Research Article
BibTex RIS Cite

Evaluating the Combined Effects of Transverse Pitch Ratio and Flow Arrangement on the Thermo-Hydraulic Performance of a Novel Inclined Delta Winglet

Year 2024, Volume: 11 Issue: 4, 169 - 180, 31.12.2024
https://doi.org/10.17350/HJSE19030000344

Abstract

In this work, the in-depth examinations of the Novel Inclined Delta Winglet (NIDW) in terms of heat transfer performance and the flow characteristics are conducted at Re=5000-17500, utilizing (SST) k-ω turbulence model. In accordance with the objective of this investigation, the combined effects of the positioning of the NIDW in common-flow-down (NIDW-CFlowD) and common-flow-up (NIDW-CFlowU) orientations together with two transverse pitch ratios [Pt=0.333 and 0.166] are investigated and the resulting data are presented in a comparative manner. The angle of attack [α=30°] and the angle of inclination [β=30°] of the NIDW are kept constant. The numerical results indicate that the NIDW-CFlowD orientation at Pt=0.333 has more pronounced effect in terms of thermal performance, with an approximate increase of 4.29% increase in the Nusselt number at Re=17500, whereas the opposite trend is observed at Pt=0.166, yielding a smaller rise of around 3.13% in Nusselt number at Re=17500. The reversal in trend is entirely due to the positioning of the NIDW in the CFlowD orientation, which causes the vortex rotation centers to move further apart in the main flow direction, resulting in 4.36% and 4.02% higher Darcy friction factors in cases of Pt=0.333 and Pt=0.166, respectively compared to CFlowU configuration at Re=5000. Therefore, the highest and lowest ranges of Thermal Enhancement Factor (TEF) are calculated to be between 1.325-1.215 and 1.221-1.122 for the cases of NIDW-CFlowU with Pt=0.166 and NIDW-CFlowU with Pt=0.333 respectively. This corresponds to an increase in TEF of around 8.52%and 8.30% increase in TEF at Re=5000 and 17000, respectively.

References

  • Goel V, Hans VS, Singh S, Kumar R, Pathak SK, Singla M, et al. A comprehensive study on the progressive development and applications of solar air heaters. Sol Energy 2021. https://doi. org/10.1016/j.solener.2021.07.040.
  • Yadav AS, Mishra A, Dwivedi K, Agrawal A, Galphat A, Sharma N. Investigation on performance enhancement due to rib roughened solar air heater. Mater Today Proc 2022. https://doi. org/10.1016/j.matpr.2022.05.071.
  • Ghritlahre HK, Sahu PK, Chand S. Thermal performance and heat transfer analysis of arc shaped roughened solar air heater – An experimental study. Sol Energy 2020. https://doi.org/10.1016/j. solener.2020.01.068.
  • Ahirwar B kumar, kumar A. Review on different techniques used to enhance the thermal performance of solar air heater. Int J Heat Mass Transf 2024. https://doi.org/10.1016/j. ijheatmasstransfer.2023.124979.
  • Chompookham T, Eiamsa–ard S, Buanak K, Promvonge P, Maruyama N, Hirota M, et al. Thermal performance augmentation in a solar air heater with twisted multiple V–baffles. Int J Therm Sci 2024;205:109295. https://doi.org/10.1016/j. ijthermalsci.2024.109295.
  • Kumar R, Chand P. Performance enhancement of solar air heater using herringbone corrugated fins. Energy 2017. https://doi. org/10.1016/j.energy.2017.03.128.
  • Saravanan A, Murugan M, Reddy MS, Ranjit PS, Elumalai P V., Kumar P, et al. Thermo-hydraulic performance of a solar air heater with staggered C-shape finned absorber plate. Int J Therm Sci 2021. https://doi.org/10.1016/j.ijthermalsci.2021.107068.
  • Biswas G, Chattopadhyay H, Sinha A. Augmentation of heat transfer by creation of streamwise longitudinal vortices using vortex generators. Heat Transf Eng 2012. https://doi.org/10.1080 /01457632.2012.614150.
  • He J, Liu L, Jacobi AM. Air-side heat-transfer enhancement by a new winglet-type vortex generator array in a plain-fin round-tube heat exchanger. J Heat Transfer 2010. https://doi. org/10.1115/1.4000988.
  • Chang LM, Wang LB, Song KW, Sun DL, Fan JF. Numerical study of the relationship between heat transfer enhancement and absolute vorticity flux along main flow direction in a channel formed by a flat tube bank fin with vortex generators. Int J Heat Mass Transf 2009. https://doi.org/10.1016/j. ijheatmasstransfer.2008.09.029.
  • Min C, Qi C, Kong X, Dong J. Experimental study of rectangular channel with modified rectangular longitudinal vortex generators. Int J Heat Mass Transf 2010. https://doi.org/10.1016/j. ijheatmasstransfer.2010.03.026.
  • Xu Z, Han Z, Wang J, Liu Z. The characteristics of heat transfer and flow resistance in a rectangular channel with vortex generators. Int J Heat Mass Transf 2018. https://doi.org/10.1016/j. ijheatmasstransfer.2017.08.083.
  • Ke Z, Chen CL, Li K, Wang S, Chen CH. Vortex dynamics and heat transfer of longitudinal vortex generators in a rectangular channel. Int J Heat Mass Transf 2019. https://doi.org/10.1016/j. ijheatmasstransfer.2018.12.064.
  • Kim E, Yang JS. An experimental study of heat transfer characteristics of a pair of longitudinal vortices using color capturing technique. Int J Heat Mass Transf 2002. https://doi. org/10.1016/S0017-9310(02)00054-6.
  • Tian LT, He YL, Lei YG, Tao WQ. Numerical study of fluid flow and heat transfer in a flat-plate channel with longitudinal vortex generators by applying field synergy principle analysis. Int Commun Heat Mass Transf 2009. https://doi.org/10.1016/j. icheatmasstransfer.2008.10.018.
  • Md Salleh MF, Gholami A, Wahid MA. Numerical evaluation of thermal hydraulic performance in fin-and-tube heat exchangers with various vortex generator geometries arranged in common-flow-down or common-flow-up. J Heat Transfer 2019;141. https://doi.org/10.1115/1.4041832.
  • Fu H, Sun H, Yang L, Yan L, Luan Y, Magagnato F. Effects of the configuration of the delta winglet longitudinal vortex generators and channel height on flow and heat transfer in minichannels. Appl Therm Eng 2023. https://doi.org/10.1016/j. applthermaleng.2023.120401.
  • Song KW, Wang L, Hu YJ, Liu Q. Flow symmetry and heat transfer characteristics of winglet vortex generators arranged in common flow up configuration. Symmetry (Basel) 2020. https://doi.org/10.3390/sym12020247.
  • Tanaka T, Itoh M, Hatada T, Matsushima H. Influence of inclination angle, attack angle, and arrangement of rectangular vortex generators on heat transfer performance. Heat Transf - Asian Res 2003. https://doi.org/10.1002/htj.10089.
  • Dogan M, Erzincan S. Experimental investigation of thermal performance of novel type vortex generator in rectangular channel. Int Commun Heat Mass Transf 2023. https://doi. org/10.1016/j.icheatmasstransfer.2023.106785.
  • Skullong S, Promvonge P. Experimental investigation on turbulent convection in solar air heater channel fitted with delta winglet vortex generator. Chinese J Chem Eng 2014. https://doi. org/10.1016/S1004-9541(14)60030-6.
  • Hu J, Zhang Y, Xie S, Xiao Y. Thermo-hydraulic performance of solar air heater with built-in one-eighth sphere vortex generators. Appl Therm Eng 2024. https://doi.org/10.1016/j. applthermaleng.2024.122837.
  • Demirağ HZ. Innovative approach for longitudinal vortex generator design: Impact on thermal performance. Therm Sci Eng Prog 2024. https://doi.org/10.1016/j.tsep.2024.102444.
  • Wilcox DC. Turbulence Modeling for CFD (Third Edition). DCW Ind 2006.
  • Menter FR. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J 1994. https://doi. org/10.2514/3.12149.
  • Promvonge P, Changcharoen W, Kwankaomeng S, Thianpong C. Numerical heat transfer study of turbulent square-duct flow through inline V-shaped discrete ribs. Int Commun Heat Mass Transf 2011. https://doi.org/10.1016/j. icheatmasstransfer.2011.07.014.
  • SriHarsha V, Prabhu S V., Vedula RP. Influence of rib height on the local heat transfer distribution and pressure drop in a square channel with 90° continuous and 60° V-broken ribs. Appl Therm Eng 2009. https://doi.org/10.1016/j. applthermaleng.2008.12.015.
Year 2024, Volume: 11 Issue: 4, 169 - 180, 31.12.2024
https://doi.org/10.17350/HJSE19030000344

Abstract

References

  • Goel V, Hans VS, Singh S, Kumar R, Pathak SK, Singla M, et al. A comprehensive study on the progressive development and applications of solar air heaters. Sol Energy 2021. https://doi. org/10.1016/j.solener.2021.07.040.
  • Yadav AS, Mishra A, Dwivedi K, Agrawal A, Galphat A, Sharma N. Investigation on performance enhancement due to rib roughened solar air heater. Mater Today Proc 2022. https://doi. org/10.1016/j.matpr.2022.05.071.
  • Ghritlahre HK, Sahu PK, Chand S. Thermal performance and heat transfer analysis of arc shaped roughened solar air heater – An experimental study. Sol Energy 2020. https://doi.org/10.1016/j. solener.2020.01.068.
  • Ahirwar B kumar, kumar A. Review on different techniques used to enhance the thermal performance of solar air heater. Int J Heat Mass Transf 2024. https://doi.org/10.1016/j. ijheatmasstransfer.2023.124979.
  • Chompookham T, Eiamsa–ard S, Buanak K, Promvonge P, Maruyama N, Hirota M, et al. Thermal performance augmentation in a solar air heater with twisted multiple V–baffles. Int J Therm Sci 2024;205:109295. https://doi.org/10.1016/j. ijthermalsci.2024.109295.
  • Kumar R, Chand P. Performance enhancement of solar air heater using herringbone corrugated fins. Energy 2017. https://doi. org/10.1016/j.energy.2017.03.128.
  • Saravanan A, Murugan M, Reddy MS, Ranjit PS, Elumalai P V., Kumar P, et al. Thermo-hydraulic performance of a solar air heater with staggered C-shape finned absorber plate. Int J Therm Sci 2021. https://doi.org/10.1016/j.ijthermalsci.2021.107068.
  • Biswas G, Chattopadhyay H, Sinha A. Augmentation of heat transfer by creation of streamwise longitudinal vortices using vortex generators. Heat Transf Eng 2012. https://doi.org/10.1080 /01457632.2012.614150.
  • He J, Liu L, Jacobi AM. Air-side heat-transfer enhancement by a new winglet-type vortex generator array in a plain-fin round-tube heat exchanger. J Heat Transfer 2010. https://doi. org/10.1115/1.4000988.
  • Chang LM, Wang LB, Song KW, Sun DL, Fan JF. Numerical study of the relationship between heat transfer enhancement and absolute vorticity flux along main flow direction in a channel formed by a flat tube bank fin with vortex generators. Int J Heat Mass Transf 2009. https://doi.org/10.1016/j. ijheatmasstransfer.2008.09.029.
  • Min C, Qi C, Kong X, Dong J. Experimental study of rectangular channel with modified rectangular longitudinal vortex generators. Int J Heat Mass Transf 2010. https://doi.org/10.1016/j. ijheatmasstransfer.2010.03.026.
  • Xu Z, Han Z, Wang J, Liu Z. The characteristics of heat transfer and flow resistance in a rectangular channel with vortex generators. Int J Heat Mass Transf 2018. https://doi.org/10.1016/j. ijheatmasstransfer.2017.08.083.
  • Ke Z, Chen CL, Li K, Wang S, Chen CH. Vortex dynamics and heat transfer of longitudinal vortex generators in a rectangular channel. Int J Heat Mass Transf 2019. https://doi.org/10.1016/j. ijheatmasstransfer.2018.12.064.
  • Kim E, Yang JS. An experimental study of heat transfer characteristics of a pair of longitudinal vortices using color capturing technique. Int J Heat Mass Transf 2002. https://doi. org/10.1016/S0017-9310(02)00054-6.
  • Tian LT, He YL, Lei YG, Tao WQ. Numerical study of fluid flow and heat transfer in a flat-plate channel with longitudinal vortex generators by applying field synergy principle analysis. Int Commun Heat Mass Transf 2009. https://doi.org/10.1016/j. icheatmasstransfer.2008.10.018.
  • Md Salleh MF, Gholami A, Wahid MA. Numerical evaluation of thermal hydraulic performance in fin-and-tube heat exchangers with various vortex generator geometries arranged in common-flow-down or common-flow-up. J Heat Transfer 2019;141. https://doi.org/10.1115/1.4041832.
  • Fu H, Sun H, Yang L, Yan L, Luan Y, Magagnato F. Effects of the configuration of the delta winglet longitudinal vortex generators and channel height on flow and heat transfer in minichannels. Appl Therm Eng 2023. https://doi.org/10.1016/j. applthermaleng.2023.120401.
  • Song KW, Wang L, Hu YJ, Liu Q. Flow symmetry and heat transfer characteristics of winglet vortex generators arranged in common flow up configuration. Symmetry (Basel) 2020. https://doi.org/10.3390/sym12020247.
  • Tanaka T, Itoh M, Hatada T, Matsushima H. Influence of inclination angle, attack angle, and arrangement of rectangular vortex generators on heat transfer performance. Heat Transf - Asian Res 2003. https://doi.org/10.1002/htj.10089.
  • Dogan M, Erzincan S. Experimental investigation of thermal performance of novel type vortex generator in rectangular channel. Int Commun Heat Mass Transf 2023. https://doi. org/10.1016/j.icheatmasstransfer.2023.106785.
  • Skullong S, Promvonge P. Experimental investigation on turbulent convection in solar air heater channel fitted with delta winglet vortex generator. Chinese J Chem Eng 2014. https://doi. org/10.1016/S1004-9541(14)60030-6.
  • Hu J, Zhang Y, Xie S, Xiao Y. Thermo-hydraulic performance of solar air heater with built-in one-eighth sphere vortex generators. Appl Therm Eng 2024. https://doi.org/10.1016/j. applthermaleng.2024.122837.
  • Demirağ HZ. Innovative approach for longitudinal vortex generator design: Impact on thermal performance. Therm Sci Eng Prog 2024. https://doi.org/10.1016/j.tsep.2024.102444.
  • Wilcox DC. Turbulence Modeling for CFD (Third Edition). DCW Ind 2006.
  • Menter FR. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J 1994. https://doi. org/10.2514/3.12149.
  • Promvonge P, Changcharoen W, Kwankaomeng S, Thianpong C. Numerical heat transfer study of turbulent square-duct flow through inline V-shaped discrete ribs. Int Commun Heat Mass Transf 2011. https://doi.org/10.1016/j. icheatmasstransfer.2011.07.014.
  • SriHarsha V, Prabhu S V., Vedula RP. Influence of rib height on the local heat transfer distribution and pressure drop in a square channel with 90° continuous and 60° V-broken ribs. Appl Therm Eng 2009. https://doi.org/10.1016/j. applthermaleng.2008.12.015.
There are 27 citations in total.

Details

Primary Language English
Subjects Computational Methods in Fluid Flow, Heat and Mass Transfer (Incl. Computational Fluid Dynamics)
Journal Section Research Articles
Authors

Hüseyin Zahit Demirağ 0000-0001-7289-4021

Publication Date December 31, 2024
Submission Date September 13, 2024
Acceptance Date November 7, 2024
Published in Issue Year 2024 Volume: 11 Issue: 4

Cite

Vancouver Demirağ HZ. Evaluating the Combined Effects of Transverse Pitch Ratio and Flow Arrangement on the Thermo-Hydraulic Performance of a Novel Inclined Delta Winglet. Hittite J Sci Eng. 2024;11(4):169-80.

Hittite Journal of Science and Engineering is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).