Research Article
PDF EndNote BibTex RIS Cite

Design, Synthesis and Characterization of 1,2-Phenylenediamine Functionalized Poly (Maleic Anhydride-alt-Vinyl Acetate) as a Potential New Bioactive Formulation

Year 2022, Volume 9, Issue 4, 305 - 311, 31.12.2022
https://doi.org/10.17350/HJSE19030000284

Abstract

This study includes the design, synthesis and characterization of 1,2-phenylenediamine (o-PDA) functionalized maleic anhydride (MA)-vinyl acetate (VA) copolymer-based conjugate to develop a new formulation. The 1,2-phenylenediamine molecule is a fluorescent dye that allows designing new chemotherapeutic polymeric molecules. Poly(maleic anhydride-alt-vinyl acetate) [Poly(MA-alt-VA)] was obtained via charge transfer complex (CTC) radical polymerization presence of methyl ethyl ketone (MEK), utilizing benzoyl peroxide (BPO) free-radical initiator at 80 °C, as a potential functional polymeric carrier. Structural characterization of the surface functionalized poly(MA-alt-VA)/1,2-PDA conjugate was performed by Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) and Nuclear Magnetic Resonance (1H-NMR). Spectroscopic methods and water solubility results confirmed that the conjugation took place successfully after the ring opening reaction by the amidation mechanism.

References

  • 1. I.D. Ibrahim, T. Jamiru, E.R. Sadiku, W.K. Kupolati, S.C. Agwuncha, Mechanical properties of sisal fibre-reinforced polymer composites: a review, Compos. Interface., 23(1) (2016) 15-36.
  • 2. E.R. Fuchs, F.R. Field, R. Roth, R.E. Kirchain, Strategic materials selection in the automobile body: Economic opportunities for polymer composite design, Compos. Sci. Technol., 68 (2008) 1989-2002.
  • 3. S.P. Victor, J. Muthu, Bioactive mechanically favorable, and biodegradable copolymer nanocomposites for orthopedic applications, Mater. Sci. Eng. C. Mater. Biol. Appl., 39 (2014) 150-160.
  • 4. Z. Ma, Z. Mao, C. Gao, Surface modification and property analysis of biomedical polymers used for tissue engineering, Colloids. Surf. B. Biointerfaces., 60 (2007) 137-157. 5. F. Scognamiglio, A. Travan, I. Rustighi, P. Tarchi, S. Palmisano, Adhesive and sealant interfaces for general surgery applications, J. Biomed. Mater. Res. B. Appl. Biomater., 104(3) (2016) 626-639.
  • 6. H. Ringsdorf, Structure and properties of pharmacologically active polymers, J. Polym. Sci., 51 (1975) 135–153.
  • 7. R. Duncan, Polymer conjugates for tumour targeting and intracytoplasmic delivery. The EPR effect as a common gateway?, Res. Focus. Rev., 2 (1999) 441–449.
  • 8. D. Spridon, L. Panaitescu, D. Ursu, C.V. Uglea, Synthesis and biocompatibility of maleic anhydride copolymers: 1. Maleic anhydride–vinyl acetate, maleic anhydride methyl methacrylate and maleic anhydride-styrene, Polym. Int., 43 (1997) 175–181.
  • 9. G.R. Saad, R.E. Morsi, S.Z. Mohammady, M.Z. Elsabee, Dielectric relaxation of monoesters based poly(styrene-co-maleic anhydride) copolymer, J. Polym. Res., 15 (2008) 115–123.
  • 10. H.Y. Liu, K. Cao, Z. Yao, B.G. Li, G.H. Hu, Variations of the glass-transition temperature in the imidization of poly(styrene-co-maleic anhydride), J. Appl. Polym. Sci., 104 (2007) 2418–2422.
  • 11. R-J. Yu, J-J. Sun, H. Song, J-Z. Tian, D-W. Li, Y-T. Long, Real-Time Sensing of O-Phenylenediamine Oxidation on Gold Nanoparticles, Sensors., 17 (2017) 530.
  • 12. https://www.sigmaaldrich.com.
  • 13. G. Karakus, H.B. Zengin, Z. Akin-Polat, A.F. Yenidunya, S. Aydin, Cytotoxicity of three maleic anhydride copolymers and common solvents used for polymer solvation, Polym. Bull., 70 (2013) 1591–1612.
  • 14. G. Karakus, Z. Akin-Polat, A.F. Yenidunya, H.B. Zengin, C.B. Karakus, Synthesis, characterization and cytotoxicity of novel modified poly[(maleic anhydride)-co-(vinyl acetate)]/noradrenaline conjugate, Polym. Int., 62 (2013) 492–500.
  • 15. H. Kaplan-Can, G. Karakus, N. Tuzcu, Synthesis, characterization and in vitro antibacterial assessments of a novel modified poly [maleic anhydride-alt-acrylic acid]/acriflavine conjugate, Polym. Bull., 71 (2014) 2903–292.
  • 16. H. Kaplan-Can, A.L. Doğan, Z.M.O. Rzaev, A. Hasegeli Üner, A. Güner, Synthesis, characterization, and antitumor activity of poly (maleic anhydride-co-vinyl acetate-co-acrylic acid), J. Appl. Polym. Sci., 100 (2006) 3425-3432.
  • 17. G. Karakus, Synthesis, Structural Characterization, and Water Solubility of a Novel Modified Poly(maleic anhydride-co-vinyl acetate)/Acriflavine Conjugate, Hacettepe J. Biol. & Chem., 44(4) 2016 549–558.
  • 18. K.J. Yoon, J.H. Woo, Y.S. Seo, Formaldehyde free cross-linking agents based on maleic anhydride copolymers, Fiber. Polym., 4 (2003) 182–187.
  • 19. C.M. Xiao, J. Tan, G.N. Xue, Synthesis and properties of starch-g-poly(maleic anhydride-co-vinyl acetate), Express. Polym. Lett., 4 (2010) 9–16.
  • 20. G.C. Chitanu, I. Popescu, A. Carpov, Synthesis and characterization of maleic anhydride copolymers and their derivatives. 2. New data on the copolymerization of maleic anhydride with vinyl acetate, Rev. Roum. Chim., 51 (2006) 923–929.
  • 21. Z. Qiao, Y. Xie, M. Chen, J. Xu, Y. Zhu, Y. Qian, Synthesis of lead sulfide/(polyvinyl acetate) nanocomposites with controllable morphology, Chem. Phys. Lett., 321 (2000) 504–507.
  • 22. V. Sunel, M. Popa, A.D. Stoican, A.A. Popa, C. Uglea, Poly (maleic anhydride-alt-vinyl acetate) conjugate with alkylating agents, Mater. Plast., 45 (2008) 149–153.
  • 23. S. Ghosh, A.K. Banthia, An approach to novel polyamidoamine (PAMAM) side chain dendritic polyesterurethane (SCDPEU) block copolymer architectures, Eur. Polym. J., 39 (2003) 2141–2146.
  • 24. F. Zafar, E. Sharmin, S.M. Ashraf, S. Ahmad, Studies on poly(styrene-co-maleic anhydride)-modified polyesteramide-based anticorrosive coatings synthesized from a sustainable resource, J. Appl. Polym. Sci., 92 (2004) 2538–2544.
  • 25. B.C. Smith, Spectroscopy., 30(1)(2015) 16–23.
  • 26. B.C. Smith, Spectroscopy., 31(3)(2016) 34–37.
  • 27. B.C. Smith, Electromagnetic Radiation, Spectral Units, and Alkanes, Spectroscopy., 30(4) (2015) 18–23.
  • 28. J.H. Jeong, Y.S. Byoun, S.B. Ko, Y.S. Lee, Chemical modification of poly(styrene-alt-maleic anhydride) with antimicrobial 4-aminobenzoic acid and 4-hydroxybenzoic acid, J. Ind. Eng. Chem., 7 (2001) 310–315.
  • 29. M. Ak, A. Durmus, L. Toppare, Synthesis and characterization of poly(N-(2-(thiophen-3-yl)methylcarbonyloxyethyl) maleimide) and its spectroelectrochemical properties, J. Appl. Electrochem., 37 (2007) 729–735.
  • 30. S. Wang, M. Wang, Y. Lei, L. Zhang, Anchor effect in poly(styrene maleic anhydride)/TiO2 nanocomposites, J. Mater. Sci. Lett., 18 (1999) 2009–2012.
  • 31. H.G.M. Edwards, E. Hickmott, M.A. Hughes, Vibrational spectroscopic studies of potential amidic extractants for lanthanides and actinides in nuclear waste treatment, Spectrochim. Acta. A., 53 (1997) 43–53.
  • 32. M. Coskun, P. Seven, Synthesis, characterization and investigation of dielectric properties of two-armed graft copolymers prepared with methyl methacrylate and styrene onto PVC using atom transfer radical polymerization, React. Funct. Polym., 71 (2011) 395–401.
  • 33. G. Karakus, A. Ece, A. Sahin-Yaglioglu, H.B. Zengin, M. Karahan, Synthesis, structural characterization, and antiproliferative/cytotoxic effects of a novel modified poly(maleic anhydride-co-vinyl acetate)/doxorubicin conjugate, Polym. Bull., 74 (2017) 2159–2184.
  • 34. S. Hwang, C.H. Lee, I.S. Ahn, Product identification of guaiacol oxidation catalyzed by manganese peroxidase, J. Ind. Eng. Chem., 14 (2008) 487–492.
  • 35. E. Lee, B.H. Moon, Y. Park, S. Hong, S. Lee, Y. Lee, Y. Lim, Effects of hydroxy and methoxy substituents on NMR data in flavonols, Bull. Korean. Chem. Soc., 29 (2008) 507–510.
  • 36. D. Jacquemin, E.A. Perpete, I. Ciofini, On the performances of the M06 family of density functionals for electronic excitation energies, J. Chem. Theory. Comput., 6(2010) 2071–2085.
  • 37. G. Nemtoi, C. Beldie, C. Tircolea, I. Popa, I. Cretescu, I. Humelnicu, D. Humelnicu, Behaviour of the poly(maleic anhydride-co-vinyl acetate) copolymer in aqueous solutions, Eur. Polym. J., 37 (2001) 729–735.
  • 38. F. Zafar, E. Sharmin, S.M. Ashraf, S. Ahmad, Studies on poly(styrene-co-maleic anhydride)-modified polyesteramide-based anticorrosive coatings synthesized from a sustainable resource, J. Appl. Polym. Sci., 92 (2004) 2538-2544.
  • 39. F. Mustata, I. Bicu, P-aminobenzoic acid/cyclohexanon/formaldehyde resins as hardner for epoxy resins. Synthesis and characterization, J. Optoelectron. Adv. M., 8 (2006) 871–875.
  • 40. M. Coskun, P. Seven, Synthesis, characterization and investigation of dielectric properties of two-armed graft copolymers prepared with methyl methacrylate and styrene onto PVC using atom transfer radical polymerization, React. Funct. Polym,. 71 (2011) 395–401.
  • 41. R. Ranjbar-Karimi, H. Loghmani-Khouzani, Synthesis of new azines in various reaction conditions and investigation of their cycloaddition reaction, J. Iran. Chem. Soc., 8 (2011) 223–230.
  • 42. H. Maeda, M. Ueda, T. Morinaga, T. Matsumoto, Conjugation of poly(styrene-co-maleic acid) derivatives to the antitumor protein neocarzinostatin: pronounced improvements in pharmacological properties, J. Med. Chem., 28 (1985) 455-461.
  • 43. H. Patel, D.A. Raval, D. Madamwar, S.R. Patel, Polymeric prodrug: synthesis, release study and antimicrobial property of poly(styrene-co-maleic anhydride)-bound acriflavine, Angew. Makromol. Chem., 263 (1998) 25-30.
  • 44. C.J. Cox, K. Dutta, E.T. Petri, W.C. Hwang, Y. Lin, S.M. Pascal, R. Basavappa, The regions of securin and cyclin B proteins recognized by the ubiquitination machinery are relatively unfolded, FEBS Lett., 527 (2002) 303-308.

Year 2022, Volume 9, Issue 4, 305 - 311, 31.12.2022
https://doi.org/10.17350/HJSE19030000284

Abstract

References

  • 1. I.D. Ibrahim, T. Jamiru, E.R. Sadiku, W.K. Kupolati, S.C. Agwuncha, Mechanical properties of sisal fibre-reinforced polymer composites: a review, Compos. Interface., 23(1) (2016) 15-36.
  • 2. E.R. Fuchs, F.R. Field, R. Roth, R.E. Kirchain, Strategic materials selection in the automobile body: Economic opportunities for polymer composite design, Compos. Sci. Technol., 68 (2008) 1989-2002.
  • 3. S.P. Victor, J. Muthu, Bioactive mechanically favorable, and biodegradable copolymer nanocomposites for orthopedic applications, Mater. Sci. Eng. C. Mater. Biol. Appl., 39 (2014) 150-160.
  • 4. Z. Ma, Z. Mao, C. Gao, Surface modification and property analysis of biomedical polymers used for tissue engineering, Colloids. Surf. B. Biointerfaces., 60 (2007) 137-157. 5. F. Scognamiglio, A. Travan, I. Rustighi, P. Tarchi, S. Palmisano, Adhesive and sealant interfaces for general surgery applications, J. Biomed. Mater. Res. B. Appl. Biomater., 104(3) (2016) 626-639.
  • 6. H. Ringsdorf, Structure and properties of pharmacologically active polymers, J. Polym. Sci., 51 (1975) 135–153.
  • 7. R. Duncan, Polymer conjugates for tumour targeting and intracytoplasmic delivery. The EPR effect as a common gateway?, Res. Focus. Rev., 2 (1999) 441–449.
  • 8. D. Spridon, L. Panaitescu, D. Ursu, C.V. Uglea, Synthesis and biocompatibility of maleic anhydride copolymers: 1. Maleic anhydride–vinyl acetate, maleic anhydride methyl methacrylate and maleic anhydride-styrene, Polym. Int., 43 (1997) 175–181.
  • 9. G.R. Saad, R.E. Morsi, S.Z. Mohammady, M.Z. Elsabee, Dielectric relaxation of monoesters based poly(styrene-co-maleic anhydride) copolymer, J. Polym. Res., 15 (2008) 115–123.
  • 10. H.Y. Liu, K. Cao, Z. Yao, B.G. Li, G.H. Hu, Variations of the glass-transition temperature in the imidization of poly(styrene-co-maleic anhydride), J. Appl. Polym. Sci., 104 (2007) 2418–2422.
  • 11. R-J. Yu, J-J. Sun, H. Song, J-Z. Tian, D-W. Li, Y-T. Long, Real-Time Sensing of O-Phenylenediamine Oxidation on Gold Nanoparticles, Sensors., 17 (2017) 530.
  • 12. https://www.sigmaaldrich.com.
  • 13. G. Karakus, H.B. Zengin, Z. Akin-Polat, A.F. Yenidunya, S. Aydin, Cytotoxicity of three maleic anhydride copolymers and common solvents used for polymer solvation, Polym. Bull., 70 (2013) 1591–1612.
  • 14. G. Karakus, Z. Akin-Polat, A.F. Yenidunya, H.B. Zengin, C.B. Karakus, Synthesis, characterization and cytotoxicity of novel modified poly[(maleic anhydride)-co-(vinyl acetate)]/noradrenaline conjugate, Polym. Int., 62 (2013) 492–500.
  • 15. H. Kaplan-Can, G. Karakus, N. Tuzcu, Synthesis, characterization and in vitro antibacterial assessments of a novel modified poly [maleic anhydride-alt-acrylic acid]/acriflavine conjugate, Polym. Bull., 71 (2014) 2903–292.
  • 16. H. Kaplan-Can, A.L. Doğan, Z.M.O. Rzaev, A. Hasegeli Üner, A. Güner, Synthesis, characterization, and antitumor activity of poly (maleic anhydride-co-vinyl acetate-co-acrylic acid), J. Appl. Polym. Sci., 100 (2006) 3425-3432.
  • 17. G. Karakus, Synthesis, Structural Characterization, and Water Solubility of a Novel Modified Poly(maleic anhydride-co-vinyl acetate)/Acriflavine Conjugate, Hacettepe J. Biol. & Chem., 44(4) 2016 549–558.
  • 18. K.J. Yoon, J.H. Woo, Y.S. Seo, Formaldehyde free cross-linking agents based on maleic anhydride copolymers, Fiber. Polym., 4 (2003) 182–187.
  • 19. C.M. Xiao, J. Tan, G.N. Xue, Synthesis and properties of starch-g-poly(maleic anhydride-co-vinyl acetate), Express. Polym. Lett., 4 (2010) 9–16.
  • 20. G.C. Chitanu, I. Popescu, A. Carpov, Synthesis and characterization of maleic anhydride copolymers and their derivatives. 2. New data on the copolymerization of maleic anhydride with vinyl acetate, Rev. Roum. Chim., 51 (2006) 923–929.
  • 21. Z. Qiao, Y. Xie, M. Chen, J. Xu, Y. Zhu, Y. Qian, Synthesis of lead sulfide/(polyvinyl acetate) nanocomposites with controllable morphology, Chem. Phys. Lett., 321 (2000) 504–507.
  • 22. V. Sunel, M. Popa, A.D. Stoican, A.A. Popa, C. Uglea, Poly (maleic anhydride-alt-vinyl acetate) conjugate with alkylating agents, Mater. Plast., 45 (2008) 149–153.
  • 23. S. Ghosh, A.K. Banthia, An approach to novel polyamidoamine (PAMAM) side chain dendritic polyesterurethane (SCDPEU) block copolymer architectures, Eur. Polym. J., 39 (2003) 2141–2146.
  • 24. F. Zafar, E. Sharmin, S.M. Ashraf, S. Ahmad, Studies on poly(styrene-co-maleic anhydride)-modified polyesteramide-based anticorrosive coatings synthesized from a sustainable resource, J. Appl. Polym. Sci., 92 (2004) 2538–2544.
  • 25. B.C. Smith, Spectroscopy., 30(1)(2015) 16–23.
  • 26. B.C. Smith, Spectroscopy., 31(3)(2016) 34–37.
  • 27. B.C. Smith, Electromagnetic Radiation, Spectral Units, and Alkanes, Spectroscopy., 30(4) (2015) 18–23.
  • 28. J.H. Jeong, Y.S. Byoun, S.B. Ko, Y.S. Lee, Chemical modification of poly(styrene-alt-maleic anhydride) with antimicrobial 4-aminobenzoic acid and 4-hydroxybenzoic acid, J. Ind. Eng. Chem., 7 (2001) 310–315.
  • 29. M. Ak, A. Durmus, L. Toppare, Synthesis and characterization of poly(N-(2-(thiophen-3-yl)methylcarbonyloxyethyl) maleimide) and its spectroelectrochemical properties, J. Appl. Electrochem., 37 (2007) 729–735.
  • 30. S. Wang, M. Wang, Y. Lei, L. Zhang, Anchor effect in poly(styrene maleic anhydride)/TiO2 nanocomposites, J. Mater. Sci. Lett., 18 (1999) 2009–2012.
  • 31. H.G.M. Edwards, E. Hickmott, M.A. Hughes, Vibrational spectroscopic studies of potential amidic extractants for lanthanides and actinides in nuclear waste treatment, Spectrochim. Acta. A., 53 (1997) 43–53.
  • 32. M. Coskun, P. Seven, Synthesis, characterization and investigation of dielectric properties of two-armed graft copolymers prepared with methyl methacrylate and styrene onto PVC using atom transfer radical polymerization, React. Funct. Polym., 71 (2011) 395–401.
  • 33. G. Karakus, A. Ece, A. Sahin-Yaglioglu, H.B. Zengin, M. Karahan, Synthesis, structural characterization, and antiproliferative/cytotoxic effects of a novel modified poly(maleic anhydride-co-vinyl acetate)/doxorubicin conjugate, Polym. Bull., 74 (2017) 2159–2184.
  • 34. S. Hwang, C.H. Lee, I.S. Ahn, Product identification of guaiacol oxidation catalyzed by manganese peroxidase, J. Ind. Eng. Chem., 14 (2008) 487–492.
  • 35. E. Lee, B.H. Moon, Y. Park, S. Hong, S. Lee, Y. Lee, Y. Lim, Effects of hydroxy and methoxy substituents on NMR data in flavonols, Bull. Korean. Chem. Soc., 29 (2008) 507–510.
  • 36. D. Jacquemin, E.A. Perpete, I. Ciofini, On the performances of the M06 family of density functionals for electronic excitation energies, J. Chem. Theory. Comput., 6(2010) 2071–2085.
  • 37. G. Nemtoi, C. Beldie, C. Tircolea, I. Popa, I. Cretescu, I. Humelnicu, D. Humelnicu, Behaviour of the poly(maleic anhydride-co-vinyl acetate) copolymer in aqueous solutions, Eur. Polym. J., 37 (2001) 729–735.
  • 38. F. Zafar, E. Sharmin, S.M. Ashraf, S. Ahmad, Studies on poly(styrene-co-maleic anhydride)-modified polyesteramide-based anticorrosive coatings synthesized from a sustainable resource, J. Appl. Polym. Sci., 92 (2004) 2538-2544.
  • 39. F. Mustata, I. Bicu, P-aminobenzoic acid/cyclohexanon/formaldehyde resins as hardner for epoxy resins. Synthesis and characterization, J. Optoelectron. Adv. M., 8 (2006) 871–875.
  • 40. M. Coskun, P. Seven, Synthesis, characterization and investigation of dielectric properties of two-armed graft copolymers prepared with methyl methacrylate and styrene onto PVC using atom transfer radical polymerization, React. Funct. Polym,. 71 (2011) 395–401.
  • 41. R. Ranjbar-Karimi, H. Loghmani-Khouzani, Synthesis of new azines in various reaction conditions and investigation of their cycloaddition reaction, J. Iran. Chem. Soc., 8 (2011) 223–230.
  • 42. H. Maeda, M. Ueda, T. Morinaga, T. Matsumoto, Conjugation of poly(styrene-co-maleic acid) derivatives to the antitumor protein neocarzinostatin: pronounced improvements in pharmacological properties, J. Med. Chem., 28 (1985) 455-461.
  • 43. H. Patel, D.A. Raval, D. Madamwar, S.R. Patel, Polymeric prodrug: synthesis, release study and antimicrobial property of poly(styrene-co-maleic anhydride)-bound acriflavine, Angew. Makromol. Chem., 263 (1998) 25-30.
  • 44. C.J. Cox, K. Dutta, E.T. Petri, W.C. Hwang, Y. Lin, S.M. Pascal, R. Basavappa, The regions of securin and cyclin B proteins recognized by the ubiquitination machinery are relatively unfolded, FEBS Lett., 527 (2002) 303-308.

Details

Primary Language English
Subjects Engineering, Basic Sciences
Journal Section Research Articles
Authors

Gülderen KARAKUŞ> (Primary Author)
SIVAS CUMHURIYET UNIVERSITY
0000-0003-2596-9208
Türkiye

Publication Date December 31, 2022
Submission Date November 9, 2022
Acceptance Date December 5, 2022
Published in Issue Year 2022, Volume 9, Issue 4

Cite

Bibtex @research article { hjse1200687, journal = {Hittite Journal of Science and Engineering}, eissn = {2148-4171}, address = {Hitit Üniversitesi Mühendislik Fakültesi Kuzey Kampüsü Çevre Yolu Bulvarı 19030 Çorum / TÜRKİYE}, publisher = {Hitit University}, year = {2022}, volume = {9}, number = {4}, pages = {305 - 311}, doi = {10.17350/HJSE19030000284}, title = {Design, Synthesis and Characterization of 1,2-Phenylenediamine Functionalized Poly (Maleic Anhydride-alt-Vinyl Acetate) as a Potential New Bioactive Formulation}, key = {cite}, author = {Karakuş, Gülderen} }
APA Karakuş, G. (2022). Design, Synthesis and Characterization of 1,2-Phenylenediamine Functionalized Poly (Maleic Anhydride-alt-Vinyl Acetate) as a Potential New Bioactive Formulation . Hittite Journal of Science and Engineering , 9 (4) , 305-311 . DOI: 10.17350/HJSE19030000284
MLA Karakuş, G. "Design, Synthesis and Characterization of 1,2-Phenylenediamine Functionalized Poly (Maleic Anhydride-alt-Vinyl Acetate) as a Potential New Bioactive Formulation" . Hittite Journal of Science and Engineering 9 (2022 ): 305-311 <https://dergipark.org.tr/en/pub/hjse/issue/74853/1200687>
Chicago Karakuş, G. "Design, Synthesis and Characterization of 1,2-Phenylenediamine Functionalized Poly (Maleic Anhydride-alt-Vinyl Acetate) as a Potential New Bioactive Formulation". Hittite Journal of Science and Engineering 9 (2022 ): 305-311
RIS TY - JOUR T1 - Design, Synthesis and Characterization of 1,2-Phenylenediamine Functionalized Poly (Maleic Anhydride-alt-Vinyl Acetate) as a Potential New Bioactive Formulation AU - GülderenKarakuş Y1 - 2022 PY - 2022 N1 - doi: 10.17350/HJSE19030000284 DO - 10.17350/HJSE19030000284 T2 - Hittite Journal of Science and Engineering JF - Journal JO - JOR SP - 305 EP - 311 VL - 9 IS - 4 SN - -2148-4171 M3 - doi: 10.17350/HJSE19030000284 UR - https://doi.org/10.17350/HJSE19030000284 Y2 - 2022 ER -
EndNote %0 Hittite Journal of Science and Engineering Design, Synthesis and Characterization of 1,2-Phenylenediamine Functionalized Poly (Maleic Anhydride-alt-Vinyl Acetate) as a Potential New Bioactive Formulation %A Gülderen Karakuş %T Design, Synthesis and Characterization of 1,2-Phenylenediamine Functionalized Poly (Maleic Anhydride-alt-Vinyl Acetate) as a Potential New Bioactive Formulation %D 2022 %J Hittite Journal of Science and Engineering %P -2148-4171 %V 9 %N 4 %R doi: 10.17350/HJSE19030000284 %U 10.17350/HJSE19030000284
ISNAD Karakuş, Gülderen . "Design, Synthesis and Characterization of 1,2-Phenylenediamine Functionalized Poly (Maleic Anhydride-alt-Vinyl Acetate) as a Potential New Bioactive Formulation". Hittite Journal of Science and Engineering 9 / 4 (December 2022): 305-311 . https://doi.org/10.17350/HJSE19030000284
AMA Karakuş G. Design, Synthesis and Characterization of 1,2-Phenylenediamine Functionalized Poly (Maleic Anhydride-alt-Vinyl Acetate) as a Potential New Bioactive Formulation. Hittite J Sci Eng. 2022; 9(4): 305-311.
Vancouver Karakuş G. Design, Synthesis and Characterization of 1,2-Phenylenediamine Functionalized Poly (Maleic Anhydride-alt-Vinyl Acetate) as a Potential New Bioactive Formulation. Hittite Journal of Science and Engineering. 2022; 9(4): 305-311.
IEEE G. Karakuş , "Design, Synthesis and Characterization of 1,2-Phenylenediamine Functionalized Poly (Maleic Anhydride-alt-Vinyl Acetate) as a Potential New Bioactive Formulation", Hittite Journal of Science and Engineering, vol. 9, no. 4, pp. 305-311, Dec. 2022, doi:10.17350/HJSE19030000284