Research Article
BibTex RIS Cite
Year 2020, Volume: 7 Issue: 4, 339 - 344, 31.12.2020
https://doi.org/10.17350/HJSE19030000203

Abstract

References

  • 1. Chen G. Electrochemical technologies in wastewater treatment. Separation and Purification Technology 38 (2004) 11-41.
  • 2. Choi KJ, Kim SG, Kim CW, Kim SH. Effects of activated carbon types and service life on removal of endocrine disrupting chemicals: amitrol, nonylphenol, and bisphenol-A. Chemosphere 58 (2005) 1535-1545.
  • 3. Ahn D-H, Chang W-S, Yoon T-I. Dyestuff wastewater treatment using chemical oxidation, physical adsorption and fixed bed biofilm process. Process biochemistry 34 (1999) 429-439.
  • 4. Rice RG. Applications of ozone for industrial wastewater treatment—a review. Ozone: science & engineering 18 (1996) 477-515.
  • 5. Korzeniewska E, Harnisz M. Relationship between modification of activated sludge wastewater treatment and changes in antibiotic resistance of bacteria. Science of the Total Environment 639 (2018) 304-315.
  • 6. San N, Hatipoğlu A, Koçtürk G, Çınar Z. Photocatalytic degradation of 4-nitrophenol in aqueous TiO2 suspensions: Theoretical prediction of the intermediates. Journal of Photochemistry and Photobiology A: Chemistry 146 (2002) 189-197.
  • 7. Jenny Schneider DB, Jinhua Ye, Gianluca Li Puma, Dionysios D Dionysiou, Photocatalysis: Fundamentals and Perspectives. 2016, London, UK: Royal Society of Chemistry.
  • 8. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O'Shea K, Entezari MH, Dionysiou DD. A Review on the Visible Light Active Titanium Dioxide Photocatalysts for Environmental Applications. Applied Catalysis B: Environmental 125 (2012) 331-349.
  • 9. Nakata K, Fujishima A. TiO2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 13 (2012) 169-189.
  • 10. Henderson MA. A surface science perspective on TiO2 photocatalysis. Surface Science Reports 66 (2011) 185-297.
  • 11. Etacheri V, Di Valentin C, Schneider J, Bahnemann D, Pillai SC. Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 25 (2015) 1-29.
  • 12. Bora LV, Mewada RK. Visible/solar light active photocatalysts for organic effluent treatment: Fundamentals, mechanisms and parametric review. Renewable and Sustainable Energy Reviews 76 (2017) 1393-1421.
  • 13. Kaya D, San N. Heterogeneous Photocatalytic Degradation of 4- Nitrophenol via TiO2, Surface-Modified with Salicylic Acid. FRESENIUS ENVIRONMENTAL BULLETIN 26 (2017) 4953-4962.
  • 14. Low J, Cheng B, Yu J. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Applied Surface Science 392 (2017) 658-686.
  • 15. Guayaquil-Sosa J, Serrano-Rosales B, Valadés-Pelayo P, De Lasa H. Photocatalytic hydrogen production using mesoporous TiO2 doped with Pt. Applied Catalysis B: Environmental 211 (2017) 337-348.
  • 16. Birben NC, Uyguner-Demirel CS, Sen-Kavurmaci S, Gurkan YY, Turkten N, Cinar Z, Bekbolet M. Comparative evaluation of anion doped photocatalysts on the mineralization and decolorization of natural organic matter. Catalysis Today 240, Part A (2015) 125-131.
  • 17. Yüce E, Mert EH, Krajnc P, Parın FN, San N, Kaya D, Yıldırım H. Photocatalytic Activity of Titania/Polydicyclopentadiene PolyHIPE Composites. Macromolecular Materials and Engineering 302 (2017) 1700091.
  • 18. Li J, Liu Y, Li H, Chen C. Fabrication of g-C3N4/TiO2 composite photocatalyst with extended absorption wavelength range and enhanced photocatalytic performance. Journal of Photochemistry and Photobiology A: Chemistry 317 (2016) 151-160.
  • 19. Birben NC, Uyguner-Demirel CS, Kavurmaci SS, Gürkan YY, Turkten N, Cinar Z, Bekbolet M. Application of Fe-doped TiO2 specimens for the solar photocatalytic degradation of humic acid. Catalysis Today 281 (2017) 78-84.
  • 20. Turkten N, Cinar Z, Tomruk A, Bekbolet M. Copper-doped TiO2 photocatalysts: application to drinking water by humic matter degradation. Environmental science and pollution research international (2019).
  • 21. Gurkan YY, Turkten N, Hatipoglu A, Cinar Z. Photocatalytic degradation of cefazolin over N-doped TiO2 under UV and sunlight irradiation: Prediction of the reaction paths via conceptual DFT. Chemical Engineering Journal 184 (2012) 113-124.
  • 22. Gurkan Y, Kasapbasi E, Turkten N, Cinar Z. Influence of Se/N Codoping on the Structural, Optical, Electronic and Photocatalytic Properties of TiO2. Molecules 22 (2017) 414.
  • 23. Wang Y, Jia K, Pan Q, Xu Y, Liu Q, Cui G, Guo X, Sun X. Boron-doped TiO2 for efficient electrocatalytic N2 fixation to NH3 at ambient conditions. ACS Sustainable Chemistry & Engineering 7 (2018) 117-122.
  • 24. Wang W-K, Chen J-J, Gao M, Huang Y-X, Zhang X, Yu H-Q. Photocatalytic degradation of atrazine by boron-doped TiO2 with a tunable rutile/anatase ratio. Applied Catalysis B: Environmental 195 (2016) 69-76.
  • 25. Quiñones DH, Rey A, Álvarez PM, Beltrán FJ, Li Puma G. Boron doped TiO2 catalysts for photocatalytic ozonation of aqueous mixtures of common pesticides: Diuron, o-phenylphenol, MCPA and terbuthylazine. Applied Catalysis B: Environmental 178 (2015) 74-81.
  • 26. Khan R, Kim SW, Kim T-J, Nam C-M. Comparative study of the photocatalytic performance of boron–iron Co-doped and boron-doped TiO2 nanoparticles. Materials Chemistry and Physics 112 (2008) 167-172.
  • 27. https://www.boren.gov.tr/pages/reserves/103. [cited 2020 August].
  • 28. Ahmed S, Rasul MG, Martens WN, Brown R, Hashib MA. Heterogeneous Photocatalytic Degradation of Phenols in Wastewater: A Review on Current Status and Developments. Desalination 261 (2010) 3-18.
  • 29. San N, Hatipoglu A, Koçtürk G, Çınar Z. Prediction of primary intermediates and the photodegradation kinetics of 3-aminophenol in aqueous TiO suspensions. Journal of Photochemistry and 2 Photobiology A: Chemistry 139 (2001) 225-232.
  • 30. Gurkan YY, Kasapbasi E, Cinar Z. Enhanced solar photocatalytic activity of TiO2 by selenium(IV) ion-doping: Characterization and DFT modeling of the surface. Chemical Engineering Journal 214 (2013) 34-44.
  • 31. Choi H, Antoniou MG, Pelaez M, de la Cruz AA, Shoemaker JA, Dionysiou DD. Mesoporous Nitrogen-Doped TiO2 for the Photocatalytic Destruction of the Cyanobacterial Toxin Microcystin-LR under Visible Light Irradiation. Environmental Science & Technology 41 (2007) 7530-7535.
  • 32. Chen Y-F, Lee C-Y, Yeng M-Y, Chiu H-T. The effect of calcination temperature on the crystallinity of TiO2 nanopowders. Journal of Crystal Growth 247 (2003) 363-370.
  • 33. Xiao Q, Ouyang L. Photocatalytic activity and hydroxyl radical formation of carbon-doped TiO2 nanocrystalline: Effect of calcination temperature. Chemical Engineering Journal 148 (2009) 248- 253.

Boron Doped TiO2 For The Photodegradation of 4-nitrophenol: Optimization of The Doping Parameters

Year 2020, Volume: 7 Issue: 4, 339 - 344, 31.12.2020
https://doi.org/10.17350/HJSE19030000203

Abstract

In this work we prepared boron doped TiO2 (B-TiO2) photocatalysts and evaluated their photocatalytic activity for the degradation of our model organic pollutant, 4-nitrophenol (4-NP). The photocatalysts were prepared using wet impregnation method with different calcination times, calcination temperatures and dopant amounts in order to determine the optimum parameters. The degradation of the pollutant was carried out in a specially designed degradation chamber and characterized by UV-Vis spectrophotometry. The degradation kinetics were evaluated with pseudo-first order kinetics by comparing rate constants and half-lives of various photocatalytic reactions. It was found that the highest removal rate was obtained for 0.50 % boron doping with calcination at 450°C for 3 hours. The results showed that TiO2 could be doped with boron, which is in abundance in our country, and used for the photocatalytic degradation of a toxic pollutant in water. The promising results for the organic matter removal could pave the way for further studies of environmental applications.

References

  • 1. Chen G. Electrochemical technologies in wastewater treatment. Separation and Purification Technology 38 (2004) 11-41.
  • 2. Choi KJ, Kim SG, Kim CW, Kim SH. Effects of activated carbon types and service life on removal of endocrine disrupting chemicals: amitrol, nonylphenol, and bisphenol-A. Chemosphere 58 (2005) 1535-1545.
  • 3. Ahn D-H, Chang W-S, Yoon T-I. Dyestuff wastewater treatment using chemical oxidation, physical adsorption and fixed bed biofilm process. Process biochemistry 34 (1999) 429-439.
  • 4. Rice RG. Applications of ozone for industrial wastewater treatment—a review. Ozone: science & engineering 18 (1996) 477-515.
  • 5. Korzeniewska E, Harnisz M. Relationship between modification of activated sludge wastewater treatment and changes in antibiotic resistance of bacteria. Science of the Total Environment 639 (2018) 304-315.
  • 6. San N, Hatipoğlu A, Koçtürk G, Çınar Z. Photocatalytic degradation of 4-nitrophenol in aqueous TiO2 suspensions: Theoretical prediction of the intermediates. Journal of Photochemistry and Photobiology A: Chemistry 146 (2002) 189-197.
  • 7. Jenny Schneider DB, Jinhua Ye, Gianluca Li Puma, Dionysios D Dionysiou, Photocatalysis: Fundamentals and Perspectives. 2016, London, UK: Royal Society of Chemistry.
  • 8. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O'Shea K, Entezari MH, Dionysiou DD. A Review on the Visible Light Active Titanium Dioxide Photocatalysts for Environmental Applications. Applied Catalysis B: Environmental 125 (2012) 331-349.
  • 9. Nakata K, Fujishima A. TiO2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 13 (2012) 169-189.
  • 10. Henderson MA. A surface science perspective on TiO2 photocatalysis. Surface Science Reports 66 (2011) 185-297.
  • 11. Etacheri V, Di Valentin C, Schneider J, Bahnemann D, Pillai SC. Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 25 (2015) 1-29.
  • 12. Bora LV, Mewada RK. Visible/solar light active photocatalysts for organic effluent treatment: Fundamentals, mechanisms and parametric review. Renewable and Sustainable Energy Reviews 76 (2017) 1393-1421.
  • 13. Kaya D, San N. Heterogeneous Photocatalytic Degradation of 4- Nitrophenol via TiO2, Surface-Modified with Salicylic Acid. FRESENIUS ENVIRONMENTAL BULLETIN 26 (2017) 4953-4962.
  • 14. Low J, Cheng B, Yu J. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Applied Surface Science 392 (2017) 658-686.
  • 15. Guayaquil-Sosa J, Serrano-Rosales B, Valadés-Pelayo P, De Lasa H. Photocatalytic hydrogen production using mesoporous TiO2 doped with Pt. Applied Catalysis B: Environmental 211 (2017) 337-348.
  • 16. Birben NC, Uyguner-Demirel CS, Sen-Kavurmaci S, Gurkan YY, Turkten N, Cinar Z, Bekbolet M. Comparative evaluation of anion doped photocatalysts on the mineralization and decolorization of natural organic matter. Catalysis Today 240, Part A (2015) 125-131.
  • 17. Yüce E, Mert EH, Krajnc P, Parın FN, San N, Kaya D, Yıldırım H. Photocatalytic Activity of Titania/Polydicyclopentadiene PolyHIPE Composites. Macromolecular Materials and Engineering 302 (2017) 1700091.
  • 18. Li J, Liu Y, Li H, Chen C. Fabrication of g-C3N4/TiO2 composite photocatalyst with extended absorption wavelength range and enhanced photocatalytic performance. Journal of Photochemistry and Photobiology A: Chemistry 317 (2016) 151-160.
  • 19. Birben NC, Uyguner-Demirel CS, Kavurmaci SS, Gürkan YY, Turkten N, Cinar Z, Bekbolet M. Application of Fe-doped TiO2 specimens for the solar photocatalytic degradation of humic acid. Catalysis Today 281 (2017) 78-84.
  • 20. Turkten N, Cinar Z, Tomruk A, Bekbolet M. Copper-doped TiO2 photocatalysts: application to drinking water by humic matter degradation. Environmental science and pollution research international (2019).
  • 21. Gurkan YY, Turkten N, Hatipoglu A, Cinar Z. Photocatalytic degradation of cefazolin over N-doped TiO2 under UV and sunlight irradiation: Prediction of the reaction paths via conceptual DFT. Chemical Engineering Journal 184 (2012) 113-124.
  • 22. Gurkan Y, Kasapbasi E, Turkten N, Cinar Z. Influence of Se/N Codoping on the Structural, Optical, Electronic and Photocatalytic Properties of TiO2. Molecules 22 (2017) 414.
  • 23. Wang Y, Jia K, Pan Q, Xu Y, Liu Q, Cui G, Guo X, Sun X. Boron-doped TiO2 for efficient electrocatalytic N2 fixation to NH3 at ambient conditions. ACS Sustainable Chemistry & Engineering 7 (2018) 117-122.
  • 24. Wang W-K, Chen J-J, Gao M, Huang Y-X, Zhang X, Yu H-Q. Photocatalytic degradation of atrazine by boron-doped TiO2 with a tunable rutile/anatase ratio. Applied Catalysis B: Environmental 195 (2016) 69-76.
  • 25. Quiñones DH, Rey A, Álvarez PM, Beltrán FJ, Li Puma G. Boron doped TiO2 catalysts for photocatalytic ozonation of aqueous mixtures of common pesticides: Diuron, o-phenylphenol, MCPA and terbuthylazine. Applied Catalysis B: Environmental 178 (2015) 74-81.
  • 26. Khan R, Kim SW, Kim T-J, Nam C-M. Comparative study of the photocatalytic performance of boron–iron Co-doped and boron-doped TiO2 nanoparticles. Materials Chemistry and Physics 112 (2008) 167-172.
  • 27. https://www.boren.gov.tr/pages/reserves/103. [cited 2020 August].
  • 28. Ahmed S, Rasul MG, Martens WN, Brown R, Hashib MA. Heterogeneous Photocatalytic Degradation of Phenols in Wastewater: A Review on Current Status and Developments. Desalination 261 (2010) 3-18.
  • 29. San N, Hatipoglu A, Koçtürk G, Çınar Z. Prediction of primary intermediates and the photodegradation kinetics of 3-aminophenol in aqueous TiO suspensions. Journal of Photochemistry and 2 Photobiology A: Chemistry 139 (2001) 225-232.
  • 30. Gurkan YY, Kasapbasi E, Cinar Z. Enhanced solar photocatalytic activity of TiO2 by selenium(IV) ion-doping: Characterization and DFT modeling of the surface. Chemical Engineering Journal 214 (2013) 34-44.
  • 31. Choi H, Antoniou MG, Pelaez M, de la Cruz AA, Shoemaker JA, Dionysiou DD. Mesoporous Nitrogen-Doped TiO2 for the Photocatalytic Destruction of the Cyanobacterial Toxin Microcystin-LR under Visible Light Irradiation. Environmental Science & Technology 41 (2007) 7530-7535.
  • 32. Chen Y-F, Lee C-Y, Yeng M-Y, Chiu H-T. The effect of calcination temperature on the crystallinity of TiO2 nanopowders. Journal of Crystal Growth 247 (2003) 363-370.
  • 33. Xiao Q, Ouyang L. Photocatalytic activity and hydroxyl radical formation of carbon-doped TiO2 nanocrystalline: Effect of calcination temperature. Chemical Engineering Journal 148 (2009) 248- 253.
There are 33 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Nazlı Türkten This is me 0000-0001-9343-3697

Dila Kaya This is me 0000-0003-1607-5317

Zekiye Çınar This is me

Publication Date December 31, 2020
Submission Date September 1, 2020
Published in Issue Year 2020 Volume: 7 Issue: 4

Cite

Vancouver Türkten N, Kaya D, Çınar Z. Boron Doped TiO2 For The Photodegradation of 4-nitrophenol: Optimization of The Doping Parameters. Hittite J Sci Eng. 2020;7(4):339-44.

Hittite Journal of Science and Engineering is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).