Research Article
PDF Zotero Mendeley EndNote BibTex Cite

Fabrication and Characterization of ZnO Nanosheet on a Silver-metalized Polyimide Substrate

Year 2022, Volume 9, Issue 1, 57 - 63, 30.03.2022
https://doi.org/10.17350/HJSE19030000255

Abstract

ZnO nanosheets were fabricated on a silver-metalized polyimide (PI/Ag) substrate using electrochemical deposition. For a comparison, PI/Ag film was also obtained by electroless deposition. FE-SEM, XRD, UV–Vis absorption, and I-V measurements were employed to examine the structural, optical and electrical properties of silver-metalized PI film and ZnO deposited PI/Ag film. FE-SEM analysis indicated that a continuous silver film layer, consisted of spherical Ag nanoparticles, and the ZnO nanosheets were synthesized on PI substrate by electroless and electrochemical deposition, respectively. Moreover, the growth mechanism of the Ag film and ZnO nanosheets was also discussed. The characterization of X-ray diffraction verified that the ZnO nanosheets had a hexagonal phase and grew along the [002] direction. The optical absorbance spectra of bare PI, PI/Ag, and PI/Ag/ZnO showed a broad absorption peak around 300 nm. The electrical properties of the PI/Ag and PI/Ag/ZnO samples were studied by current-voltage (I-V) measurements in the dark environment at room temperature (300 K). The I-V measurements suggested that the samples presented ohmic characteristics. The results revealed that the deposition of ZnO on PI/Ag substrate improved the electrical conductivity compare with bare PI/Ag.

References

  • 1. Lee D, Youn DY, Luo Z, Kim I D. Highly flexible transparent electrodes using a silver nanowires-embedded colorless polyimide film via chemical modification. RSC Adv. 6 (2016) 30331–30336.
  • 2. Yu Y, Shen W, Li F, Fang X, Duan H, Xu F, Xiong Y, Xu W, Song W. Solution-processed multifunctional transparent conductive films based on long silver nanowires/polyimide structure with highly thermostable and antibacterial properties. RSC Adv. 7 (2017) 28670–28676.
  • 3. Kang L, Shi Y, Zhang J, Huang C, Zhang N, He Y, Li W, Wang C, Wu X, Zhou X. A flexible resistive temperature detector (RTD) based on in-situ growth of patterned Ag film on polyimide without lithography. Microelectron. Eng. 216 (2019) 111052.
  • 4. Liaw DJ, Wang KL, Huang YC, Lee KR, Lai JY, Ha CS. Advanced polyimide materials: Syntheses, physical properties and applications. Prog. Polym. Sci. 37 (2012) 907–974.
  • 5. Ou X, Lu X, Chen S, Lu Q. Thermal conductive hybrid polyimide with ultrahigh heat resistance, excellent mechanical properties and low coefficient of thermal expansion. Eur. Polym. J. 122 (2019) 109368.
  • 6. Chen TP, Young SJ, Chang SJ, Hsiao CH. Photoconductive gain of vertical ZnO nanorods on flexible polyimide substrate by low-temperature process. IEEE Sens. J. 11 (2011) 3457–3461.
  • 7. Cooper R, Ferguson D, Engelhart DP, Hoffmann R. Effects of radiation damage on polyimide resistivity. J. Spacecr. Rockets. 54 (2017) 343–348.
  • 8. Shen FY, Huang SE, Dow WP. Silver metallization of polyimide surfaces using environmentally friendly reducing agents. ECS Electrochem. Lett. 2 (2013) 45–48.
  • 9. Chen JJ, An Q, Rodriguez RD, Sheremet E, Wang Y, Sowade E, Baumann RR, Feng ZS. Surface modification with special morphology for the metallization of polyimide film. Appl. Surf. Sci. 487 (2019) 503–509.
  • 10. Nguyen THL, Cortes LQ, Lonjon A, Dantras E, Lacabanne C. High conductive Ag nanowire-polyimide composites: Charge transport mechanism in thermoplastic thermostable materials. J. Non. Cryst. Solids. 385 (2014) 34–39.
  • 11. Akamatsu K, Ikeda S, Nawafune H. Site-Selective Direct Silver Metallization on Surface-Modified Polyimide Layers. Langmuir. 19 (2003) 10366–10371.
  • 12. Tang QY, Chan YC, Wong NB, Cheung R. Surfactant-assisted processing of polyimide/multiwall carbon nanotube nanocomposites formicroelectronics applications. Polym. Int. 59 (2010) 1240–1245.
  • 13. Akamatsu K, Shinkai H, Ikeda S, Adachi S, Nawafune H, Tomita S. Controlling interparticle spacing among metal nanoparticles through metal-catalyzed decomposition of surrounding polymer matrix. J. Am. Chem. Soc. 127 (2005) 7980–7981.
  • 14. Chang TFM, Wang CC, Yen CY, Chen SH, Chen CY, Sone M. Metallization of polyimide films with enlarged area by conducting the catalyzation in supercritical carbon dioxide. Microelectron. Eng. 153 (2016) 1–4.
  • 15. Choi DJ, Maeng JS, Ahn KO, Jung MJ, Song SH, Kim YH. Synthesis of Cu or Cu2O-polyimide nanocomposites using Cu powders and their optical properties. Nanotechnology. 25 (2014), 375604.
  • 16. Kou H, Jia L, Wang C. Electrochemical deposition of flower-like ZnO nanoparticles on a silver-modified carbon nanotube/polyimide membrane to improve its photoelectric activity and photocatalytic performance. Carbon. 50 (2012) 3522–3529.
  • 17. Chen Q, Sun Y, Wang Y, Cheng H, Wang QM. ZnO nanowires-polyimide nanocomposite piezoresistive strain sensor. Sensors Actuators, A Phys. 190 (2013) 161-167.
  • 18. Babrekar HA, Jejurikar SM, Jog JP, Adhi KP, Bhoraskar SV. Low thermal emissive surface properties of ZnO/polyimide composites prepared by pulsed laser deposition. Appl. Surf. Sci. 257 (2011) 1824–1828.
  • 19. Li D, Wu C, Ruan L, Wang J, Qui Z, Wang K, Liu Y, Zhang Y, Guo T, Lin J, Kim TW. Electron-transfer mechanisms for confirmation of contact-electrification in ZnO/polyimide-based triboelectric nanogenerators. Nano Energy. 75 (2020) 104818.
  • 20. Shishino K, Yamada T, Arai M, İkeda M, Hirata H, Motoi M, Hatakeyama T, Teshima K. A strongly adhering ZnO crystal layer: Via a seed/buffer-free, low-temperature direct growth on a polyimide film via a solution process. CrystEngComm. 22 (2020) 5533-5538.
  • 21. Wu Z, Wu D, Qi S, Zhang T, Jin R. Preparation of surface conductive and highly reflective silvered polyimide films by surface modification and in situ self-metallization technique. Thin Solid Films. 493 (2005) 179–184.
  • 22. Liu TJ, Chen CH, Wu PY, Lin CH, Chen CM. Efficient and Adhesiveless Metallization of Flexible Polyimide by Functional Grafting of Carboxylic Acid Groups. Langmuir. 35 (2019) 7212–7221.
  • 23. Cetinel A, Artunç N, Tarhan E. The growth of silver nanostructures on porous silicon for enhanced photoluminescence: The role of AgNO3 concentration and deposition time. EPJ Appl. Phys. 86 (2019) 11301.
  • 24. Aydemir G, Utlu G, Çetinel A. Growth and characterization of ZnO nanostructures on porous silicon substrates: Effect of solution temperature. Chem. Phys. Lett. 737 (2019) 136827.
  • 25. Yang J, Wang Y, Kong J, Jia H, Wang Z. Synthesis of ZnO nanosheets via electrodeposition method and their optical properties, growth mechanism. Opt. Mater. 46 (2015) 179–185.
  • 26. Patterson AL. The scherrer formula for X-ray particle size determination. Phys. Rev. 56 (1939) 978–982.
  • 27. Siegel J, Polívková M, Kasálková NS, Kolská Z, Švorčík V. Properties of silver nanostructure-coated PTFE and its biocompatibility. Nanoscale Res. Lett. 8 (2013) 1–10.
  • 28. Sessler GM, Hahn B, Yoon DY. Electrical conduction in polyimide films. J. Appl. Phys. 60 (1986) 318–326.

Year 2022, Volume 9, Issue 1, 57 - 63, 30.03.2022
https://doi.org/10.17350/HJSE19030000255

Abstract

References

  • 1. Lee D, Youn DY, Luo Z, Kim I D. Highly flexible transparent electrodes using a silver nanowires-embedded colorless polyimide film via chemical modification. RSC Adv. 6 (2016) 30331–30336.
  • 2. Yu Y, Shen W, Li F, Fang X, Duan H, Xu F, Xiong Y, Xu W, Song W. Solution-processed multifunctional transparent conductive films based on long silver nanowires/polyimide structure with highly thermostable and antibacterial properties. RSC Adv. 7 (2017) 28670–28676.
  • 3. Kang L, Shi Y, Zhang J, Huang C, Zhang N, He Y, Li W, Wang C, Wu X, Zhou X. A flexible resistive temperature detector (RTD) based on in-situ growth of patterned Ag film on polyimide without lithography. Microelectron. Eng. 216 (2019) 111052.
  • 4. Liaw DJ, Wang KL, Huang YC, Lee KR, Lai JY, Ha CS. Advanced polyimide materials: Syntheses, physical properties and applications. Prog. Polym. Sci. 37 (2012) 907–974.
  • 5. Ou X, Lu X, Chen S, Lu Q. Thermal conductive hybrid polyimide with ultrahigh heat resistance, excellent mechanical properties and low coefficient of thermal expansion. Eur. Polym. J. 122 (2019) 109368.
  • 6. Chen TP, Young SJ, Chang SJ, Hsiao CH. Photoconductive gain of vertical ZnO nanorods on flexible polyimide substrate by low-temperature process. IEEE Sens. J. 11 (2011) 3457–3461.
  • 7. Cooper R, Ferguson D, Engelhart DP, Hoffmann R. Effects of radiation damage on polyimide resistivity. J. Spacecr. Rockets. 54 (2017) 343–348.
  • 8. Shen FY, Huang SE, Dow WP. Silver metallization of polyimide surfaces using environmentally friendly reducing agents. ECS Electrochem. Lett. 2 (2013) 45–48.
  • 9. Chen JJ, An Q, Rodriguez RD, Sheremet E, Wang Y, Sowade E, Baumann RR, Feng ZS. Surface modification with special morphology for the metallization of polyimide film. Appl. Surf. Sci. 487 (2019) 503–509.
  • 10. Nguyen THL, Cortes LQ, Lonjon A, Dantras E, Lacabanne C. High conductive Ag nanowire-polyimide composites: Charge transport mechanism in thermoplastic thermostable materials. J. Non. Cryst. Solids. 385 (2014) 34–39.
  • 11. Akamatsu K, Ikeda S, Nawafune H. Site-Selective Direct Silver Metallization on Surface-Modified Polyimide Layers. Langmuir. 19 (2003) 10366–10371.
  • 12. Tang QY, Chan YC, Wong NB, Cheung R. Surfactant-assisted processing of polyimide/multiwall carbon nanotube nanocomposites formicroelectronics applications. Polym. Int. 59 (2010) 1240–1245.
  • 13. Akamatsu K, Shinkai H, Ikeda S, Adachi S, Nawafune H, Tomita S. Controlling interparticle spacing among metal nanoparticles through metal-catalyzed decomposition of surrounding polymer matrix. J. Am. Chem. Soc. 127 (2005) 7980–7981.
  • 14. Chang TFM, Wang CC, Yen CY, Chen SH, Chen CY, Sone M. Metallization of polyimide films with enlarged area by conducting the catalyzation in supercritical carbon dioxide. Microelectron. Eng. 153 (2016) 1–4.
  • 15. Choi DJ, Maeng JS, Ahn KO, Jung MJ, Song SH, Kim YH. Synthesis of Cu or Cu2O-polyimide nanocomposites using Cu powders and their optical properties. Nanotechnology. 25 (2014), 375604.
  • 16. Kou H, Jia L, Wang C. Electrochemical deposition of flower-like ZnO nanoparticles on a silver-modified carbon nanotube/polyimide membrane to improve its photoelectric activity and photocatalytic performance. Carbon. 50 (2012) 3522–3529.
  • 17. Chen Q, Sun Y, Wang Y, Cheng H, Wang QM. ZnO nanowires-polyimide nanocomposite piezoresistive strain sensor. Sensors Actuators, A Phys. 190 (2013) 161-167.
  • 18. Babrekar HA, Jejurikar SM, Jog JP, Adhi KP, Bhoraskar SV. Low thermal emissive surface properties of ZnO/polyimide composites prepared by pulsed laser deposition. Appl. Surf. Sci. 257 (2011) 1824–1828.
  • 19. Li D, Wu C, Ruan L, Wang J, Qui Z, Wang K, Liu Y, Zhang Y, Guo T, Lin J, Kim TW. Electron-transfer mechanisms for confirmation of contact-electrification in ZnO/polyimide-based triboelectric nanogenerators. Nano Energy. 75 (2020) 104818.
  • 20. Shishino K, Yamada T, Arai M, İkeda M, Hirata H, Motoi M, Hatakeyama T, Teshima K. A strongly adhering ZnO crystal layer: Via a seed/buffer-free, low-temperature direct growth on a polyimide film via a solution process. CrystEngComm. 22 (2020) 5533-5538.
  • 21. Wu Z, Wu D, Qi S, Zhang T, Jin R. Preparation of surface conductive and highly reflective silvered polyimide films by surface modification and in situ self-metallization technique. Thin Solid Films. 493 (2005) 179–184.
  • 22. Liu TJ, Chen CH, Wu PY, Lin CH, Chen CM. Efficient and Adhesiveless Metallization of Flexible Polyimide by Functional Grafting of Carboxylic Acid Groups. Langmuir. 35 (2019) 7212–7221.
  • 23. Cetinel A, Artunç N, Tarhan E. The growth of silver nanostructures on porous silicon for enhanced photoluminescence: The role of AgNO3 concentration and deposition time. EPJ Appl. Phys. 86 (2019) 11301.
  • 24. Aydemir G, Utlu G, Çetinel A. Growth and characterization of ZnO nanostructures on porous silicon substrates: Effect of solution temperature. Chem. Phys. Lett. 737 (2019) 136827.
  • 25. Yang J, Wang Y, Kong J, Jia H, Wang Z. Synthesis of ZnO nanosheets via electrodeposition method and their optical properties, growth mechanism. Opt. Mater. 46 (2015) 179–185.
  • 26. Patterson AL. The scherrer formula for X-ray particle size determination. Phys. Rev. 56 (1939) 978–982.
  • 27. Siegel J, Polívková M, Kasálková NS, Kolská Z, Švorčík V. Properties of silver nanostructure-coated PTFE and its biocompatibility. Nanoscale Res. Lett. 8 (2013) 1–10.
  • 28. Sessler GM, Hahn B, Yoon DY. Electrical conduction in polyimide films. J. Appl. Phys. 60 (1986) 318–326.

Details

Primary Language English
Subjects Basic Sciences
Journal Section Research Article
Authors

Alper ÇETİNEL (Primary Author)
EGE ÜNİVERSİTESİ, FEN FAKÜLTESİ, FİZİK BÖLÜMÜ, KATIHAL FİZİĞİ ANABİLİM DALI
0000-0003-0626-8721
Türkiye

Publication Date March 30, 2022
Application Date July 19, 2021
Acceptance Date February 7, 2022
Published in Issue Year 2022, Volume 9, Issue 1

Cite

Bibtex @research article { hjse973246, journal = {Hittite Journal of Science and Engineering}, issn = {}, eissn = {2148-4171}, address = {Hitit Üniversitesi Mühendislik Fakültesi Kuzey Kampüsü Çevre Yolu Bulvarı 19030 Çorum / TÜRKİYE}, publisher = {Hitit University}, year = {2022}, volume = {9}, pages = {57 - 63}, doi = {10.17350/HJSE19030000255}, title = {Fabrication and Characterization of ZnO Nanosheet on a Silver-metalized Polyimide Substrate}, key = {cite}, author = {Çetinel, Alper} }
APA Çetinel, A. (2022). Fabrication and Characterization of ZnO Nanosheet on a Silver-metalized Polyimide Substrate . Hittite Journal of Science and Engineering , 9 (1) , 57-63 . DOI: 10.17350/HJSE19030000255
MLA Çetinel, A. "Fabrication and Characterization of ZnO Nanosheet on a Silver-metalized Polyimide Substrate" . Hittite Journal of Science and Engineering 9 (2022 ): 57-63 <https://dergipark.org.tr/en/pub/hjse/issue/69208/973246>
Chicago Çetinel, A. "Fabrication and Characterization of ZnO Nanosheet on a Silver-metalized Polyimide Substrate". Hittite Journal of Science and Engineering 9 (2022 ): 57-63
RIS TY - JOUR T1 - Fabrication and Characterization of ZnO Nanosheet on a Silver-metalized Polyimide Substrate AU - Alper Çetinel Y1 - 2022 PY - 2022 N1 - doi: 10.17350/HJSE19030000255 DO - 10.17350/HJSE19030000255 T2 - Hittite Journal of Science and Engineering JF - Journal JO - JOR SP - 57 EP - 63 VL - 9 IS - 1 SN - -2148-4171 M3 - doi: 10.17350/HJSE19030000255 UR - https://doi.org/10.17350/HJSE19030000255 Y2 - 2022 ER -
EndNote %0 Hittite Journal of Science and Engineering Fabrication and Characterization of ZnO Nanosheet on a Silver-metalized Polyimide Substrate %A Alper Çetinel %T Fabrication and Characterization of ZnO Nanosheet on a Silver-metalized Polyimide Substrate %D 2022 %J Hittite Journal of Science and Engineering %P -2148-4171 %V 9 %N 1 %R doi: 10.17350/HJSE19030000255 %U 10.17350/HJSE19030000255
ISNAD Çetinel, Alper . "Fabrication and Characterization of ZnO Nanosheet on a Silver-metalized Polyimide Substrate". Hittite Journal of Science and Engineering 9 / 1 (March 2022): 57-63 . https://doi.org/10.17350/HJSE19030000255
AMA Çetinel A. Fabrication and Characterization of ZnO Nanosheet on a Silver-metalized Polyimide Substrate. Hittite J Sci Eng. 2022; 9(1): 57-63.
Vancouver Çetinel A. Fabrication and Characterization of ZnO Nanosheet on a Silver-metalized Polyimide Substrate. Hittite Journal of Science and Engineering. 2022; 9(1): 57-63.
IEEE A. Çetinel , "Fabrication and Characterization of ZnO Nanosheet on a Silver-metalized Polyimide Substrate", Hittite Journal of Science and Engineering, vol. 9, no. 1, pp. 57-63, Mar. 2022, doi:10.17350/HJSE19030000255