PDF EndNote BibTex RIS Cite

Year 2018, Volume 5, Issue 2, 137 - 140, 29.06.2018
https://doi.org/10.17350/HJSE19030000085

Abstract

References

  • 1. Goodenough, J.B.; Park, K.S.; J. Am. Chem. Soc 2013, 135, 1167–1176
  • 2. Horiba, T.; Maeshima, T.; Matsumura, Koseki, M.; Arai, J.; Murananka, Y., Journal of Power Sources 2005, 146, 107- 110.
  • 3. Johnson, B. A.; White, R. E., Journal of Power Sources 1998, 70, 48-54.
  • 4. Chan C.K., Peng H., Liu G., McIlwrath K., Zhang X.F., Huggins R.A., Nat Nanotechnol 2008, 3, 31 – 35.
  • 5. Peng K.; Jie J.; Zhang W.; Appl Phys Lett 2008, 93, 033105.
  • 6. Al-Maghrabi, M.A.; Thorne, J.S.; Sanderson, R.J.; Byers, J.N.; Dahn, J.R.; Dunlap, R.A.; J., Electrochem. Soc. 2012, 159, A119–A711.
  • 7. Zhang, W.-J.; J. Power Sources 2011, 196, 13–24.
  • 8. Yue, L.; Zhong, H.; Tang, D.; Zhang, L.; J. Solid State Electrochem. 2013, 17, 961– 968.
  • 9. Astrova, E.V.; Fedulova, G.V.; Smirnova, I.A.; Remenyuk, A.D.; Kulova, T.L.; Skundin, A.M.; Technol. Phys. Lett. 2011, 37, 731–734.
  • 10. Wang, M.S.; Fan L.Z.; J. Power Sources 2013, 244 570–574.
  • 11. Zhang, K.; Zhao, Q.; Tao, Z.; J. Chen, Nano Res 2013, 6, 38–46.
  • 12. Hu, Y.S.; Demir-Cakan, R.; Titirici, M.M.; Muller, J.O.; Schlogl, R.; Antonietti, M.; J. Maier, Angew. Chem. 2008, 47, 1645–1649.
  • 13. Liu, W.R.; Yen, Y.C.; Wu, H.C.; Winter, M.; Wu, N.L.; J. Appl. Electrochem 2009, 39, 1643–1649.
  • 14. Vadchenko, S.G.; Sytschev, A.E.; Kovalev, D.Y.; Shchukin, A.S.; Konovalikhin, S.V.; Nanotechnologies in Russia 2015, 10, 67–74.
  • 15. Konovalikhin, S.V.; Kovalev, D.Y.; Sytschev, A.E.; Vadchenko, S.G.; Shchukin, A.S.; Int. J. Self-Propag. High-Temp. Synth 2014, 23, 217–221.
  • 16. Jia, H.; Stock, C.; Kloepsch, R.; He, X.; Badillo, J.P.; Fromm, O.; Vortmann, B.; Winter, M.; Placke T.; ACS Appl. Mat. Interfaces 2015, 7, 1508–1515.
  • 17. Wang, X.; Wen, Z.; Liu, Y.; Xu, X.; Lin, J.; Journal of Power Sources 2009, 189 121–126.
  • 18. Chen, Y.; Qian, J.; Cao, Y.; Yang, H.; Ai, X.; ACS Appl. Mat. Interfaces 2012, 4, 3753–3758.
  • 19. Park, H.; Lee, S.; Yoo, S.; Shin, M.; Kim, J.; Chun, M.; Choi, N.S.; Park, S.; ACS Appl. Mat. Interfaces 2014, 6, 16360– 16367.
  • 20. Huggins, R. A., Advanced Batteries: Materials Science Aspects 1sted.; Springer, LLC: New York, NY, 2009.
  • 21. Wang, J.; Wang, Y.; Zhang, P.; Zhang, D.; Ren, X.; Journal of Alloys and Compounds 2014, 610, 308–314.
  • 22. Deng, D.; Energy Science and Engineering 2015, 3, 385–418.
  • 23. Horiba, T.; Maeshima, T.; Matsumura, Koseki, M.; Arai, J.; Murananka, Y., Journal of Power Sources 2005, 146, 107- 110.
  • 24. Johnson, B. A.; White, R. E., Journal of Power Sources 1998, 70 48-54.
  • 25. Kim, H.; Choi, J.; Sohn, H.J.; Kang, T.; J. Electrochem. Soc. 1999, 146(12), 4401–4405.
  • 26. Moriga, T.; Watanabe, K.; Tsuji, D.; Massaki, S.; Nakabayashi, I.; J. Solid State Chem. 2000, 153(2), 386–390.
  • 27. Roberts, G.A.; Cairns, E.J.; Reimer, J.A.; J. Power Sources 2002, 110(2), 424–429.

Preparation of Silicon-Antimony based Anode Materials for Lithium-Ion Batteries

Year 2018, Volume 5, Issue 2, 137 - 140, 29.06.2018
https://doi.org/10.17350/HJSE19030000085

Abstract

I n this study, SixSb immiscible composite blend as anode materials have been synthesized using micron-sized silicone and antimony particles in different compositions through chemical reduction-mechanical alloying method CR-MA . The obtained microstructures have been investigated by X-ray diffraction XRD and Scanning Electron Microscopy SEM with Energy Dispersive X-Ray analysis EDX . Spectroscopic characterizations of the composite materials showed that a traditional intermetallic compound could not be achieved. However a novel immiscible composite blend system have been developed. One of the newly prepared composite materials, Si0.65Sb, exhibits an initial capacity of 790 mAh g-1 and a good cyclic stability compared to the pure silicone. The battery performance results of the micron-sized Si0.65Sb blend system have been compared with the commercially used graphite and the nano-sized Si/Sb alloy systems. The cycling stability of the micron-sized Si0.65Sb blend system showed an improvement compared to nano-sized Si/Sb alloy systems. Moreover its specific capacity is slightly higher than the commercial graphite anode material. These results portray the importance of micron sized Si/Sb system in large-scale applications due to its low cost.

References

  • 1. Goodenough, J.B.; Park, K.S.; J. Am. Chem. Soc 2013, 135, 1167–1176
  • 2. Horiba, T.; Maeshima, T.; Matsumura, Koseki, M.; Arai, J.; Murananka, Y., Journal of Power Sources 2005, 146, 107- 110.
  • 3. Johnson, B. A.; White, R. E., Journal of Power Sources 1998, 70, 48-54.
  • 4. Chan C.K., Peng H., Liu G., McIlwrath K., Zhang X.F., Huggins R.A., Nat Nanotechnol 2008, 3, 31 – 35.
  • 5. Peng K.; Jie J.; Zhang W.; Appl Phys Lett 2008, 93, 033105.
  • 6. Al-Maghrabi, M.A.; Thorne, J.S.; Sanderson, R.J.; Byers, J.N.; Dahn, J.R.; Dunlap, R.A.; J., Electrochem. Soc. 2012, 159, A119–A711.
  • 7. Zhang, W.-J.; J. Power Sources 2011, 196, 13–24.
  • 8. Yue, L.; Zhong, H.; Tang, D.; Zhang, L.; J. Solid State Electrochem. 2013, 17, 961– 968.
  • 9. Astrova, E.V.; Fedulova, G.V.; Smirnova, I.A.; Remenyuk, A.D.; Kulova, T.L.; Skundin, A.M.; Technol. Phys. Lett. 2011, 37, 731–734.
  • 10. Wang, M.S.; Fan L.Z.; J. Power Sources 2013, 244 570–574.
  • 11. Zhang, K.; Zhao, Q.; Tao, Z.; J. Chen, Nano Res 2013, 6, 38–46.
  • 12. Hu, Y.S.; Demir-Cakan, R.; Titirici, M.M.; Muller, J.O.; Schlogl, R.; Antonietti, M.; J. Maier, Angew. Chem. 2008, 47, 1645–1649.
  • 13. Liu, W.R.; Yen, Y.C.; Wu, H.C.; Winter, M.; Wu, N.L.; J. Appl. Electrochem 2009, 39, 1643–1649.
  • 14. Vadchenko, S.G.; Sytschev, A.E.; Kovalev, D.Y.; Shchukin, A.S.; Konovalikhin, S.V.; Nanotechnologies in Russia 2015, 10, 67–74.
  • 15. Konovalikhin, S.V.; Kovalev, D.Y.; Sytschev, A.E.; Vadchenko, S.G.; Shchukin, A.S.; Int. J. Self-Propag. High-Temp. Synth 2014, 23, 217–221.
  • 16. Jia, H.; Stock, C.; Kloepsch, R.; He, X.; Badillo, J.P.; Fromm, O.; Vortmann, B.; Winter, M.; Placke T.; ACS Appl. Mat. Interfaces 2015, 7, 1508–1515.
  • 17. Wang, X.; Wen, Z.; Liu, Y.; Xu, X.; Lin, J.; Journal of Power Sources 2009, 189 121–126.
  • 18. Chen, Y.; Qian, J.; Cao, Y.; Yang, H.; Ai, X.; ACS Appl. Mat. Interfaces 2012, 4, 3753–3758.
  • 19. Park, H.; Lee, S.; Yoo, S.; Shin, M.; Kim, J.; Chun, M.; Choi, N.S.; Park, S.; ACS Appl. Mat. Interfaces 2014, 6, 16360– 16367.
  • 20. Huggins, R. A., Advanced Batteries: Materials Science Aspects 1sted.; Springer, LLC: New York, NY, 2009.
  • 21. Wang, J.; Wang, Y.; Zhang, P.; Zhang, D.; Ren, X.; Journal of Alloys and Compounds 2014, 610, 308–314.
  • 22. Deng, D.; Energy Science and Engineering 2015, 3, 385–418.
  • 23. Horiba, T.; Maeshima, T.; Matsumura, Koseki, M.; Arai, J.; Murananka, Y., Journal of Power Sources 2005, 146, 107- 110.
  • 24. Johnson, B. A.; White, R. E., Journal of Power Sources 1998, 70 48-54.
  • 25. Kim, H.; Choi, J.; Sohn, H.J.; Kang, T.; J. Electrochem. Soc. 1999, 146(12), 4401–4405.
  • 26. Moriga, T.; Watanabe, K.; Tsuji, D.; Massaki, S.; Nakabayashi, I.; J. Solid State Chem. 2000, 153(2), 386–390.
  • 27. Roberts, G.A.; Cairns, E.J.; Reimer, J.A.; J. Power Sources 2002, 110(2), 424–429.

Details

Primary Language English
Journal Section Research Article
Authors

Asuman Celik KUCUK This is me
Marmara University, Department of Metalurgical and Materials Engineering, Istanbul, Turkey


Samet OZTURK This is me
Marmara University, Department of Metalurgical and Materials Engineering, Istanbul, Turkey


Baris Cem ALPAY This is me
Marmara University, Department of Metalurgical and Materials Engineering, Istanbul, Turkey


Mine YORULMAZ This is me
Marmara University, Department of Metalurgical and Materials Engineering, Istanbul, Turkey

Publication Date June 29, 2018
Application Date
Acceptance Date
Published in Issue Year 2018, Volume 5, Issue 2

Cite

Bibtex @ { hjse859955, journal = {Hittite Journal of Science and Engineering}, eissn = {2148-4171}, address = {Hitit Üniversitesi Mühendislik Fakültesi Kuzey Kampüsü Çevre Yolu Bulvarı 19030 Çorum / TÜRKİYE}, publisher = {Hitit University}, year = {2018}, volume = {5}, number = {2}, pages = {137 - 140}, doi = {10.17350/HJSE19030000085}, title = {Preparation of Silicon-Antimony based Anode Materials for Lithium-Ion Batteries}, key = {cite}, author = {Kucuk, Asuman Celik and Ozturk, Samet and Alpay, Baris Cem and Yorulmaz, Mine} }
APA Kucuk, A. C. , Ozturk, S. , Alpay, B. C. & Yorulmaz, M. (2018). Preparation of Silicon-Antimony based Anode Materials for Lithium-Ion Batteries . Hittite Journal of Science and Engineering , 5 (2) , 137-140 . DOI: 10.17350/HJSE19030000085
MLA Kucuk, A. C. , Ozturk, S. , Alpay, B. C. , Yorulmaz, M. "Preparation of Silicon-Antimony based Anode Materials for Lithium-Ion Batteries" . Hittite Journal of Science and Engineering 5 (2018 ): 137-140 <https://dergipark.org.tr/en/pub/hjse/issue/59663/859955>
Chicago Kucuk, A. C. , Ozturk, S. , Alpay, B. C. , Yorulmaz, M. "Preparation of Silicon-Antimony based Anode Materials for Lithium-Ion Batteries". Hittite Journal of Science and Engineering 5 (2018 ): 137-140
RIS TY - JOUR T1 - Preparation of Silicon-Antimony based Anode Materials for Lithium-Ion Batteries AU - Asuman CelikKucuk, SametOzturk, Baris CemAlpay, MineYorulmaz Y1 - 2018 PY - 2018 N1 - doi: 10.17350/HJSE19030000085 DO - 10.17350/HJSE19030000085 T2 - Hittite Journal of Science and Engineering JF - Journal JO - JOR SP - 137 EP - 140 VL - 5 IS - 2 SN - -2148-4171 M3 - doi: 10.17350/HJSE19030000085 UR - https://doi.org/10.17350/HJSE19030000085 Y2 - 2022 ER -
EndNote %0 Hittite Journal of Science and Engineering Preparation of Silicon-Antimony based Anode Materials for Lithium-Ion Batteries %A Asuman Celik Kucuk , Samet Ozturk , Baris Cem Alpay , Mine Yorulmaz %T Preparation of Silicon-Antimony based Anode Materials for Lithium-Ion Batteries %D 2018 %J Hittite Journal of Science and Engineering %P -2148-4171 %V 5 %N 2 %R doi: 10.17350/HJSE19030000085 %U 10.17350/HJSE19030000085
ISNAD Kucuk, Asuman Celik , Ozturk, Samet , Alpay, Baris Cem , Yorulmaz, Mine . "Preparation of Silicon-Antimony based Anode Materials for Lithium-Ion Batteries". Hittite Journal of Science and Engineering 5 / 2 (June 2018): 137-140 . https://doi.org/10.17350/HJSE19030000085
AMA Kucuk A. C. , Ozturk S. , Alpay B. C. , Yorulmaz M. Preparation of Silicon-Antimony based Anode Materials for Lithium-Ion Batteries. Hittite J Sci Eng. 2018; 5(2): 137-140.
Vancouver Kucuk A. C. , Ozturk S. , Alpay B. C. , Yorulmaz M. Preparation of Silicon-Antimony based Anode Materials for Lithium-Ion Batteries. Hittite Journal of Science and Engineering. 2018; 5(2): 137-140.
IEEE A. C. Kucuk , S. Ozturk , B. C. Alpay and M. Yorulmaz , "Preparation of Silicon-Antimony based Anode Materials for Lithium-Ion Batteries", Hittite Journal of Science and Engineering, vol. 5, no. 2, pp. 137-140, Jun. 2018, doi:10.17350/HJSE19030000085