Y.A., Boles, M.A., 2000, Mühendislik Yaklaşımıyla Termodinamik, Mc Graw Hill.
  • 5. Çetinkaya, S., 1999, Gaz Türbinleri, Nobel Yayın Dağıtım.
  • 6. El-Sayed, Y.M., Gaggioli, R.A., 1989, A Critical Review Of Second Law Costing Methods- I: Background And Algebraic Procedures, ASME J. Energy Resour. Technol., 111.
  • 7. Frangopoulos, C., 1993, Application Of The Thermoeconomic Functional Approach To The CGAM Problem, Energy Vol:19 No:3.
  • 8. Karaali, Rabi, Öztürk, İlhan Tekin, 2015, Thermoeconomic Optimization of Gas Turbine Cogeneration Plants, Energy 80, 474- 485.
  • 9. Kehlhofet, R., Bachmann, R., Nielsen, H., Warner, J., 1999, Combined Cycle Gas Steam Turbine Power Plants, Penwell P.C.
  • 10. Kwak, H.Y., Byun, G.T., Kwon, Y.H., Yang, H., 2004, Cost Structure Of CGAM Cogeneration System, İnternational Journal Of Energy Research., 28,1145-1158.
  • 11. Kwon, Y.H., Kwak, H.Y., Oh, S.D., 2001, Exergoeconomic analysis Of Gas Turbine Cogeneration Systems, Exergy, An International Journal., 1 (1) 31-40.
  • 12. Lazzeratto, A., Tsatsaronis, G., 2006, SPECO: A Systematic And General Methodology For Calculating Efficiencies And Costs In Thermal Systems, Energy 31, 1257-1289.
  • 13. Lazzeratto, A., Toffolo, A., Morandin, M., Spakovsky, M.R.V., 2010, Criteria For The Decomposition Of Energy Systems In Local / Global Optimization, Energy 35, 1157-1163.
  • 14. Moran, J.M., Tsatsaronis, G., 2000, The CRC Handbook Of Thermal Engineering, CRC Press LLC., 15-109.
  • 15. Özahi, E., Tozlu, A. and Abusoglu, A., 2017, Thermodynamic Performance Assessment of Different Fluids in a Typical Organic Rankine Cycle for Usage in Municipal Solid Waste Power Plant, ACTA PHYSICA POLONICA A, V. 132, No. 3-II, p:807-812.
  • 16. Rosen, M.A., Dincer, I., 2003, Exergy-Cost-Energy-Mass Analysis Of Thermal Systems And Processes, Energy Convers. Mgmt., 44, 1633-1651.
  • 17. Spakovsky, M., 1993, Application Of Engineering Functional Analysis To The Analysis And Optimization Of The CGAM Problem, Energy, Vol:19, No:3.
  • 18. Taner, T., Sivrioğlu, M., 2017, A techno-economic & cost analysis of a turbine power plant: A case study for sugar plant, Renewable and Sustainable Energy Reviews V. 78, p:722–730.
  • 19. Tozlu, A., Abusoglu, A., and Özahi, E., 2017, Thermoeconomic Analysis and Assessment of Gaziantep Municipal Solid Waste Power Plant, ACTA PHYSICA POLONICA A, V 132, No 3, p:513- 517.
  • 20. Tsatsaronis G., Moran, M.J., 1997, Exergy Aided Cost Minimization, Energy Convers. Mgmt., 38.
  • 21. Tsatsaronis, G., 1993, Thermoeconomic Analysis And Optimization Of Energy Systems, Progress Energy Combustion Sci., Vol:19-3.
  • 22. Valero, A., Torres, C., Lozano, M.A., 1989, On The Unification Of Thermoeconomic Theories, AES Vol:9 ASME Book.
  • 23. Vieira, L., S., Donatelli, J., L., Cruz, M.,E., 2004, Integration Of An Iterative Methodology For Exergoeconomic Improvement Of Thermal Systems With A Process Simulator, Energy Convers. Mgmt., 45.
  • 24. Wang, F.J., Chiou, JS., 2002, Performance Improvement For a Simple Cycle Gas Turbine GENSET-a Retrofitting Example, Applied Thermal Engineering, 22.
  • 25. Wilkinson, B.W., Barnes, R.W., 1993, Cogeneration Of Electricity And Useful Heat, CRC Pres.
  • 26. http://w w w.nyethermodynamics.com/trader/outprice.htm (Ziyaret tarihi: 15 Kasım 2015)
  • 27. http://www.ere.com.tr (Ziyaret tarihi: 5 Şubat 2015)

Details

Primary Language English
Journal Section Research Article
Authors

Rabi KARAALİ This is me

İlhan Tekin OZTURK This is me

Publication Date September 7, 2018
Published in Issue Year 2018 Volume: 5

Cite

Vancouver KARAALİ R, OZTURK İT. Analysis of Steam Injection into Combustion Chamber of Gas Turbine Cogeneration Cycles. Hittite J Sci Eng. 2018;5:51-8.

Hittite Journal of Science and Engineering is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).