Research Article
BibTex RIS Cite

Polyvinylalcohol/Polyethyleneimine Hydrogels: Evaluation of Swelling, Dehydration and Antibacterial Activity

Year 2024, Volume: 11 Issue: 4, 181 - 189, 31.12.2024
https://doi.org/10.17350/HJSE19030000345

Abstract

In the present study, Polyvinylalcohol/polyethyleneimine (PVA/PEI) hydrogels designed with different Glutaraldehyde (Glu) amount, PEI amount and PVA concentration were synthesized via solvent casting technique. The fabricated PVA/PEI hydrogels with different compositions were evaluated for swelling rate, dehydration properties and antibacterial activity to determine superior combination. The swelling tests were performed for 0-300 min at pH 7.4 and 37 °C. All of the prepared PVA/PEI hydrogels swelling ratio were observed in the range of 221-321%. The highest dehydration rate was found for the PVA/PEI hydrogel with the lowest PVA concentration and the lowest dehydration rate was found for the PVA/PEI hydrogel with the highest Glu amount. All the PVA/PEI hydrogels demonstrated high antibacterial activity against E.coli. PP5 (prepared with 5% PVA, 0.5 mL PEI and 30 µL Glu) was determined as the selected hydrogels with optimized characteristics in respect to swelling, dehydration and antibacterial activity data. This study highlights potential usage of the resultant PVA/PEI hydrogels as antibacterial wound dressings in wound care applications.

Supporting Institution

Hitit Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Project Number

MUH19002.16.001

References

  • 1. Cascone, S.; Lamberti, G. Hydrogel-Based Commercial Products for Biomedical Applications: A Review. Int J Pharm, 2020, 573 (November 2019), 118803. https://doi.org/10.1016/j. ijpharm.2019.118803.
  • 2. Özkahraman, B.; Acar, I.; Emik, S. Removal of Cationic Dyes from Aqueous Solutions with Poly (N-Isopropylacrylamide-Co-Itaconic Acid) Hydrogels. Polymer Bulletin, 2011, 66 (4), 551–570. https://doi.org/10.1007/s00289-010-0371-1.
  • 3. Sobhanimatin, M. B.; Pourmahdian, S.; Tehranchi, M. M. Fast Inverse Opal Humidity Sensor Based on Acrylamide/AMPS Hydrogel. Mater Today Commun, 2021, 26 (September 2020), 101997. https://doi.org/10.1016/j.mtcomm.2020.101997.
  • 4. Godiya, C. B.; Kumar, S.; Xiao, Y. Amine Functionalized Egg Albumin Hydrogel with Enhanced Adsorption Potential for Diclofenac Sodium in Water. J Hazard Mater, 2020, 393 (February), 122417. https://doi.org/10.1016/j.jhazmat.2020.122417.
  • 5. Wei, S.; Liu, X.; Zhou, J.; Zhang, J.; Dong, A.; Huang, P.; Wang, W.; Deng, L. Dual-Crosslinked Nanocomposite Hydrogels Based on Quaternized Chitosan and Clindamycin-Loaded Hyperbranched Nanoparticles for Potential Antibacterial Applications. Int J Biol Macromol, 2020, 155, 153–162. https://doi.org/10.1016/j. ijbiomac.2020.03.182.
  • 6. Koc, F. E.; Altıncekic, T. G. Investigation of Gelatin/Chitosan as Potential Biodegradable Polymer Films on Swelling Behavior and Methylene Blue Release Kinetics. Polymer Bulletin, 2021, 78 (6), 3383–3398. https://doi.org/10.1007/s00289-020-03280-7.
  • 7. Guo, T.; Wang, W.; Song, J.; Jin, Y.; Xiao, H. Dual-Responsive Carboxymethyl Cellulose/Dopamine/Cystamine Hydrogels Driven by Dynamic Metal-Ligand and Redox Linkages for Controllable Release of Agrochemical. Carbohydr Polym, 2021, 253 (September 2020), 117188. https://doi.org/10.1016/j. carbpol.2020.117188.
  • 8. Tamahkar, E.; Özkahraman, B.; Süloğlu, A. K.; İdil, N.; Perçin, I. A Novel Multilayer Hydrogel Wound Dressing for Antibiotic Release. J Drug Deliv Sci Technol, 2020, 58 (July). https://doi. org/10.1016/j.jddst.2020.101536.
  • 9. Ahsan, A.; Farooq, M. A. Therapeutic Potential of Green Synthesized Silver Nanoparticles Loaded PVA Hydrogel Patches for Wound Healing. J Drug Deliv Sci Technol, 2019, 54 (October), 101308. https://doi.org/10.1016/j.jddst.2019.101308.
  • 10. Spearman, B. S.; Agrawal, N. K.; Rubiano, A.; Simmons, C. S.; Mobini, S.; Schmidt, C. E. Tunable Methacrylated Hyaluronic Acid-Based Hydrogels as Scaffolds for Soft Tissue Engineering Applications. J Biomed Mater Res A, 2020, 108 (2), 279–291. https://doi.org/10.1002/jbm.a.36814.
  • 11. Hernandez-Montelongo, J.; Lucchesi, E. G.; Nascimento, V. F.; França, C. G.; Gonzalez, I.; Macedo, W. A. A.; Machado, D.; Lancellotti, M.; Moraes, A. M.; Beppu, M. M.; et al. Antibacterial and Non-Cytotoxic Ultra-Thin Polyethylenimine Film. Materials Science and Engineering C, 2017, 71, 718–724. https://doi. org/10.1016/j.msec.2016.10.064.
  • 12. Hernandez-Montelongo, J.; Corrales Ureña, Y. R.; Machado, D.; Lancelloti, M.; Pinheiro, M. P.; Rischka, K.; Lisboa-Filho, P. N.; Cotta, M. A. Electrostatic Immobilization of Antimicrobial Peptides on Polyethylenimine and Their Antibacterial Effect against Staphylococcus Epidermidis. Colloids Surf B Biointerfaces, 2018, 164, 370–378. https://doi.org/10.1016/j.colsurfb.2018.02.002.
  • 13. Khorasani, M. T.; Joorabloo, A.; Moghaddam, A.; Shamsi, H.; MansooriMoghadam, Z. Incorporation of ZnO Nanoparticles into Heparinised Polyvinyl Alcohol/Chitosan Hydrogels for Wound Dressing Application. Int J Biol Macromol, 2018, 114, 1203–1215. https://doi.org/10.1016/j.ijbiomac.2018.04.010.
  • 14. Chaturvedi, A.; Bajpai, A. K.; Bajpai, J.; Singh, S. K. Evaluation of Poly (Vinyl Alcohol) Based Cryogel-Zinc Oxide Nanocomposites for Possible Applications as Wound Dressing Materials. Materials Science and Engineering C, 2016, 65, 408–418. https://doi. org/10.1016/j.msec.2016.04.054.
  • 15. Boran, F.; Karakaya, Ç. Polyvinyl Alcohol / CuO Nanocomposite Hydrogels : Facile Synthesis and Long-Term Stability. Journal of Balıkesır University Institute of Science and Technology, 2019, 21 (2), 512–530. https://doi.org/10.25092/baunfbed.624392.
  • 16. Kanmaz, N.; Saloglu, D.; Hizal, J. Humic Acid Embedded Chitosan/Poly (Vinyl Alcohol) PH-Sensitive Hydrogel: Synthesis, Characterization, Swelling Kinetic and Diffusion Coefficient. Chem Eng Commun, 2019, 206 (9), 1168–1180. https://doi.org/10 .1080/00986445.2018.1550396.
  • 17. Zhang, Z.; Liu, Y.; Lin, S.; Wang, Q. Preparation and Properties of Glutaraldehyde Crosslinked Poly(Vinyl Alcohol) Membrane with Gradient Structure. Journal of Polymer Research, 2020, 27 (8), 0–6. https://doi.org/10.1007/s10965-020-02223-0.
  • 18. Hou, T.; Guo, K.; Wang, Z.; Zhang, X. F.; Feng, Y.; He, M.; Yao, J. Glutaraldehyde and Polyvinyl Alcohol Crosslinked Cellulose Membranes for Efficient Methyl Orange and Congo Red Removal. Cellulose, 2019, 26 (8), 5065–5074. https://doi. org/10.1007/s10570-019-02433-w.
  • 19. Mehrotra, T.; Zaman, M. N.; Prasad, B. B.; Shukla, A.; Aggarwal, S.; Singh, R. Rapid Immobilization of Viable Bacillus Pseudomycoides in Polyvinyl Alcohol/Glutaraldehyde Hydrogel for Biological Treatment of Municipal Wastewater. Environmental Science and Pollution Research, 2020, 27 (9), 9167–9180. https://doi.org/10.1007/s11356-019-07296-z.
  • 20. Wang, C.; Hu, K.; Zhao, C.; Zou, Y.; Liu, Y.; Qu, X.; Jiang, D.; Li, Z.; Zhang, M. R.; Li, Z. Customization of Conductive Elastomer Based on PVA/PEI for Stretchable Sensors. Small, 2020, 16 (7), 1–9. https://doi.org/10.1002/smll.201904758.
  • 21. Dridi, F.; Marrakchi, M.; Gargouri, M.; Garcia-Cruz, A.; Dzyadevych, S.; Vocanson, F.; Saulnier, J.; Jaffrezic-Renault, N.; Lagarde, F. Thermolysin Entrapped in a Gold Nanoparticles/Polymer Composite for Direct and Sensitive Conductometric Biosensing of Ochratoxin A in Olive Oil. Sens Actuators B Chem, 2015, 221, 480–490. https://doi.org/10.1016/j.snb.2015.06.120.
  • 22. Sun, X.; Yang, L.; Li, Q.; Liu, Z.; Dong, T.; Liu, H. Polyethylenimine-Functionalized Poly(Vinyl Alcohol) Magnetic Microspheres as a Novel Adsorbent for Rapid Removal of Cr(VI) from Aqueous Solution. Chemical Engineering Journal, 2015, 262, 101–108. https://doi.org/10.1016/j.cej.2014.09.045.
  • 23. Gao, F.; Xiao, J.; Huang, G. Current Scenario of Tetrazole Hybrids for Antibacterial Activity. Eur J Med Chem, 2019, 184, 111744. https://doi.org/10.1016/j.ejmech.2019.111744.
  • 24. Fang, H.; Wang, J.; Li, L.; Xu, L.; Wu, Y.; Wang, Y.; Fei, X.; Tian, J.; Li, Y. A Novel High-Strength Poly(Ionic Liquid)/PVA Hydrogel Dressing for Antibacterial Applications. Chemical Engineering Journal, 2019, 365 (January), 153–164. https://doi.org/10.1016/j. cej.2019.02.030.
  • 25. Wang, S.; Xiao, K.; Mo, Y.; Yang, B.; Vincent, T.; Faur, C.; Guibal, E. Selenium(VI) and Copper(II) Adsorption Using Polyethyleneimine-Based Resins: Effect of Glutaraldehyde Crosslinking and Storage Condition. J Hazard Mater, 2020, 386 (September 2019), 121637. https://doi.org/10.1016/j. jhazmat.2019.121637.
  • 26. Liu, Z.; Han, S.; Xu, C.; Luo, Y.; Peng, N.; Qin, C.; Zhou, M.; Wang, W.; Chen, L.; Okada, S. In Situ Crosslinked PVA-PEI Polymer Binder for Long-Cycle Silicon Anodes in Li-Ion Batteries. RSC Adv, 2016, 6 (72), 68371–68378. https://doi.org/10.1039/c6ra12232a.
  • 27. Long, J.; Nand, A. V.; Bunt, C.; Seyfoddin, A. Controlled Release of Dexamethasone from Poly(Vinyl Alcohol) Hydrogel. Pharm Dev Technol, 2019, 24 (7), 839–848. https://doi.org/10.1080/10 837450.2019.1602632.
  • 28. Guan, Y.; Wang, L.; Cui, L.; Shen, X.; Gao, W.; Meng, J.; Li, D.; Shen, C.; Zhang, Y.; Hu, G.; et al. Preparation and Rheological Investigation of Tough PAAm Hydrogel by Adding Branched Polyethyleneimine. J Appl Polym Sci, 2020, 137 (14), 1–7. https://doi.org/10.1002/app.48541.
  • 29. Mohan, Y. M.; Geckeler, K. E. Polyampholytic Hydrogels: Poly(N-Isopropylacrylamide)-Based Stimuli-Responsive Networks with Poly(Ethyleneimine). React Funct Polym, 2007, 67 (2), 144–155. https://doi.org/10.1016/j.reactfunctpolym.2006.10.010.
  • 30. Shim, J. K.; Oh, S. R.; Lee, S. B.; Cho, K. M. Preparation of Hydrogels Composed of Poly(Vinyl Alcohol) and Polyethyleneimine and Their Electrical Response. J Appl Polym Sci, 2008, 107 (4), 2136–2141. https://doi.org/10.1002/app.26676.
  • 31. Panpinit, S.; Pongsomboon, S. amnart; Keawin, T.; Saengsuwan, S. Development of Multicomponent Interpenetrating Polymer Network (IPN) Hydrogel Films Based on 2-Hydroxyethyl Methacrylate (HEMA), Acrylamide (AM), Polyvinyl Alcohol (PVA) and Chitosan (CS) with Enhanced Mechanical Strengths, Water Swelling and Antibacteria. Reactive and Functional Polymers, 2020, 156 (September), 104739. https://doi. org/10.1016/j.reactfunctpolym.2020.104739.
  • 32. Jayaramudu, T.; Ko, H.-U.; Kim, H. C.; Kim, J. W.; Kim, J. Swelling Behavior of Polyacrylamide–Cellulose Nanocrystal Hydrogels: Swelling Kinetics, Temperature, and PH Effects. Materials, 2019, 12 (13), 2080. https://doi.org/10.3390/ma12132080.
  • 33. Aydınoğlu, D. Investigation of PH-Dependent Swelling Behavior and Kinetic Parameters of Novel Poly(Acrylamide-Co-Acrylic Acid) Hydrogels with Spirulina. E-Polymers, 2015, 15 (2), 81–93. https://doi.org/10.1515/epoly-2014-0170.
  • 34. Abdessalem, A. K.; Oturan, N.; Bellakhal, N.; Dachraoui, M.; Oturan, M. A. Experimental Design Methodology Applied to Electro-Fenton Treatment for Degradation of Herbicide Chlortoluron. Applied Catalysis B: Environmental, 2008, 78 (3–4), 334–341. https://doi.org/10.1016/j.apcatb.2007.09.032.
  • 35. Schneider, L. A.; Korber, A.; Grabbe, S.; Dissemond, J. Influence of PH on Wound-Healing: A New Perspective for Wound-Therapy? Arch Dermatol Res, 2007, 298 (9), 413–420. https://doi.org/10.1007/s00403-006-0713-x.
  • 36. Avais, M.; Chattopadhyay, S. Waterborne PH Responsive Hydrogels: Synthesis, Characterization and Selective PH Responsive Behavior around Physiological PH. Polymer (Guildf), 2019, 180 (August), 121701. https://doi.org/10.1016/j. polymer.2019.121701.
  • 37. Huang, Y.; Shi, F.; Wang, L.; Yang, Y.; Khan, B. M.; Cheong, K. L.; Liu, Y. Preparation and Evaluation of Bletilla Striata Polysaccharide/Carboxymethyl Chitosan/Carbomer 940 Hydrogel for Wound Healing. Int J Biol Macromol, 2019, 132, 729–737. https://doi. org/10.1016/j.ijbiomac.2019.03.157.
  • 38. Pillai, S. K. R.; Reghu, S.; Vikhe, Y.; Zheng, H.; Koh, C. H.; Chan-Park, M. B. Novel Antimicrobial Coating on Silicone Contact Lens Using Glycidyl Methacrylate and Polyethyleneimine Based Polymers. Macromol Rapid Commun, 2020, 41 (21), 1–10. https://doi.org/10.1002/marc.202000175.
Year 2024, Volume: 11 Issue: 4, 181 - 189, 31.12.2024
https://doi.org/10.17350/HJSE19030000345

Abstract

Project Number

MUH19002.16.001

References

  • 1. Cascone, S.; Lamberti, G. Hydrogel-Based Commercial Products for Biomedical Applications: A Review. Int J Pharm, 2020, 573 (November 2019), 118803. https://doi.org/10.1016/j. ijpharm.2019.118803.
  • 2. Özkahraman, B.; Acar, I.; Emik, S. Removal of Cationic Dyes from Aqueous Solutions with Poly (N-Isopropylacrylamide-Co-Itaconic Acid) Hydrogels. Polymer Bulletin, 2011, 66 (4), 551–570. https://doi.org/10.1007/s00289-010-0371-1.
  • 3. Sobhanimatin, M. B.; Pourmahdian, S.; Tehranchi, M. M. Fast Inverse Opal Humidity Sensor Based on Acrylamide/AMPS Hydrogel. Mater Today Commun, 2021, 26 (September 2020), 101997. https://doi.org/10.1016/j.mtcomm.2020.101997.
  • 4. Godiya, C. B.; Kumar, S.; Xiao, Y. Amine Functionalized Egg Albumin Hydrogel with Enhanced Adsorption Potential for Diclofenac Sodium in Water. J Hazard Mater, 2020, 393 (February), 122417. https://doi.org/10.1016/j.jhazmat.2020.122417.
  • 5. Wei, S.; Liu, X.; Zhou, J.; Zhang, J.; Dong, A.; Huang, P.; Wang, W.; Deng, L. Dual-Crosslinked Nanocomposite Hydrogels Based on Quaternized Chitosan and Clindamycin-Loaded Hyperbranched Nanoparticles for Potential Antibacterial Applications. Int J Biol Macromol, 2020, 155, 153–162. https://doi.org/10.1016/j. ijbiomac.2020.03.182.
  • 6. Koc, F. E.; Altıncekic, T. G. Investigation of Gelatin/Chitosan as Potential Biodegradable Polymer Films on Swelling Behavior and Methylene Blue Release Kinetics. Polymer Bulletin, 2021, 78 (6), 3383–3398. https://doi.org/10.1007/s00289-020-03280-7.
  • 7. Guo, T.; Wang, W.; Song, J.; Jin, Y.; Xiao, H. Dual-Responsive Carboxymethyl Cellulose/Dopamine/Cystamine Hydrogels Driven by Dynamic Metal-Ligand and Redox Linkages for Controllable Release of Agrochemical. Carbohydr Polym, 2021, 253 (September 2020), 117188. https://doi.org/10.1016/j. carbpol.2020.117188.
  • 8. Tamahkar, E.; Özkahraman, B.; Süloğlu, A. K.; İdil, N.; Perçin, I. A Novel Multilayer Hydrogel Wound Dressing for Antibiotic Release. J Drug Deliv Sci Technol, 2020, 58 (July). https://doi. org/10.1016/j.jddst.2020.101536.
  • 9. Ahsan, A.; Farooq, M. A. Therapeutic Potential of Green Synthesized Silver Nanoparticles Loaded PVA Hydrogel Patches for Wound Healing. J Drug Deliv Sci Technol, 2019, 54 (October), 101308. https://doi.org/10.1016/j.jddst.2019.101308.
  • 10. Spearman, B. S.; Agrawal, N. K.; Rubiano, A.; Simmons, C. S.; Mobini, S.; Schmidt, C. E. Tunable Methacrylated Hyaluronic Acid-Based Hydrogels as Scaffolds for Soft Tissue Engineering Applications. J Biomed Mater Res A, 2020, 108 (2), 279–291. https://doi.org/10.1002/jbm.a.36814.
  • 11. Hernandez-Montelongo, J.; Lucchesi, E. G.; Nascimento, V. F.; França, C. G.; Gonzalez, I.; Macedo, W. A. A.; Machado, D.; Lancellotti, M.; Moraes, A. M.; Beppu, M. M.; et al. Antibacterial and Non-Cytotoxic Ultra-Thin Polyethylenimine Film. Materials Science and Engineering C, 2017, 71, 718–724. https://doi. org/10.1016/j.msec.2016.10.064.
  • 12. Hernandez-Montelongo, J.; Corrales Ureña, Y. R.; Machado, D.; Lancelloti, M.; Pinheiro, M. P.; Rischka, K.; Lisboa-Filho, P. N.; Cotta, M. A. Electrostatic Immobilization of Antimicrobial Peptides on Polyethylenimine and Their Antibacterial Effect against Staphylococcus Epidermidis. Colloids Surf B Biointerfaces, 2018, 164, 370–378. https://doi.org/10.1016/j.colsurfb.2018.02.002.
  • 13. Khorasani, M. T.; Joorabloo, A.; Moghaddam, A.; Shamsi, H.; MansooriMoghadam, Z. Incorporation of ZnO Nanoparticles into Heparinised Polyvinyl Alcohol/Chitosan Hydrogels for Wound Dressing Application. Int J Biol Macromol, 2018, 114, 1203–1215. https://doi.org/10.1016/j.ijbiomac.2018.04.010.
  • 14. Chaturvedi, A.; Bajpai, A. K.; Bajpai, J.; Singh, S. K. Evaluation of Poly (Vinyl Alcohol) Based Cryogel-Zinc Oxide Nanocomposites for Possible Applications as Wound Dressing Materials. Materials Science and Engineering C, 2016, 65, 408–418. https://doi. org/10.1016/j.msec.2016.04.054.
  • 15. Boran, F.; Karakaya, Ç. Polyvinyl Alcohol / CuO Nanocomposite Hydrogels : Facile Synthesis and Long-Term Stability. Journal of Balıkesır University Institute of Science and Technology, 2019, 21 (2), 512–530. https://doi.org/10.25092/baunfbed.624392.
  • 16. Kanmaz, N.; Saloglu, D.; Hizal, J. Humic Acid Embedded Chitosan/Poly (Vinyl Alcohol) PH-Sensitive Hydrogel: Synthesis, Characterization, Swelling Kinetic and Diffusion Coefficient. Chem Eng Commun, 2019, 206 (9), 1168–1180. https://doi.org/10 .1080/00986445.2018.1550396.
  • 17. Zhang, Z.; Liu, Y.; Lin, S.; Wang, Q. Preparation and Properties of Glutaraldehyde Crosslinked Poly(Vinyl Alcohol) Membrane with Gradient Structure. Journal of Polymer Research, 2020, 27 (8), 0–6. https://doi.org/10.1007/s10965-020-02223-0.
  • 18. Hou, T.; Guo, K.; Wang, Z.; Zhang, X. F.; Feng, Y.; He, M.; Yao, J. Glutaraldehyde and Polyvinyl Alcohol Crosslinked Cellulose Membranes for Efficient Methyl Orange and Congo Red Removal. Cellulose, 2019, 26 (8), 5065–5074. https://doi. org/10.1007/s10570-019-02433-w.
  • 19. Mehrotra, T.; Zaman, M. N.; Prasad, B. B.; Shukla, A.; Aggarwal, S.; Singh, R. Rapid Immobilization of Viable Bacillus Pseudomycoides in Polyvinyl Alcohol/Glutaraldehyde Hydrogel for Biological Treatment of Municipal Wastewater. Environmental Science and Pollution Research, 2020, 27 (9), 9167–9180. https://doi.org/10.1007/s11356-019-07296-z.
  • 20. Wang, C.; Hu, K.; Zhao, C.; Zou, Y.; Liu, Y.; Qu, X.; Jiang, D.; Li, Z.; Zhang, M. R.; Li, Z. Customization of Conductive Elastomer Based on PVA/PEI for Stretchable Sensors. Small, 2020, 16 (7), 1–9. https://doi.org/10.1002/smll.201904758.
  • 21. Dridi, F.; Marrakchi, M.; Gargouri, M.; Garcia-Cruz, A.; Dzyadevych, S.; Vocanson, F.; Saulnier, J.; Jaffrezic-Renault, N.; Lagarde, F. Thermolysin Entrapped in a Gold Nanoparticles/Polymer Composite for Direct and Sensitive Conductometric Biosensing of Ochratoxin A in Olive Oil. Sens Actuators B Chem, 2015, 221, 480–490. https://doi.org/10.1016/j.snb.2015.06.120.
  • 22. Sun, X.; Yang, L.; Li, Q.; Liu, Z.; Dong, T.; Liu, H. Polyethylenimine-Functionalized Poly(Vinyl Alcohol) Magnetic Microspheres as a Novel Adsorbent for Rapid Removal of Cr(VI) from Aqueous Solution. Chemical Engineering Journal, 2015, 262, 101–108. https://doi.org/10.1016/j.cej.2014.09.045.
  • 23. Gao, F.; Xiao, J.; Huang, G. Current Scenario of Tetrazole Hybrids for Antibacterial Activity. Eur J Med Chem, 2019, 184, 111744. https://doi.org/10.1016/j.ejmech.2019.111744.
  • 24. Fang, H.; Wang, J.; Li, L.; Xu, L.; Wu, Y.; Wang, Y.; Fei, X.; Tian, J.; Li, Y. A Novel High-Strength Poly(Ionic Liquid)/PVA Hydrogel Dressing for Antibacterial Applications. Chemical Engineering Journal, 2019, 365 (January), 153–164. https://doi.org/10.1016/j. cej.2019.02.030.
  • 25. Wang, S.; Xiao, K.; Mo, Y.; Yang, B.; Vincent, T.; Faur, C.; Guibal, E. Selenium(VI) and Copper(II) Adsorption Using Polyethyleneimine-Based Resins: Effect of Glutaraldehyde Crosslinking and Storage Condition. J Hazard Mater, 2020, 386 (September 2019), 121637. https://doi.org/10.1016/j. jhazmat.2019.121637.
  • 26. Liu, Z.; Han, S.; Xu, C.; Luo, Y.; Peng, N.; Qin, C.; Zhou, M.; Wang, W.; Chen, L.; Okada, S. In Situ Crosslinked PVA-PEI Polymer Binder for Long-Cycle Silicon Anodes in Li-Ion Batteries. RSC Adv, 2016, 6 (72), 68371–68378. https://doi.org/10.1039/c6ra12232a.
  • 27. Long, J.; Nand, A. V.; Bunt, C.; Seyfoddin, A. Controlled Release of Dexamethasone from Poly(Vinyl Alcohol) Hydrogel. Pharm Dev Technol, 2019, 24 (7), 839–848. https://doi.org/10.1080/10 837450.2019.1602632.
  • 28. Guan, Y.; Wang, L.; Cui, L.; Shen, X.; Gao, W.; Meng, J.; Li, D.; Shen, C.; Zhang, Y.; Hu, G.; et al. Preparation and Rheological Investigation of Tough PAAm Hydrogel by Adding Branched Polyethyleneimine. J Appl Polym Sci, 2020, 137 (14), 1–7. https://doi.org/10.1002/app.48541.
  • 29. Mohan, Y. M.; Geckeler, K. E. Polyampholytic Hydrogels: Poly(N-Isopropylacrylamide)-Based Stimuli-Responsive Networks with Poly(Ethyleneimine). React Funct Polym, 2007, 67 (2), 144–155. https://doi.org/10.1016/j.reactfunctpolym.2006.10.010.
  • 30. Shim, J. K.; Oh, S. R.; Lee, S. B.; Cho, K. M. Preparation of Hydrogels Composed of Poly(Vinyl Alcohol) and Polyethyleneimine and Their Electrical Response. J Appl Polym Sci, 2008, 107 (4), 2136–2141. https://doi.org/10.1002/app.26676.
  • 31. Panpinit, S.; Pongsomboon, S. amnart; Keawin, T.; Saengsuwan, S. Development of Multicomponent Interpenetrating Polymer Network (IPN) Hydrogel Films Based on 2-Hydroxyethyl Methacrylate (HEMA), Acrylamide (AM), Polyvinyl Alcohol (PVA) and Chitosan (CS) with Enhanced Mechanical Strengths, Water Swelling and Antibacteria. Reactive and Functional Polymers, 2020, 156 (September), 104739. https://doi. org/10.1016/j.reactfunctpolym.2020.104739.
  • 32. Jayaramudu, T.; Ko, H.-U.; Kim, H. C.; Kim, J. W.; Kim, J. Swelling Behavior of Polyacrylamide–Cellulose Nanocrystal Hydrogels: Swelling Kinetics, Temperature, and PH Effects. Materials, 2019, 12 (13), 2080. https://doi.org/10.3390/ma12132080.
  • 33. Aydınoğlu, D. Investigation of PH-Dependent Swelling Behavior and Kinetic Parameters of Novel Poly(Acrylamide-Co-Acrylic Acid) Hydrogels with Spirulina. E-Polymers, 2015, 15 (2), 81–93. https://doi.org/10.1515/epoly-2014-0170.
  • 34. Abdessalem, A. K.; Oturan, N.; Bellakhal, N.; Dachraoui, M.; Oturan, M. A. Experimental Design Methodology Applied to Electro-Fenton Treatment for Degradation of Herbicide Chlortoluron. Applied Catalysis B: Environmental, 2008, 78 (3–4), 334–341. https://doi.org/10.1016/j.apcatb.2007.09.032.
  • 35. Schneider, L. A.; Korber, A.; Grabbe, S.; Dissemond, J. Influence of PH on Wound-Healing: A New Perspective for Wound-Therapy? Arch Dermatol Res, 2007, 298 (9), 413–420. https://doi.org/10.1007/s00403-006-0713-x.
  • 36. Avais, M.; Chattopadhyay, S. Waterborne PH Responsive Hydrogels: Synthesis, Characterization and Selective PH Responsive Behavior around Physiological PH. Polymer (Guildf), 2019, 180 (August), 121701. https://doi.org/10.1016/j. polymer.2019.121701.
  • 37. Huang, Y.; Shi, F.; Wang, L.; Yang, Y.; Khan, B. M.; Cheong, K. L.; Liu, Y. Preparation and Evaluation of Bletilla Striata Polysaccharide/Carboxymethyl Chitosan/Carbomer 940 Hydrogel for Wound Healing. Int J Biol Macromol, 2019, 132, 729–737. https://doi. org/10.1016/j.ijbiomac.2019.03.157.
  • 38. Pillai, S. K. R.; Reghu, S.; Vikhe, Y.; Zheng, H.; Koh, C. H.; Chan-Park, M. B. Novel Antimicrobial Coating on Silicone Contact Lens Using Glycidyl Methacrylate and Polyethyleneimine Based Polymers. Macromol Rapid Commun, 2020, 41 (21), 1–10. https://doi.org/10.1002/marc.202000175.
There are 38 citations in total.

Details

Primary Language English
Subjects Tissue Engineering, Biomedical Engineering (Other), Polymers and Plastics
Journal Section Research Articles
Authors

Emel Tamahkar Irmak 0000-0002-5913-8333

Bengi Özkahraman 0000-0003-1535-4381

Gülşen Bayrak 0000-0003-4567-8053

Işık Perçin Demirçelik 0000-0002-9453-4462

Zeynep Ciğeroğlu 0000-0001-5625-6222

Filiz Boran 0000-0002-4315-9949

Project Number MUH19002.16.001
Publication Date December 31, 2024
Submission Date May 28, 2024
Acceptance Date November 27, 2024
Published in Issue Year 2024 Volume: 11 Issue: 4

Cite

Vancouver Tamahkar Irmak E, Özkahraman B, Bayrak G, Perçin Demirçelik I, Ciğeroğlu Z, Boran F. Polyvinylalcohol/Polyethyleneimine Hydrogels: Evaluation of Swelling, Dehydration and Antibacterial Activity. Hittite J Sci Eng. 2024;11(4):181-9.

Hittite Journal of Science and Engineering is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).