Research Article
PDF Zotero Mendeley EndNote BibTex Cite

Year 2021, Volume 8, Issue 4, 329 - 338, 31.12.2021
https://doi.org/10.17350/HJSE19030000246

Abstract

References

  • Çamur MZ, Mutlu H. Tuz Gölü'ndeki mineral çökeliminin termodinamik değerlendirilimi. Türkiye Jeoloji Bülteni. 38 2, (1995), 67-73.
  • Erol O. Tuz Gölü Havzasının jeoloji ve jeomorfolojisi (Genç tektonik hareketler, pluvial göl sekileri ve potas-tuz teşekkül şartları yönünden bir araştırma). TÜBİTAK, (26), 1969.
  • Ormeci C, Ekercin S. An assessment of water reserve changes in Salt Lake, Turkey, through multi-temporal Landsat imagery and real-time ground surveys. Hydrological Processes. 21, 11, (2007), 1424-1435.
  • Aydın F, Erlat E, Türkeş M. Impact of climate variability on the surface of Lake Tuz (Turkey), 1985–2016. Regional Environmental Change. 20, 2, (2020), 68.
  • Hüseyinca MY. Mineralogical and geochemical characteristics of the sediments in Lake Tuz and the close vicinity (in Turkish). Ph.D. Thesis, Selçuk University, Konya, 2015.
  • Kashima K. Environmental and climatic changes during the last 20,000 years at Lake Tuz, central Turkey. CATENA. 48, 1–2, (2002), 3-20.
  • Kılıç Ö, Kılıç AM. Recovery of salt co-products during the salt production from brine. Desalination. 186, 1, (2005), 11-19.
  • Irion G, Müller G. Huntite, dolomite, magnesite, and polyhalite, of recent age from Tuz Gölü, Turkey. Nature. 220, (1968), 1309-1310.
  • Uygun A, Şen E. Tuz Gölü Havzası ve doğal kaynakları I: Tuz Gölü suyunun jeokimyası. Bulletin of the Geological Society of Turkey. 21, (1978), 113-120.
  • Çamur MZ, Mutlu H. Major-ion geochemistry and mineralogy of the Salt Lake (Tuz Gölü) basin, Turkey. Chemical geology. 127, 4, (1996), 313-329.
  • Kılıç Ö, Kılıç AM. Salt crust mineralogy and geochemical evolution of the Salt Lake (Tuz Gölü), Turkey. Scientific Research and Essays. 5, 11, (2010), 1317-1324.
  • Şenel M. Turkiye Jeoloji Haritası/Geological Map of Turkey, scale 1:500,000, Maden Tetkik Arama Genel Müdürlüğü, Ankara, 2002.
  • Tekin E, Ayyildiz T, Gündoğan İ, Orti F. Modern halolites (halite oolites) in the Tuz Gölü, Turkey. Sedimentary Geology. 195, 3, (2007), 101-112.
  • Aydemir A, Ateş A. Structural interpretation of the Tuzgolu and Haymana Basins, Central Anatolia, Turkey, using seismic, gravity and aeromagnetic data. Earth Planets and Space. 58, 8, (2006), 951-961.
  • Arıkan Y. Tuz Gölü havzasının jeolojisi ve petrol imkanları. M.T.A. Dergisi. 85, (1975), 17-38.
  • Aydemir A. Hydrocarbon potential of the Tuzgolu (Salt Lake) Basin, Central Anatolia, Turkey: A comparison of geophysical investigation results with the geochemical data. Journal of Petroleum Science and Engineering. 61, 1, (2008), 33-47.
  • Clark M, Robertson A. Uppermost Cretaceous–Lower Tertiary Ulukışla Basin, south-central Turkey: sedimentary evolution of part of a unified basin complex within an evolving Neotethyan suture zone. Sedimentary Geology. 173, 1, (2005), 15-51.
  • Görür N, Oktay FY, Seymen İ, Şengör AMC. Palaeotectonic evolution of the Tuzgölü basin complex, Central Turkey: sedimentary record of a Neo-Tethyan closure, In J. E. Dixon A. H. F. Robertson (Eds.), The geological evolution of the eastern mediterranean, Geological Society Special Publications, London, pp. 467-482, 1984.
  • Çemen I, Göncüoglu MC, Dirik K. Structural evolution of the Tuzgölü basin in Central Anatolia, Turkey. The Journal of geology. 107, 6, (1999), 693-706.
  • Yıldırım C. Relative tectonic activity assessment of the Tuz Gölü Fault Zone; Central Anatolia, Turkey. Tectonophysics. 630, (2014), 183-192.
  • Fernandez-Blanco D, Bertotti G, Çiner A. Cenozoic tectonics of the Tuz Gölü basin (central Anatolia plateau, Turkey). Turkish Journal of Earth Sciences. 22, 5, (2013), 715-738.
  • Dirik K, Erol O. Tectonomorphologic evolution of Tuzgölü and surrounding area, central Anatolia-Turkey. Turkish Association of Petroleum Geologists Special Publication. 5, (2003), 27-46.
  • Seymen İ. Kaman dolayında Kırşehir Masifinin jeolojisi. Doçentlik Tezi, İ.T.Ü. Maden Fakültesi, İstanbul, 1982.
  • Göncüoğlu MC. Structural and stratigraphic framework of the central Anatolian Tertiary Basins. IGCP Project Early Paleogene Benthos Third Meeting, Ankara. 1992.
  • Koçak K, Zedef V, Kansun G. Magma mixing/mingling in the Eocene Horoz (Nigde) granitoids, Central southern Turkey: evidence from mafic microgranular enclaves. Mineralogy and Petrology. 103, 1-4, (2011), 149-167.
  • Okay AI, Tüysüz O. Tethyan sutures of northern Turkey. Geological Society, London, Special Publications. 156, 1, (1999), 475-515.
  • Kuşcu İ, Gençalioğlu Kuşcu G, Meinert LD, Floyd PA. Tectonic setting and petrogenesis of the Çelebi granitoid, (Kırıkkale-Turkey) and comparison with world skarn granitoids. Journal of Geochemical Exploration. 76, 3, (2002), 175-194.
  • Kashima K. The quantitative reconstruction of salinity changes using diatom assemblages in inland saline lakes in the central part of Turkey during the Late Quaternary. Quaternary International. 105, 1, (2003), 13-19.
  • Anders E, Grevesse N. Abundances of the elements: Meteoritic and solar. Geochimica et Cosmochimica Acta. 53, 1, (1989), 197-214.
  • Taylor SR, McLennan SM. The continental crust: Its composition and evolution, Blackwell Scientific Publications, Oxford, 1985.
  • Cullers RL. The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: implications for provenance and metamorphic studies. Lithos. 51, 3, (2000), 181-203.
  • Hiscott RN. Ophiolitic source rocks for Taconic-age flysch: Trace-element evidence. Geological Society of America Bulletin. 95, 11, (1984), 1261-1267.
  • Hallberg RO. A Geochemical Method for Investigation of Paleoredox Conditions in Sediments. Ambio Special Report. 4, (1976), 139-147.
  • Cullers RL. The controls on the major- and trace-element evolution of shales, siltstones and sandstones of Ordovician to tertiary age in the Wet Mountains region, Colorado, U.S.A. Chemical geology. 123, 1–4, (1995), 107-131.
  • McLennan SM, Taylor SR. Sedimentary rocks and crustal evolution: Tectonic setting and secular trends. The Journal of geology. 99, 1, (1991), 1-21.
  • Condie KC. Another look at rare earth elements in shales. Geochimica et Cosmochimica Acta. 55, 9, (1991), 2527-2531.
  • Cullers RL, Graf JL. Rare earth elements in igneous rocks of the continental crust: predominantly basic and ultrabasic rocks, InRare earth element geochemistry, Elsevier Amsterdam, pp. 237-274, 1984.
  • McLennan SM, Taylor SR. Geology, geochemistry and natural abundances of the Rare Earth Elements, In D. A. Atwood R. A. Scott (Eds.), Encyclopedia of Inorganic and Bioinorganic Chemistry, John Wiley & Sons, Ltd, pp. 19, 2012.
  • Cullers RL, Podkovyrov VN. The source and origin of terrigenous sedimentary rocks in the Mesoproterozoic Ui group, southeastern Russia. Precambrian Research. 117, 3–4, (2002), 157-183.
  • Armstrong-Altrin JS, Lee YI, Verma SP, Ramasamy S. Geochemistry of Sandstones from the Upper Miocene Kudankulam Formation, Southern India: Implications for Provenance, Weathering, and Tectonic Setting. Journal of Sedimentary Research. 74, 2, (2004), 285-297.
  • Cullers RL, Basu A, Suttner LJ. Geochemical signature of provenance in sand-size material in soils and stream sediments near the Tobacco Root batholith, Montana, U.S.A. Chemical geology. 70, 4, (1988), 335-348.
  • Condie KC. Chemical composition and evolution of the upper continental crust : Contrasting results from surface samples and shales. Chemical geology. 104, (1993), 1-37.
  • Boztuğ D, Harlavan Y. K–Ar ages of granitoids unravel the stages of Neo-Tethyan convergence in the eastern Pontides and central Anatolia, Turkey. International Journal of Earth Sciences. 97, 3, (2008), 585-599.
  • Boztuğ D, Jonckheere RC, Heizler M, Ratschbacher L, Harlavan Y, Tichomirova M. Timing of post-obduction granitoids from intrusion through cooling to exhumation in central Anatolia, Turkey. Tectonophysics. 473, 1, (2009), 223-233.
  • Köksal S, Romer RL, Göncüoglu MC, Toksoy-Köksal F. Timing of post-collisional H-type to A-type granitic magmatism: U–Pb titanite ages from the Alpine central Anatolian granitoids (Turkey). International Journal of Earth Sciences. 93, 6, (2004), 974-989.
  • Koçak K, Zedef V. Interaction of the lithospheric mantle and crustal melts for the generation of the Horoz pluton (Niğde, Turkey): whole-rock geochemical and Sr–Nd–Pb isotopic evidence. Estonian Journal of Earth Sciences. 65, 3, (2016), 138-160.
  • Bhatia MR, Crook KAW. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology. 92, 2, (1986), 181-193.
  • LaMaskin TA, Dorsey RJ, Vervoort JD. Tectonic controls on mudrock geochemisry, Mesozoic rocks of eastern Oregon and western Idaho, USA: Implications for cordilleran tectonics. Journal of Sedimentary Research. 78, 12, (2008), 765-783.

Mineralogy and Geochemistry of Sediments from Lake Tuz

Year 2021, Volume 8, Issue 4, 329 - 338, 31.12.2021
https://doi.org/10.17350/HJSE19030000246

Abstract

Lake Tuz is in a closed basin, in the center of the Anatolia (Turkey). The lake has shallow hypersaline water. In this study, mineralogical and geochemical features of the lake sediments sampled by core drillings were investigated. Halite, polyhalite, calcite, magnesite, dolomite, huntite, quartz, and albite minerals were found in bulk sample and montmorillonite and vermiculite minerals were found in the clay fraction XRD analyzes. In geostatistical evaluations, elements are divided into four clusters. These clusters are named as Clastic, Hydrothermal, Evaporite-carbonate and Evaporite-sulphate. Trace elements included in the clastic cluster were used to interpret provenance. The Light Rare Earth Element (LREE) enriched chondrite normalized average REE pattern suggests a cratonic provenance for the lake sediments except for the low negative Eu anomaly. Trace element ratios of La/Sc, La/Co, Th/Sc, Th/Co, Zr/Sc, Zr/Co, Ba/Sc, and Ba/Co, which are critical for provenance, show a provenance in a “felsic-intermediate magmatic” composition. According to the La-Th-Sc diagram, the tectonic setting of the source area was found as "Continental Island Arc".

References

  • Çamur MZ, Mutlu H. Tuz Gölü'ndeki mineral çökeliminin termodinamik değerlendirilimi. Türkiye Jeoloji Bülteni. 38 2, (1995), 67-73.
  • Erol O. Tuz Gölü Havzasının jeoloji ve jeomorfolojisi (Genç tektonik hareketler, pluvial göl sekileri ve potas-tuz teşekkül şartları yönünden bir araştırma). TÜBİTAK, (26), 1969.
  • Ormeci C, Ekercin S. An assessment of water reserve changes in Salt Lake, Turkey, through multi-temporal Landsat imagery and real-time ground surveys. Hydrological Processes. 21, 11, (2007), 1424-1435.
  • Aydın F, Erlat E, Türkeş M. Impact of climate variability on the surface of Lake Tuz (Turkey), 1985–2016. Regional Environmental Change. 20, 2, (2020), 68.
  • Hüseyinca MY. Mineralogical and geochemical characteristics of the sediments in Lake Tuz and the close vicinity (in Turkish). Ph.D. Thesis, Selçuk University, Konya, 2015.
  • Kashima K. Environmental and climatic changes during the last 20,000 years at Lake Tuz, central Turkey. CATENA. 48, 1–2, (2002), 3-20.
  • Kılıç Ö, Kılıç AM. Recovery of salt co-products during the salt production from brine. Desalination. 186, 1, (2005), 11-19.
  • Irion G, Müller G. Huntite, dolomite, magnesite, and polyhalite, of recent age from Tuz Gölü, Turkey. Nature. 220, (1968), 1309-1310.
  • Uygun A, Şen E. Tuz Gölü Havzası ve doğal kaynakları I: Tuz Gölü suyunun jeokimyası. Bulletin of the Geological Society of Turkey. 21, (1978), 113-120.
  • Çamur MZ, Mutlu H. Major-ion geochemistry and mineralogy of the Salt Lake (Tuz Gölü) basin, Turkey. Chemical geology. 127, 4, (1996), 313-329.
  • Kılıç Ö, Kılıç AM. Salt crust mineralogy and geochemical evolution of the Salt Lake (Tuz Gölü), Turkey. Scientific Research and Essays. 5, 11, (2010), 1317-1324.
  • Şenel M. Turkiye Jeoloji Haritası/Geological Map of Turkey, scale 1:500,000, Maden Tetkik Arama Genel Müdürlüğü, Ankara, 2002.
  • Tekin E, Ayyildiz T, Gündoğan İ, Orti F. Modern halolites (halite oolites) in the Tuz Gölü, Turkey. Sedimentary Geology. 195, 3, (2007), 101-112.
  • Aydemir A, Ateş A. Structural interpretation of the Tuzgolu and Haymana Basins, Central Anatolia, Turkey, using seismic, gravity and aeromagnetic data. Earth Planets and Space. 58, 8, (2006), 951-961.
  • Arıkan Y. Tuz Gölü havzasının jeolojisi ve petrol imkanları. M.T.A. Dergisi. 85, (1975), 17-38.
  • Aydemir A. Hydrocarbon potential of the Tuzgolu (Salt Lake) Basin, Central Anatolia, Turkey: A comparison of geophysical investigation results with the geochemical data. Journal of Petroleum Science and Engineering. 61, 1, (2008), 33-47.
  • Clark M, Robertson A. Uppermost Cretaceous–Lower Tertiary Ulukışla Basin, south-central Turkey: sedimentary evolution of part of a unified basin complex within an evolving Neotethyan suture zone. Sedimentary Geology. 173, 1, (2005), 15-51.
  • Görür N, Oktay FY, Seymen İ, Şengör AMC. Palaeotectonic evolution of the Tuzgölü basin complex, Central Turkey: sedimentary record of a Neo-Tethyan closure, In J. E. Dixon A. H. F. Robertson (Eds.), The geological evolution of the eastern mediterranean, Geological Society Special Publications, London, pp. 467-482, 1984.
  • Çemen I, Göncüoglu MC, Dirik K. Structural evolution of the Tuzgölü basin in Central Anatolia, Turkey. The Journal of geology. 107, 6, (1999), 693-706.
  • Yıldırım C. Relative tectonic activity assessment of the Tuz Gölü Fault Zone; Central Anatolia, Turkey. Tectonophysics. 630, (2014), 183-192.
  • Fernandez-Blanco D, Bertotti G, Çiner A. Cenozoic tectonics of the Tuz Gölü basin (central Anatolia plateau, Turkey). Turkish Journal of Earth Sciences. 22, 5, (2013), 715-738.
  • Dirik K, Erol O. Tectonomorphologic evolution of Tuzgölü and surrounding area, central Anatolia-Turkey. Turkish Association of Petroleum Geologists Special Publication. 5, (2003), 27-46.
  • Seymen İ. Kaman dolayında Kırşehir Masifinin jeolojisi. Doçentlik Tezi, İ.T.Ü. Maden Fakültesi, İstanbul, 1982.
  • Göncüoğlu MC. Structural and stratigraphic framework of the central Anatolian Tertiary Basins. IGCP Project Early Paleogene Benthos Third Meeting, Ankara. 1992.
  • Koçak K, Zedef V, Kansun G. Magma mixing/mingling in the Eocene Horoz (Nigde) granitoids, Central southern Turkey: evidence from mafic microgranular enclaves. Mineralogy and Petrology. 103, 1-4, (2011), 149-167.
  • Okay AI, Tüysüz O. Tethyan sutures of northern Turkey. Geological Society, London, Special Publications. 156, 1, (1999), 475-515.
  • Kuşcu İ, Gençalioğlu Kuşcu G, Meinert LD, Floyd PA. Tectonic setting and petrogenesis of the Çelebi granitoid, (Kırıkkale-Turkey) and comparison with world skarn granitoids. Journal of Geochemical Exploration. 76, 3, (2002), 175-194.
  • Kashima K. The quantitative reconstruction of salinity changes using diatom assemblages in inland saline lakes in the central part of Turkey during the Late Quaternary. Quaternary International. 105, 1, (2003), 13-19.
  • Anders E, Grevesse N. Abundances of the elements: Meteoritic and solar. Geochimica et Cosmochimica Acta. 53, 1, (1989), 197-214.
  • Taylor SR, McLennan SM. The continental crust: Its composition and evolution, Blackwell Scientific Publications, Oxford, 1985.
  • Cullers RL. The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: implications for provenance and metamorphic studies. Lithos. 51, 3, (2000), 181-203.
  • Hiscott RN. Ophiolitic source rocks for Taconic-age flysch: Trace-element evidence. Geological Society of America Bulletin. 95, 11, (1984), 1261-1267.
  • Hallberg RO. A Geochemical Method for Investigation of Paleoredox Conditions in Sediments. Ambio Special Report. 4, (1976), 139-147.
  • Cullers RL. The controls on the major- and trace-element evolution of shales, siltstones and sandstones of Ordovician to tertiary age in the Wet Mountains region, Colorado, U.S.A. Chemical geology. 123, 1–4, (1995), 107-131.
  • McLennan SM, Taylor SR. Sedimentary rocks and crustal evolution: Tectonic setting and secular trends. The Journal of geology. 99, 1, (1991), 1-21.
  • Condie KC. Another look at rare earth elements in shales. Geochimica et Cosmochimica Acta. 55, 9, (1991), 2527-2531.
  • Cullers RL, Graf JL. Rare earth elements in igneous rocks of the continental crust: predominantly basic and ultrabasic rocks, InRare earth element geochemistry, Elsevier Amsterdam, pp. 237-274, 1984.
  • McLennan SM, Taylor SR. Geology, geochemistry and natural abundances of the Rare Earth Elements, In D. A. Atwood R. A. Scott (Eds.), Encyclopedia of Inorganic and Bioinorganic Chemistry, John Wiley & Sons, Ltd, pp. 19, 2012.
  • Cullers RL, Podkovyrov VN. The source and origin of terrigenous sedimentary rocks in the Mesoproterozoic Ui group, southeastern Russia. Precambrian Research. 117, 3–4, (2002), 157-183.
  • Armstrong-Altrin JS, Lee YI, Verma SP, Ramasamy S. Geochemistry of Sandstones from the Upper Miocene Kudankulam Formation, Southern India: Implications for Provenance, Weathering, and Tectonic Setting. Journal of Sedimentary Research. 74, 2, (2004), 285-297.
  • Cullers RL, Basu A, Suttner LJ. Geochemical signature of provenance in sand-size material in soils and stream sediments near the Tobacco Root batholith, Montana, U.S.A. Chemical geology. 70, 4, (1988), 335-348.
  • Condie KC. Chemical composition and evolution of the upper continental crust : Contrasting results from surface samples and shales. Chemical geology. 104, (1993), 1-37.
  • Boztuğ D, Harlavan Y. K–Ar ages of granitoids unravel the stages of Neo-Tethyan convergence in the eastern Pontides and central Anatolia, Turkey. International Journal of Earth Sciences. 97, 3, (2008), 585-599.
  • Boztuğ D, Jonckheere RC, Heizler M, Ratschbacher L, Harlavan Y, Tichomirova M. Timing of post-obduction granitoids from intrusion through cooling to exhumation in central Anatolia, Turkey. Tectonophysics. 473, 1, (2009), 223-233.
  • Köksal S, Romer RL, Göncüoglu MC, Toksoy-Köksal F. Timing of post-collisional H-type to A-type granitic magmatism: U–Pb titanite ages from the Alpine central Anatolian granitoids (Turkey). International Journal of Earth Sciences. 93, 6, (2004), 974-989.
  • Koçak K, Zedef V. Interaction of the lithospheric mantle and crustal melts for the generation of the Horoz pluton (Niğde, Turkey): whole-rock geochemical and Sr–Nd–Pb isotopic evidence. Estonian Journal of Earth Sciences. 65, 3, (2016), 138-160.
  • Bhatia MR, Crook KAW. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology. 92, 2, (1986), 181-193.
  • LaMaskin TA, Dorsey RJ, Vervoort JD. Tectonic controls on mudrock geochemisry, Mesozoic rocks of eastern Oregon and western Idaho, USA: Implications for cordilleran tectonics. Journal of Sedimentary Research. 78, 12, (2008), 765-783.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Mehmet Yavuz HÜSEYİNCA (Primary Author)
KONYA TEKNİK ÜNİVERSİTESİ, MÜHENDİSLİK VE DOĞA BİLİMLERİ FAKÜLTESİ, JEOLOJİ MÜHENDİSLİĞİ BÖLÜMÜ
0000-0003-3863-6170
Türkiye


Suaip KÜPELİ
KONYA TEKNİK ÜNİVERSİTESİ, MÜHENDİSLİK VE DOĞA BİLİMLERİ FAKÜLTESİ, JEOLOJİ MÜHENDİSLİĞİ BÖLÜMÜ
0000-0002-3164-6811
Türkiye

Supporting Institution Selçuk Üniversitesi (BAP)
Project Number 09101002
Thanks Desteklerinden dolayı Selçuk Üniversitesi BAP koordinatörlüğüne teşekkür ederiz.
Publication Date December 31, 2021
Application Date November 11, 2021
Acceptance Date November 30, 2021
Published in Issue Year 2021, Volume 8, Issue 4

Cite

Bibtex @research article { hjse1022103, journal = {Hittite Journal of Science and Engineering}, issn = {}, eissn = {2148-4171}, address = {Hitit Üniversitesi Mühendislik Fakültesi Kuzey Kampüsü Çevre Yolu Bulvarı 19030 Çorum / TÜRKİYE}, publisher = {Hitit University}, year = {2021}, volume = {8}, pages = {329 - 338}, doi = {10.17350/HJSE19030000246}, title = {Mineralogy and Geochemistry of Sediments from Lake Tuz}, key = {cite}, author = {Hüseyinca, Mehmet Yavuz and Küpeli, Suaip} }
APA Hüseyinca, M. Y. & Küpeli, S. (2021). Mineralogy and Geochemistry of Sediments from Lake Tuz . Hittite Journal of Science and Engineering , 8 (4) , 329-338 . DOI: 10.17350/HJSE19030000246
MLA Hüseyinca, M. Y. , Küpeli, S. "Mineralogy and Geochemistry of Sediments from Lake Tuz" . Hittite Journal of Science and Engineering 8 (2021 ): 329-338 <https://dergipark.org.tr/en/pub/hjse/issue/67751/1022103>
Chicago Hüseyinca, M. Y. , Küpeli, S. "Mineralogy and Geochemistry of Sediments from Lake Tuz". Hittite Journal of Science and Engineering 8 (2021 ): 329-338
RIS TY - JOUR T1 - Mineralogy and Geochemistry of Sediments from Lake Tuz AU - Mehmet Yavuz Hüseyinca , Suaip Küpeli Y1 - 2021 PY - 2021 N1 - doi: 10.17350/HJSE19030000246 DO - 10.17350/HJSE19030000246 T2 - Hittite Journal of Science and Engineering JF - Journal JO - JOR SP - 329 EP - 338 VL - 8 IS - 4 SN - -2148-4171 M3 - doi: 10.17350/HJSE19030000246 UR - https://doi.org/10.17350/HJSE19030000246 Y2 - 2021 ER -
EndNote %0 Hittite Journal of Science and Engineering Mineralogy and Geochemistry of Sediments from Lake Tuz %A Mehmet Yavuz Hüseyinca , Suaip Küpeli %T Mineralogy and Geochemistry of Sediments from Lake Tuz %D 2021 %J Hittite Journal of Science and Engineering %P -2148-4171 %V 8 %N 4 %R doi: 10.17350/HJSE19030000246 %U 10.17350/HJSE19030000246
ISNAD Hüseyinca, Mehmet Yavuz , Küpeli, Suaip . "Mineralogy and Geochemistry of Sediments from Lake Tuz". Hittite Journal of Science and Engineering 8 / 4 (December 2021): 329-338 . https://doi.org/10.17350/HJSE19030000246
AMA Hüseyinca M. Y. , Küpeli S. Mineralogy and Geochemistry of Sediments from Lake Tuz. Hittite J Sci Eng. 2021; 8(4): 329-338.
Vancouver Hüseyinca M. Y. , Küpeli S. Mineralogy and Geochemistry of Sediments from Lake Tuz. Hittite Journal of Science and Engineering. 2021; 8(4): 329-338.
IEEE M. Y. Hüseyinca and S. Küpeli , "Mineralogy and Geochemistry of Sediments from Lake Tuz", Hittite Journal of Science and Engineering, vol. 8, no. 4, pp. 329-338, Dec. 2021, doi:10.17350/HJSE19030000246