BibTex RIS Cite
Year 2017, Volume: 4 Issue: 2, 125 - 130, 28.12.2017
https://doi.org/10.17350/HJSE19030000058

Abstract

References

  • Fischer, F.D. and S.M. Schlogl, The Influence of Material Anisotropy on Transformation-Induced Plasticity in Steel Subject to Martensitic-Transformation. Mechanics of Materials 21 (1995) 1-23.
  • Greenwood, G.W. and R.H. Johnson, The deformation of metals under small stresses during phase transformations. Proc. Roy. Soc. 283 (1965) 403-422.
  • Magee, C.L., Transformation kinetics, micro-plasticity and ageing of martensite in Fe-31Ni, PhD Thesis, Carnegie Inst. of Technology (1966)
  • Fischer, F.D., Q.P. Sun, and K. Tanaka, Transformation-induced plasticity (TRIP). Applied Mechanics Reviews 49 (1996) 317- 364.
  • Simsir, C., Modeling and Simulation of Steel Heat Treatment: Prediction of Microstructure, Distortion, Residual Stresses and Cracking, in: Dossett JL and Totten GE (Eds.). ASM Metals Handbook Volume 4B - Steel Heat Treating Technologies, ASM International, Materials Park, Ohio-Illinois, pp. 409- 466, 2014.
  • Acht, C., et al., Determination of the material properties for the simulation of through hardening of components made from SAE 52100. - Part 2. Journal of Heat Treatment and Materials (HTM) 64 (2008) 362-371.
  • Denis, S., Considering stress-phase transformation interactions in the calculation of heat treatment residual stresses. J. Phys. IV France 6 (1996) 159-174.
  • Bhadeshia, H. and J.W. Christian, Bainite in steels. Metallurgical Transactions A 21, (1990) 767-797.
  • Sjostrom, S., Interactions and constitutive models for calculating quench stresses in steel. Materials Science and Technology 1 (1984) 823-829.
  • Leblond, J.B., Mathematical modelling of transformation plasticity in steels II: Coupling with strain hardening phenomena. International Journal of Plasticity 5 (1989) 573-591.
  • Leblond, J.B., J. Devaux, and J.C. Devaux, Mathematical modelling of transformation plasticity in steels I: Case of ideal-plastic phases. International Journal of Plasticity 5 551-572.
  • Denis, S., A. Simon, and G. Beck, Modellization of thermomechanical behavior and stress-phase transformation interactions during martensitic tempering of steel and calculation of internal stresses. Memoires et Etudes Scientifiques de la Revue de Metallurgie 81 (1984) 445-445.
  • Prinz, C., et al., Metallurgical influence on distortion of the case‐hardening steel 20MnCr5. Materialwissenschaft und Werkstofftechnik 37 (2006) 29-33.
  • Wolff, M., et al., Some recent developments in modelling of heat-treatment phenomena in steel within the collaborative research centre SFB 570 “Distortion Engineering”. Materialwissenschaft und Werkstofftechnik 43 (2012) 136- 142.
  • Geijselaers, H.J.M., Numerical Simulation of Stresses due to Solid State Transformations. PhD Thesis, University of Twente: Twente (2008)
  • Denis, S., et al., Stress-Phase transformation interactions Basic principles ,modeling and calculation of internal stresses. Materials Science and Technology 1 (1984) 805- 814.
  • Denis, S., et al., Influence of stresses on the kinetics of pearlitic transformation during continuous cooling. Acta Metallurgica 35 (1987) 1621-1632.
  • Aeby Gautier, E., Transformations perlitique et martensitique sous contrainte de traction dans les aciers. PhD Thesis, Ecole des Mines de Nancy (1985)
  • Patel, J.R. and M. Cohen, Criterion for the action of applied stress in the martensitic transformation. Acta Metallurgica 5 (1953) 531-538.
  • Videau, J.-C., G. Cailletaud, and A. Pineau, Experimental study of the transformation-induced plasticity in a Cr-Ni- Mo-Al-Ti steel. Le Journal de Physique IV 6 (1996) 465- 474.
  • Simon, A., S. Denis, and E. Gautier, Effet des sollicitations thermomécaniques sur les transformations de phases dans l’état solide. Aspects métallurgique et mécanique. Le Journal de Physique IV 4 (1994) 199-213.
  • Liu, C.C., K.F. Yao, and Z. Liu, Quantitative research on effects of stresses and strains on bainitic transformation kinetics and transformation plasticity. Materials Science and Technology 16 (2000) 643-647.
  • Horstemeyer, M.F., Integrated Computational Materials Engineering (ICME) for Metals: Using Multiscale Modeling to Invigorate Engineering Design with Science. 2012: Wiley. 472.
  • Jacques, P., et al., Multiscale mechanics of TRIP-assisted multiphase steels: I. Characterization and mechanical testing. Acta Materialia 55 (2007) 3681-3693.
  • Bhattacharyya, S., G. Kehl, and J. Brett, Isothermal transformation of austenite to ferrite and pearlite under externally applied tensile stress. 1955, DTIC Document.
  • Veaux, M., et al., Bainitic transformation under stress in medium alloyed steels. Journal De Physique IV 11 (2001) 181-188.
  • Abrassart, F., Influence des transformations martensitiques sur les propriétés mécaniques des alliages du système Fe- Ni-Cr-C. PhD Thesis, Ecole des Mines de Nancy (1972).
  • Dalgic, M., et al., Transformation plasticity at different phase transformation of a through hardening bearing steel. International Journal of Materials and Properties 3 (2008) 49-64.
  • Mustak, O., et al. Determination of Flow Curves of Metastable Austenite. in IMMC. 2014. ‐stanbul, Turkey.
  • Mustak, O., Characterization of SAE 52100 Bearing Steel for Finite Element Simulation of Through-Hardening Process, MSc Thesis, Metallurgical and Materials Engineering Department of, Middle East Technical University (2014).
  • Kulys J, Vidziunaite R. Amperometric biosensors based on recombinant laccases for phenols determination. Biosensors and Bioelectronics 18 (2003) 319-325

Transformation Induced Plasticity TRIP of SAE 52100 Steel during Martensitic and Bainitic Transformations

Year 2017, Volume: 4 Issue: 2, 125 - 130, 28.12.2017
https://doi.org/10.17350/HJSE19030000058

Abstract

Transformation induced plasticity TRIP of SAE 52100 steel during quenching is investigated both experimentally and theoretically. TRIP parameter K is determined experimentally for both martensitic and bainitic transformations by using the stressed dilatometry technique. A new method for extraction of for an incomplete transformation is suggested for the martensitic transformation. Theoretical calculations using wellestablished models for the TRIP effect and the results from the literature are used for the justification of the results of this work. The results for bainitic transformation is found to be in good agreement with both the literature and theoretical calculations using Leblond`s model. On the other hand, experimentally determined value is found to be significantly different from the literature. Nevertheless, it is still in reasonable agreement with the calculations using Leblond`s model.

References

  • Fischer, F.D. and S.M. Schlogl, The Influence of Material Anisotropy on Transformation-Induced Plasticity in Steel Subject to Martensitic-Transformation. Mechanics of Materials 21 (1995) 1-23.
  • Greenwood, G.W. and R.H. Johnson, The deformation of metals under small stresses during phase transformations. Proc. Roy. Soc. 283 (1965) 403-422.
  • Magee, C.L., Transformation kinetics, micro-plasticity and ageing of martensite in Fe-31Ni, PhD Thesis, Carnegie Inst. of Technology (1966)
  • Fischer, F.D., Q.P. Sun, and K. Tanaka, Transformation-induced plasticity (TRIP). Applied Mechanics Reviews 49 (1996) 317- 364.
  • Simsir, C., Modeling and Simulation of Steel Heat Treatment: Prediction of Microstructure, Distortion, Residual Stresses and Cracking, in: Dossett JL and Totten GE (Eds.). ASM Metals Handbook Volume 4B - Steel Heat Treating Technologies, ASM International, Materials Park, Ohio-Illinois, pp. 409- 466, 2014.
  • Acht, C., et al., Determination of the material properties for the simulation of through hardening of components made from SAE 52100. - Part 2. Journal of Heat Treatment and Materials (HTM) 64 (2008) 362-371.
  • Denis, S., Considering stress-phase transformation interactions in the calculation of heat treatment residual stresses. J. Phys. IV France 6 (1996) 159-174.
  • Bhadeshia, H. and J.W. Christian, Bainite in steels. Metallurgical Transactions A 21, (1990) 767-797.
  • Sjostrom, S., Interactions and constitutive models for calculating quench stresses in steel. Materials Science and Technology 1 (1984) 823-829.
  • Leblond, J.B., Mathematical modelling of transformation plasticity in steels II: Coupling with strain hardening phenomena. International Journal of Plasticity 5 (1989) 573-591.
  • Leblond, J.B., J. Devaux, and J.C. Devaux, Mathematical modelling of transformation plasticity in steels I: Case of ideal-plastic phases. International Journal of Plasticity 5 551-572.
  • Denis, S., A. Simon, and G. Beck, Modellization of thermomechanical behavior and stress-phase transformation interactions during martensitic tempering of steel and calculation of internal stresses. Memoires et Etudes Scientifiques de la Revue de Metallurgie 81 (1984) 445-445.
  • Prinz, C., et al., Metallurgical influence on distortion of the case‐hardening steel 20MnCr5. Materialwissenschaft und Werkstofftechnik 37 (2006) 29-33.
  • Wolff, M., et al., Some recent developments in modelling of heat-treatment phenomena in steel within the collaborative research centre SFB 570 “Distortion Engineering”. Materialwissenschaft und Werkstofftechnik 43 (2012) 136- 142.
  • Geijselaers, H.J.M., Numerical Simulation of Stresses due to Solid State Transformations. PhD Thesis, University of Twente: Twente (2008)
  • Denis, S., et al., Stress-Phase transformation interactions Basic principles ,modeling and calculation of internal stresses. Materials Science and Technology 1 (1984) 805- 814.
  • Denis, S., et al., Influence of stresses on the kinetics of pearlitic transformation during continuous cooling. Acta Metallurgica 35 (1987) 1621-1632.
  • Aeby Gautier, E., Transformations perlitique et martensitique sous contrainte de traction dans les aciers. PhD Thesis, Ecole des Mines de Nancy (1985)
  • Patel, J.R. and M. Cohen, Criterion for the action of applied stress in the martensitic transformation. Acta Metallurgica 5 (1953) 531-538.
  • Videau, J.-C., G. Cailletaud, and A. Pineau, Experimental study of the transformation-induced plasticity in a Cr-Ni- Mo-Al-Ti steel. Le Journal de Physique IV 6 (1996) 465- 474.
  • Simon, A., S. Denis, and E. Gautier, Effet des sollicitations thermomécaniques sur les transformations de phases dans l’état solide. Aspects métallurgique et mécanique. Le Journal de Physique IV 4 (1994) 199-213.
  • Liu, C.C., K.F. Yao, and Z. Liu, Quantitative research on effects of stresses and strains on bainitic transformation kinetics and transformation plasticity. Materials Science and Technology 16 (2000) 643-647.
  • Horstemeyer, M.F., Integrated Computational Materials Engineering (ICME) for Metals: Using Multiscale Modeling to Invigorate Engineering Design with Science. 2012: Wiley. 472.
  • Jacques, P., et al., Multiscale mechanics of TRIP-assisted multiphase steels: I. Characterization and mechanical testing. Acta Materialia 55 (2007) 3681-3693.
  • Bhattacharyya, S., G. Kehl, and J. Brett, Isothermal transformation of austenite to ferrite and pearlite under externally applied tensile stress. 1955, DTIC Document.
  • Veaux, M., et al., Bainitic transformation under stress in medium alloyed steels. Journal De Physique IV 11 (2001) 181-188.
  • Abrassart, F., Influence des transformations martensitiques sur les propriétés mécaniques des alliages du système Fe- Ni-Cr-C. PhD Thesis, Ecole des Mines de Nancy (1972).
  • Dalgic, M., et al., Transformation plasticity at different phase transformation of a through hardening bearing steel. International Journal of Materials and Properties 3 (2008) 49-64.
  • Mustak, O., et al. Determination of Flow Curves of Metastable Austenite. in IMMC. 2014. ‐stanbul, Turkey.
  • Mustak, O., Characterization of SAE 52100 Bearing Steel for Finite Element Simulation of Through-Hardening Process, MSc Thesis, Metallurgical and Materials Engineering Department of, Middle East Technical University (2014).
  • Kulys J, Vidziunaite R. Amperometric biosensors based on recombinant laccases for phenols determination. Biosensors and Bioelectronics 18 (2003) 319-325
There are 31 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Caner Simsir This is me

Publication Date December 28, 2017
Published in Issue Year 2017 Volume: 4 Issue: 2

Cite

Vancouver Simsir C. Transformation Induced Plasticity TRIP of SAE 52100 Steel during Martensitic and Bainitic Transformations. Hittite J Sci Eng. 2017;4(2):125-30.

Hittite Journal of Science and Engineering is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).