Research Article
PDF EndNote BibTex RIS Cite

Prunus laurocerasus L. Extracts Prevent Paracetamolinduced Nephrotoxicity by Regulating Antioxidant Status: An Experimental Animal Model

Year 2022, Volume 9, Issue 4, 275 - 280, 31.12.2022
https://doi.org/10.17350/HJSE19030000280

Abstract

Paracetamol is a popular analgesic drug and its overdose may cause toxicity in the kidney. Prunus laurocerasus L. (PL) is an important folklore medicinal plant that has antioxidant properties. This study explores effects of PL fruit water and ethanol-water extracts administrations on oxidative stress in paracetamol-induced nephrotoxicity. For this purpose, 30 rats were divided into 5 groups: control, negative control (2 g/kg paracetamol), PL fruit water extract (400 mg/kg PLW+ 2 g/kg paracetamol), PL fruit ethanol-water extract (400 mg/kg PLEW+ 2 g/kg paracetamol) and positive control (150 mg/kg NAC+ 2 g/kg paracetamol). 24 hours after the paracetamol induction, animals were sacrificed and oxidative parameters were analyzed spectrophotometrically in kidney tissue. PLW and PLEW extracts decreased MDA and NOx levels and increased SOD and CAT activities in paracetamol-induced nephrotoxicity. PL fruit extracts can restore the oxidative changes caused by paracetamol.

References

  • Karabağ Çoban F, Kuru B. Effect of boron on trace element level and oxidative stress in paracetamol induced hepatotoxicity model. Journal of Boron 4 (2019) 92–99.
  • Ferah I, Halici Z, Bayir Y, Demirci E, Unal B, Cadirci E. The role of infliximab on paracetamol-induced hepatotoxicity in rats. Immunopharmacology and Immunotoxicology 35 (2013) 373–381.
  • Larson AM, Polson J, Fontana RJ, Davern TJ, Lalani E, Hynan LS, Reisch JS, Schiødt FV, Ostapowicz G, Shakil AO, Lee WM. Acetaminophen-induced acute liver failure: results of a United States multicenter, prospective study. Hepatology 42 (2005) 1364–1372.
  • Ozkaya O, Genc G, Bek K, Sullu Y. A case of acetaminophen (paracetamol) causing renal failure without liver damage in a child and review of literature. Renal Failure 32 (2010) 1125–1127.
  • Boutis K, Shannon M. Nephrotoxicity after acute severe acetaminophen poisoning in adolescents. Clinical Toxicology 39 (2001) 441–445.
  • Hung OL, Nelson LS. Acetaminophen, in: Tintinalli JE, Kelen GD, Stapczynski JS (Eds.) Tintinalli’s emergency medicine: a comprehensive study guide. 6th ed. McGraw-Hill, New York, pp. 1088–1094, 2004.
  • Canayakin D, Bayir Y, Kilic Baygutalp N, Sezen Karaoglan E, Atmaca HT, Kocak Ozgeris FB, Keles MS, Halici Z. Paracetamol-induced nephrotoxicity and oxidative stress in rats: the protective role of Nigella sativa. Pharmaceutical Biology 54 (2016) 2082–2091.
  • Macherey AC, Dansette, PM. Biotransformations Leading to Toxic Metabolites: Chemical Aspects, in: Wermuth CG, Aldous D, Raboisson P, Rognan D (Eds.) The Practice of Medicinal Chemistry. 4th ed. Academic Press, pp. 585–614, 2015.
  • Tejo J. Curcumin, antioxidant activity, and paracetamol toxicity, in: Vinood BP, Victor RP (Eds.) Toxicology. Academic Press, pp. 467–477, 2021.
  • Li J, Chiew AL, Isbister GK, Duffull, SB. Sulfate conjugation may be the key to hepatotoxicity in paracetamol overdose. British journal of clinical pharmacology 87 (2021) 2392–2396.
  • Bessems JG, Vermeulen NP. Paracetamol (acetaminophen)-induced toxicity: molecular and biochemical mechanisms, analogues and protective approaches. Critical Reviews in Toxicology 31 (2001) 55–138.
  • Jaeschke H, Bajt ML. Intracellular signaling mechanisms of acetaminophen-induced liver cell death. Toxicological Sciences 89 (2006) 31–41.
  • Aldini G, Altomare A, Baron G, Vistoli G, Carini M, Borsani L, Sergio FN. Acetylcysteine as an antioxidant and disulphide breaking agent: the reasons why. Free Radical Research 52 (2018) 751-762.
  • Uslu H, Uslu GA, Özen H, Karaman M. Effects of different doses of Prunus laurocerasus L. leaf extract on oxidative stress, hyperglycaemia and hyperlipidaemia induced by type I diabetes. Indian Journal of Traditional Knowledge 17 (2018) 430–436.
  • Vavilov NI. The origin, variation, immunity and breeding of cultivated plants. Chronica Botanica, Ronald Press, New York, pp. 211, 1951.
  • Elmastas M, Genc N, Demirtas I, Aksit H, Aboul-Enien HY. Isolation and Identification of Functional Components in Seed of Cherry Laurel (Laurocerasusofficinalis Roem.) and Investigation of Their Antioxidant Capacity, Journal of Biologically Active Products from Nature 3 (2013) 115–120.
  • Alasalvar C, Al‐Farsi M, Shahidi F. Compositional characteristics and antioxidant components of cherry laurel varieties and pekmez. Journal of food science 70 (2005) S47–S52.
  • Ozturk B, Celik SM, Karakaya M, Karakaya O, Islam A, Yarilgac T. Storage temperature affects phenolic content, antioxidant activity and fruit quality parameters of cherry laurel (Prunus laurocerasus L.). Journal of Food Processing and Preservation 41 (2017) e12774.
  • Karabegović IT, Stojičević SS, Veličković DT, Todorović ZB, Nikolić NČ, Lazić ML. The effect of different extraction techniques on the composition and antioxidant activity of cherry laurel (Prunus laurocerasus) leaf and fruit extracts. Industrial Crops and Products 54 (2014) 142–148.
  • Baytop, T. Therapy with Medicinal Plants in Turkey (Past and Present), 1st ed.; Istanbul University, Istanbul, pp 178–249, 2001.
  • Casini AF, Ferrali M, Pompella A, Maellaro E, Comporti M. Lipid peroxidation and cellular damage in extrahepatic tissues of bromobenzene-intoxicated mice. American Journal of Pathology 123 (1986) 520–531.
  • Aykac G, Uysal M, Yalcin AS, Kocak-Toker N, Sivas A, Oz H. The effect of chronic ethanol ingestion on hepatic lipid peroxide, glutathione, glutathione peroxidase and glutathione transferase in rats. Toxicology 36 (1985) 71–76.
  • Sun Y, Oberley LW, Li Y. A simple method for clinical assay of superoxide dismutase. Clinical Chemistry 34 (1988) 497–500.
  • Aebi H. Catalase in vitro. Methods in enzymology 105(1984) 121–126.
  • Miranda KM, Espey MG, Wink DA. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5 (2001) 62–71.
  • Younes M, Cornelius S, Siegers CP. Ferrous ion supported in vivo lipid peroxidation induced by paracetamol – its relation to hepatotoxicity. Research communications in chemical pathology 51 (1986) 89–99.
  • Muriel P, Garciapina T, Perez-Alvarez V, Mourelle M. Silymarin protects against paracetamol-induced lipid peroxidation and liver damage. Journal of Applied Toxicology 12 (1992) 439–442.
  • Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative medicine and cellular longevity 2014 (2014) 360438.
  • Eken A, Ünlü Endirlik B, Bakır E, Baldemir A, Yay AH, Cantürk F. Effect of Laurocerasus officinalis Roem. (Cherry laurel) fruit on dimethoate induced hepatotoxicity in rats. Kafkas Universitesi Veteriner Fakultesi Dergisi 23 (2017) 779–787.
  • Schäfer M, Werner S. Oxidative stress in normal and impaired wound repair. Pharmacological research 58 (2008) 165–171.
  • Yayla M, Halici Z, Unal B, Bayir Y, Akpinar E, Gocer F. Protective effect of et-1 receptor antagonist bosentan on paracetamol induced acute liver toxicity in rats. European Journal of Pharmacology 726 (2014) 87–95.
  • Eddaikra A, Eddaikra N. Endogenous Enzymatic Antioxidant Defense and Pathologies. in: Waisundara V. (Eds.) Antioxidants - Benefits, Sources, Mechanisms of Action. IntechOpen, London, pp. 1–646, 2021.
  • Araujo M, Welch William J. Oxidative stress and nitric oxide in kidney function. Current Opinion in Nephrology and Hypertension 15 (2006) 72–77.
  • Virág L, Szabó E, Gergely P, Szabó C. Peroxynitrite-induced cytotoxicity: mechanism and opportunities for intervention. Toxicology letters 140–141 (2003) 113-124.
  • Aydin Berktas O, Gulec Peker EG. Protective effects of Prunus laurocerasus extracts against paracetamol-induced hepatotoxicity. Nutrition and Food Processing 5 (2022) 1–5.
  • Ohno N, Yoshigai E, Okuyama T, Yamamoto Y, Okumura T, Sato K, Ikeya Y, Nishizawa M. Chlorogenic acid from the Japanese herbal medicine Kinginka (Flos Lonicerae japonicae) suppresses the expression of inducible nitric oxide synthase in rat hepatocytes. HOAJ Biology 1 (2012) 1–10.

Year 2022, Volume 9, Issue 4, 275 - 280, 31.12.2022
https://doi.org/10.17350/HJSE19030000280

Abstract

References

  • Karabağ Çoban F, Kuru B. Effect of boron on trace element level and oxidative stress in paracetamol induced hepatotoxicity model. Journal of Boron 4 (2019) 92–99.
  • Ferah I, Halici Z, Bayir Y, Demirci E, Unal B, Cadirci E. The role of infliximab on paracetamol-induced hepatotoxicity in rats. Immunopharmacology and Immunotoxicology 35 (2013) 373–381.
  • Larson AM, Polson J, Fontana RJ, Davern TJ, Lalani E, Hynan LS, Reisch JS, Schiødt FV, Ostapowicz G, Shakil AO, Lee WM. Acetaminophen-induced acute liver failure: results of a United States multicenter, prospective study. Hepatology 42 (2005) 1364–1372.
  • Ozkaya O, Genc G, Bek K, Sullu Y. A case of acetaminophen (paracetamol) causing renal failure without liver damage in a child and review of literature. Renal Failure 32 (2010) 1125–1127.
  • Boutis K, Shannon M. Nephrotoxicity after acute severe acetaminophen poisoning in adolescents. Clinical Toxicology 39 (2001) 441–445.
  • Hung OL, Nelson LS. Acetaminophen, in: Tintinalli JE, Kelen GD, Stapczynski JS (Eds.) Tintinalli’s emergency medicine: a comprehensive study guide. 6th ed. McGraw-Hill, New York, pp. 1088–1094, 2004.
  • Canayakin D, Bayir Y, Kilic Baygutalp N, Sezen Karaoglan E, Atmaca HT, Kocak Ozgeris FB, Keles MS, Halici Z. Paracetamol-induced nephrotoxicity and oxidative stress in rats: the protective role of Nigella sativa. Pharmaceutical Biology 54 (2016) 2082–2091.
  • Macherey AC, Dansette, PM. Biotransformations Leading to Toxic Metabolites: Chemical Aspects, in: Wermuth CG, Aldous D, Raboisson P, Rognan D (Eds.) The Practice of Medicinal Chemistry. 4th ed. Academic Press, pp. 585–614, 2015.
  • Tejo J. Curcumin, antioxidant activity, and paracetamol toxicity, in: Vinood BP, Victor RP (Eds.) Toxicology. Academic Press, pp. 467–477, 2021.
  • Li J, Chiew AL, Isbister GK, Duffull, SB. Sulfate conjugation may be the key to hepatotoxicity in paracetamol overdose. British journal of clinical pharmacology 87 (2021) 2392–2396.
  • Bessems JG, Vermeulen NP. Paracetamol (acetaminophen)-induced toxicity: molecular and biochemical mechanisms, analogues and protective approaches. Critical Reviews in Toxicology 31 (2001) 55–138.
  • Jaeschke H, Bajt ML. Intracellular signaling mechanisms of acetaminophen-induced liver cell death. Toxicological Sciences 89 (2006) 31–41.
  • Aldini G, Altomare A, Baron G, Vistoli G, Carini M, Borsani L, Sergio FN. Acetylcysteine as an antioxidant and disulphide breaking agent: the reasons why. Free Radical Research 52 (2018) 751-762.
  • Uslu H, Uslu GA, Özen H, Karaman M. Effects of different doses of Prunus laurocerasus L. leaf extract on oxidative stress, hyperglycaemia and hyperlipidaemia induced by type I diabetes. Indian Journal of Traditional Knowledge 17 (2018) 430–436.
  • Vavilov NI. The origin, variation, immunity and breeding of cultivated plants. Chronica Botanica, Ronald Press, New York, pp. 211, 1951.
  • Elmastas M, Genc N, Demirtas I, Aksit H, Aboul-Enien HY. Isolation and Identification of Functional Components in Seed of Cherry Laurel (Laurocerasusofficinalis Roem.) and Investigation of Their Antioxidant Capacity, Journal of Biologically Active Products from Nature 3 (2013) 115–120.
  • Alasalvar C, Al‐Farsi M, Shahidi F. Compositional characteristics and antioxidant components of cherry laurel varieties and pekmez. Journal of food science 70 (2005) S47–S52.
  • Ozturk B, Celik SM, Karakaya M, Karakaya O, Islam A, Yarilgac T. Storage temperature affects phenolic content, antioxidant activity and fruit quality parameters of cherry laurel (Prunus laurocerasus L.). Journal of Food Processing and Preservation 41 (2017) e12774.
  • Karabegović IT, Stojičević SS, Veličković DT, Todorović ZB, Nikolić NČ, Lazić ML. The effect of different extraction techniques on the composition and antioxidant activity of cherry laurel (Prunus laurocerasus) leaf and fruit extracts. Industrial Crops and Products 54 (2014) 142–148.
  • Baytop, T. Therapy with Medicinal Plants in Turkey (Past and Present), 1st ed.; Istanbul University, Istanbul, pp 178–249, 2001.
  • Casini AF, Ferrali M, Pompella A, Maellaro E, Comporti M. Lipid peroxidation and cellular damage in extrahepatic tissues of bromobenzene-intoxicated mice. American Journal of Pathology 123 (1986) 520–531.
  • Aykac G, Uysal M, Yalcin AS, Kocak-Toker N, Sivas A, Oz H. The effect of chronic ethanol ingestion on hepatic lipid peroxide, glutathione, glutathione peroxidase and glutathione transferase in rats. Toxicology 36 (1985) 71–76.
  • Sun Y, Oberley LW, Li Y. A simple method for clinical assay of superoxide dismutase. Clinical Chemistry 34 (1988) 497–500.
  • Aebi H. Catalase in vitro. Methods in enzymology 105(1984) 121–126.
  • Miranda KM, Espey MG, Wink DA. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5 (2001) 62–71.
  • Younes M, Cornelius S, Siegers CP. Ferrous ion supported in vivo lipid peroxidation induced by paracetamol – its relation to hepatotoxicity. Research communications in chemical pathology 51 (1986) 89–99.
  • Muriel P, Garciapina T, Perez-Alvarez V, Mourelle M. Silymarin protects against paracetamol-induced lipid peroxidation and liver damage. Journal of Applied Toxicology 12 (1992) 439–442.
  • Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative medicine and cellular longevity 2014 (2014) 360438.
  • Eken A, Ünlü Endirlik B, Bakır E, Baldemir A, Yay AH, Cantürk F. Effect of Laurocerasus officinalis Roem. (Cherry laurel) fruit on dimethoate induced hepatotoxicity in rats. Kafkas Universitesi Veteriner Fakultesi Dergisi 23 (2017) 779–787.
  • Schäfer M, Werner S. Oxidative stress in normal and impaired wound repair. Pharmacological research 58 (2008) 165–171.
  • Yayla M, Halici Z, Unal B, Bayir Y, Akpinar E, Gocer F. Protective effect of et-1 receptor antagonist bosentan on paracetamol induced acute liver toxicity in rats. European Journal of Pharmacology 726 (2014) 87–95.
  • Eddaikra A, Eddaikra N. Endogenous Enzymatic Antioxidant Defense and Pathologies. in: Waisundara V. (Eds.) Antioxidants - Benefits, Sources, Mechanisms of Action. IntechOpen, London, pp. 1–646, 2021.
  • Araujo M, Welch William J. Oxidative stress and nitric oxide in kidney function. Current Opinion in Nephrology and Hypertension 15 (2006) 72–77.
  • Virág L, Szabó E, Gergely P, Szabó C. Peroxynitrite-induced cytotoxicity: mechanism and opportunities for intervention. Toxicology letters 140–141 (2003) 113-124.
  • Aydin Berktas O, Gulec Peker EG. Protective effects of Prunus laurocerasus extracts against paracetamol-induced hepatotoxicity. Nutrition and Food Processing 5 (2022) 1–5.
  • Ohno N, Yoshigai E, Okuyama T, Yamamoto Y, Okumura T, Sato K, Ikeya Y, Nishizawa M. Chlorogenic acid from the Japanese herbal medicine Kinginka (Flos Lonicerae japonicae) suppresses the expression of inducible nitric oxide synthase in rat hepatocytes. HOAJ Biology 1 (2012) 1–10.

Details

Primary Language English
Subjects Basic Sciences
Journal Section Research Articles
Authors

Kaan KALTALIOĞLU> (Primary Author)
GİRESUN ÜNİVERSİTESİ
0000-0002-4995-2657
Türkiye

Thanks The author thanks to Dr. O. Aydin Berktas and Dr. E. G. Gulec Peker for their kind support in the study.
Publication Date December 31, 2022
Submission Date August 12, 2022
Acceptance Date October 4, 2022
Published in Issue Year 2022, Volume 9, Issue 4

Cite

Bibtex @research article { hjse1161244, journal = {Hittite Journal of Science and Engineering}, eissn = {2148-4171}, address = {Hitit Üniversitesi Mühendislik Fakültesi Kuzey Kampüsü Çevre Yolu Bulvarı 19030 Çorum / TÜRKİYE}, publisher = {Hitit University}, year = {2022}, volume = {9}, number = {4}, pages = {275 - 280}, doi = {10.17350/HJSE19030000280}, title = {Prunus laurocerasus L. Extracts Prevent Paracetamolinduced Nephrotoxicity by Regulating Antioxidant Status: An Experimental Animal Model}, key = {cite}, author = {Kaltalıoğlu, Kaan} }
APA Kaltalıoğlu, K. (2022). Prunus laurocerasus L. Extracts Prevent Paracetamolinduced Nephrotoxicity by Regulating Antioxidant Status: An Experimental Animal Model . Hittite Journal of Science and Engineering , 9 (4) , 275-280 . DOI: 10.17350/HJSE19030000280
MLA Kaltalıoğlu, K. "Prunus laurocerasus L. Extracts Prevent Paracetamolinduced Nephrotoxicity by Regulating Antioxidant Status: An Experimental Animal Model" . Hittite Journal of Science and Engineering 9 (2022 ): 275-280 <https://dergipark.org.tr/en/pub/hjse/issue/74853/1161244>
Chicago Kaltalıoğlu, K. "Prunus laurocerasus L. Extracts Prevent Paracetamolinduced Nephrotoxicity by Regulating Antioxidant Status: An Experimental Animal Model". Hittite Journal of Science and Engineering 9 (2022 ): 275-280
RIS TY - JOUR T1 - Prunus laurocerasus L. Extracts Prevent Paracetamolinduced Nephrotoxicity by Regulating Antioxidant Status: An Experimental Animal Model AU - KaanKaltalıoğlu Y1 - 2022 PY - 2022 N1 - doi: 10.17350/HJSE19030000280 DO - 10.17350/HJSE19030000280 T2 - Hittite Journal of Science and Engineering JF - Journal JO - JOR SP - 275 EP - 280 VL - 9 IS - 4 SN - -2148-4171 M3 - doi: 10.17350/HJSE19030000280 UR - https://doi.org/10.17350/HJSE19030000280 Y2 - 2022 ER -
EndNote %0 Hittite Journal of Science and Engineering Prunus laurocerasus L. Extracts Prevent Paracetamolinduced Nephrotoxicity by Regulating Antioxidant Status: An Experimental Animal Model %A Kaan Kaltalıoğlu %T Prunus laurocerasus L. Extracts Prevent Paracetamolinduced Nephrotoxicity by Regulating Antioxidant Status: An Experimental Animal Model %D 2022 %J Hittite Journal of Science and Engineering %P -2148-4171 %V 9 %N 4 %R doi: 10.17350/HJSE19030000280 %U 10.17350/HJSE19030000280
ISNAD Kaltalıoğlu, Kaan . "Prunus laurocerasus L. Extracts Prevent Paracetamolinduced Nephrotoxicity by Regulating Antioxidant Status: An Experimental Animal Model". Hittite Journal of Science and Engineering 9 / 4 (December 2022): 275-280 . https://doi.org/10.17350/HJSE19030000280
AMA Kaltalıoğlu K. Prunus laurocerasus L. Extracts Prevent Paracetamolinduced Nephrotoxicity by Regulating Antioxidant Status: An Experimental Animal Model. Hittite J Sci Eng. 2022; 9(4): 275-280.
Vancouver Kaltalıoğlu K. Prunus laurocerasus L. Extracts Prevent Paracetamolinduced Nephrotoxicity by Regulating Antioxidant Status: An Experimental Animal Model. Hittite Journal of Science and Engineering. 2022; 9(4): 275-280.
IEEE K. Kaltalıoğlu , "Prunus laurocerasus L. Extracts Prevent Paracetamolinduced Nephrotoxicity by Regulating Antioxidant Status: An Experimental Animal Model", Hittite Journal of Science and Engineering, vol. 9, no. 4, pp. 275-280, Dec. 2022, doi:10.17350/HJSE19030000280