Research Article
BibTex RIS Cite

High Temperature Oxidation of Y doped Equiatomic AlCrFeNi Medium Entropy Alloy

Year 2025, Volume: 12 Issue: 1, 25 - 34, 25.03.2025
https://doi.org/10.17350/HJSE19030000348

Abstract

High temperature oxidation (HTO) of Y-doped (0.08 at.%) equiatomic AlCrFeNi alloy produced by vacuum arc melting was studied at 1100 °C for 168h in dry air. As-cast alloys consisted of disordered Fe-Cr rich A2 and Ni-Al rich B2 phase with the additional Y-rich precipitates rich in Ni and Al resembling B2 phase. Alloys possessed a columnar-dendritic microstructure in which dendritic regions contained weave-like morphology (≈120 nm), while interdendritic regions contained relatively coarse structures. Y-rich coarse precipitates were mostly found to segregate into interdendritic regions. After HTO tests the only oxide phase found was α-Al2O3 and lower mass gains compared to undoped material were recorded (lean≈ 0.95 mg.cm-2, Y-doped 0.83 mg.cm-2). Two distinct regions were observed based on top-view investigations
I) Y-rich regions coupled with smooth Al2O3, II) Y-poor regions containing whiskers and smooth Al2O3. In both cases, wrinkling of Al2O3 scales was not observed. No oxide spallation was observed except at the edges. Additional stress formation on the edges coupled with the high strength of the alloy is assumed to result in oxide spallation. Compact Al2O3 scales exhibiting planar metal-oxide interface without wrinkles were observed by cross-sectional analysis. Y/Al-rich precipitates were found within the oxide scale and within the alloy (internal oxidation). Exposing samples also resulted in coarsening of A2 and B2 phases yet the alloy experienced only a 10% reduction in Vickers microhardness values (398 ± 6.8 HV). More studies on optimization of reactive element doping as well as mechanical properties are needed for further improvement of HTO performance.

Supporting Institution

Gebze Technical University

Project Number

GTU BAP 2023-A-105-01

References

  • 1. Bunn JK, Fang RL, Albing MR, Mehta A, Kramer MJ, Besser MF,et al. A high-throughput investigation of Fe-Cr-Al as a novel high-temperature coating for nuclear cladding materials. Nanotechnology. 2015;26(27).
  • 2. Naumenko D, Quadakkers WJ, Galerie A, Wouters Y, Jourdain S. Parameters affecting transient oxide formation on FeCrAl based foil and fibre materials. Materials at High Temperatures. 2003 Jan 1;20(3):287–93.
  • 3. Eklund J, Persdotter A, Ssenteza V, Jonsson T. The long-term corrosion behavior of FeCrAl(Si) alloys after breakaway oxidation at 600 °C. Corros Sci. 2023;217:111155.
  • 4. Dryepondt S, Pint BA, Lara-Curzio E. Creep behavior of commercial FeCrAl foils: Beneficial and detrimental effects of oxidation. Materials Science and Engineering: A. 2012;550:10–8.
  • 5. Kim C, Tang C, Grosse M, Maeng Y, Jang C, Steinbrueck M. Oxidation mechanism and kinetics of nuclear-grade FeCrAl alloys in the temperature range of 500–1500 °C in steam. Journal of Nuclear Materials. 2022;564:153696
  • 6. Meier GH, Pettit FS, Smialek JL. The effects of reactive element additions and sulfur removal on the adherence of alumina to Ni- and Fe-base alloys. Materials and Corrosion. 1995 Apr 1;46(4):232–40.
  • 7. Pint BA. Optimization of reactive-element additions to improve oxidation performance of alumina-forming alloys. In: Journal of the American Ceramic Society. 2003.
  • 8. Naumenko D, Pint BA, Quadakkers WJ. Current Thoughts on Reactive Element Effects in Alumina-Forming Systems: In Memory of John Stringer. Vol. 86, Oxidation of Metals. 2016.
  • 9. Brady MP, Yamamoto Y, Santella ML, Maziasz PJ, Pint BA, Liu CT, et al. The development of alumina-forming austenitic stainless steels for high-temperature structural use. JOM. 2008;60(7).
  • 10. Dong Y, Lu Y, Kong J, Zhang J, Li T. Microstructure and mechanical properties of multi-component AlCrFeNiMo x high-entropy alloys. J Alloys Compd. 2013;573.
  • 11. Ren M, Wang G, Li B. Microstructure and properties of AlCrFeNi intermetallic for electronic packaging shell. In: 18th International Conference on Electronic Packaging Technology, ICEPT 2017. 2017.
  • 12. Jiang Z, Chen W, Xia Z, Xiong W, Fu Z. Influence of synthesis method on microstructure and mechanical behavior of Co-free AlCrFeNi medium-entropy alloy. Intermetallics. 2019;108.
  • 13. Jumaev E, Abbas MA, Mun SC, Song G, Hong SJ, Kim KB. Nano-scale structural evolution of quaternary AlCrFeNi based high entropy alloys by the addition of specific minor elements and its effect on mechanical characteristics. J Alloys Compd. 2021;868.
  • 14. Yang D, Liu Y, Han T, Zhou F, Qu N, Liao M, et al. High thermal stability and oxidation behavior of FeCrNiAl-based medium-entropy alloys prepared by powder metallurgy. J Alloys Compd. 2022;918:165562.
  • 15. Hwang YJ, Kim KS, Na YS, Lim KR, Lee KA. High-temperature oxidation properties of economical and lightweight Fe-Cr-Ni-Al medium-entropy alloy. Corros Sci. 2023;219:111231.
  • 16. Ozgenc T, Gunduz KO. Effect of Fe Concentration on the High Temperature Oxidation Behavior of Fex(CrAlNi)100−x Medium Entropy Alloys. High Temperature Corrosion of Materials. 2024;101(2):251–78.
  • 17. Kim S, Lee CH, Kim T, Jang JH, Moon J, Falaakh DF, et al. Effects of yttrium on the oxidation behavior of Fe13Cr6AlY alloys under 1200 °C steam. J Alloys Compd. 2023;960:170642.
  • 18. Tang C, Shi H, Jianu A, Weisenburger A, Victor G, Grosse M, et al. High-temperature oxidation of AlCrFeNi-(Mn or Co) high-entropy alloys: Effect of atmosphere and reactive element addition. Corros Sci. 2021;192.
  • 19. Lu Z, Peng S, Li H, Gao S. Improved oxidation resistance of ODS-CrFeNi medium entropy alloys by different Y2O3/Ti/Zradditions. J Alloys Compd. 2023;960:171017.
  • 20. Polat G, Kotan H. Microstructural Evolution and Mechanical Properties of Y Added CoCrFeNi High-entropy Alloys Produced by Arc-melting. Hittite Journal of Science and Engineering. 2024;11(1):25–31.
  • 21. Polat G, Tekin M, Kotan H. Role of yttrium addition and annealing temperature on thermal stability and hardness of nanocrystalline CoCrFeNi high entropy alloy. Intermetallics. 2022;146:107589.
  • 22. Tekin M, Polat G, Kalay YE, Kotan H. Grain size stabilization of oxide dispersion strengthened CoCrFeNi-Y2O3 high entropy alloys synthesized by mechanical alloying. J Alloys Compd. 2021;887:161363.
  • 23. Gunduz KO, Visibile A, Sattari M, Fedorova I, Saleem S, Stiller K, et al. The effect of additive manufacturing on the initial High temperature oxidation properties of RE-containing FeCrAl alloys. Corros Sci. 2021;188:109553.
  • 24. Hellström K, Israelsson N, Mortazavi N, Canovic S, Halvarsson M, Svensson JE, et al. Oxidation of a Dispersion-Strengthened Powder Metallurgical FeCrAl Alloy in the Presence of O2 at 1,100 °C: The Influence of Water Vapour. Oxidation of Metals. 2015;83(5):533–58.
  • 25. Singh AK, Subramaniam A. On the formation of disordered solid solutions in multi-component alloys. J Alloys Compd. 2014;587.
  • 26. Tripathy B, Malladi SRK, Bhattacharjee PP. Development of ultrafine grained cobalt-free AlCrFe2Ni2 high entropy alloy with superior mechanical properties by thermo-mechanical processing. Materials Science and Engineering: A. 2022;831:142190.
  • 27. Cui P, Liu Y, Zhou F, Lai Z, Zhu J. Enhancing high temperature mechanical properties via modulating B2 phase with Al contents in FeCrNiAlx(x = 0.63,0.71,0.77) high entropy alloys. J Alloys Compd. 2022;903.
  • 28. Zhou Y, Zhou D, Jin X, Zhang L, Du X, Li B. Design of non-equiatomic medium-entropy alloys. Sci Rep. 2018;8(1).
  • 29. Ma Y, Jiang B, Li C, Wang Q, Dong C, Liaw PK, et al. The BCC/B2 morphologies in Al x NiCoFeCr high-entropy alloys. Metals. 2017;7(2):57.
  • 30. Diao G, Wu M, He A, Xu Z, Mousavi SE, Li D. Manipulate A2/B2 structures in AlCrFexNi alloys for improved mechanical properties and wear resistance. Lubricants. 2023;11(9):392.
  • 31. Ren H, Chen RR, Liu T, Gao XF, Qin G, Wu SP, et al. Unraveling the oxidation mechanism of Y-doped AlCoCrFeNi high-entropy alloy at 1100 °C. Appl Surf Sci. 2024;652:159316.
  • 32. Diao G, Wu M, He A, Xu Z, Bajaj D, Chen D, et al. Adjusting (AlNi)/(FeCr) ratio to tailor microstructure and properties of A2-B2 dual-phase (AlNi)x(FeCr)100-x medium-entropy alloys. Journal of Materials Research and Technology. 2025;34:1921–32.
  • 33. Li JL, Li Z, Wang Q, Dong C, Liaw PK. Phase-field simulation of coherent BCC/B2 microstructures in high entropy alloys. Acta Mater. 2020;197:10–9.
  • 34. Field KG, Snead MA, Yamamoto Y, Terrani KA. Handbook on the material properties of FeCrAl alloys for nuclear power production applications. Nuclear Technology Research and Development. 2017;
  • 35. Berthomé G, N’Dah E, Wouters Y, Galerie A. Temperature dependence of metastable alumina formation during thermal oxidation of FeCrAl foils. Materials and Corrosion. 2005;56(6):389–92.
  • 36. Andoh A, Taniguchi S, Shibata T. TEM observation of phase transformations of alumina scales formed on Al-deposited Fe-Cr-Al foils. In: Materials science forum. Trans Tech Publ; 2001.p. 303–10.
  • 37. Chevalier S, Strehl G, Buscail H, Borchardt G, Larpin JP. Influence of the mode of introduction of a reactive element on the high temperature oxidation behavior of an alumina-forming alloy. Part I: Isothermal oxidation tests. Materials and Corrosion. 2004 May 1;55(5):352–7.
  • 38. Tolpygo VK, Clarke DR. Microstructural study of the theta-alpha transformation in alumina scales formed on nickel-aluminides. Materials at High Temperatures. 2000 Jan 1;17(1):59–70.
  • 39. Issartel C, Buscail H, Chevalier S, Favergeon J. Effect of Yttrium as Alloying Element on a Model Alumina-Forming Alloy Oxidation at 1100 °C. Oxidation of Metals. 2017;88(3–4).
  • 40. Lu J, Zhang H, Chen Y, Li L, Liu X, Xiao W, et al. Y-doped AlCoCrFeNi2.1 eutectic high-entropy alloy with excellent oxidation resistance and structure stability at 1000°C and 1100°C. Corros Sci. 2021;180.
  • 41. Wright JK, Williamson RL, Renusch D, Veal B, Grimsditch M, Hou PY, et al. Residual stresses in convoluted oxide scales. Materials Science and Engineering: A. 1999;262(1):246–55.
  • 42. Evans HE. Stress effects in high temperature oxidation of metals. International materials reviews. 1995;40(1):1–40.
  • 43. Echsler H, Martinez EA, Singheiser L, Quadakkers WJ. Residual stresses in alumina scales grown on different types of Fe–Cr–Al alloys: effect of specimen geometry and cooling rate. Materials Science and Engineering: A. 2004;384(1):1–11.
  • 44. Smialek JL. Invited Review Paper in Commemoration of Over 50 Years of Oxidation of Metals: Alumina Scale Adhesion Mechanisms: A Retrospective Assessment. Oxidation of Metals. 2022;97(1):1–50.
  • 45. Whittle DP, Stringer J. Improvements in high temperature oxidation resistance by additions of reactive elements or oxide dispersions. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences. 1997 Jan 1;295(1413):309–29.
  • 46. Naumenko D, Gleeson B, Wessel E, Singheiser L, Quadakkers WJ. Correlation between the Microstructure, Growth Mechanism, and Growth Kinetics of Alumina Scales on a FeCrAlY Alloy. Metallurgical and Materials Transactions A. 2007;38(12):2974–83.
  • 47. Cueff R, Buscail H, Caudron E, Riffard F, Issartel C, El Messki S. Effect of reactive element oxide coating on the high temperature oxidation behaviour of FeCrAl alloys. Appl Surf Sci. 2004;229(1):233–41.
  • 48. Chevalier S, Issartel C, Cueff R, Buscaif H, Strehl G, Borchardt G. Influence of the mode of introduction of a reactive element on the high temperature oxidation behavior of an alumina-forming alloy. Part III: The use of two stage oxidation experiments and in situ X-ray diffraction to understand the oxidation mechanisms. Materials and Corrosion. 2006 Jun 1;57(6):476–83.
  • 49. 49. Abell JS, Harris IR, Cockayne B, Lent B. An investigation of phase stability in the Y2O3-Al2O3 system. J Mater Sci. 1974;9(4):527–37.
  • 50. 50. Lu J, Chen Y, Zhang H, Ni N, Li L, He L, et al. Y/Hf-doped AlCoCrFeNi high-entropy alloy with ultra oxidation and spallation resistance. Corros Sci. 2020;166.
  • 51. 51. Lu J, Li L, Chen Y, Liu X, Zhao X, Guo F, et al. Y-Hf co-doped AlCoCrFeNi high-entropy alloy coating with superior oxidation and spallation resistance at 1100 °C. Corros Sci. 2021;182:109267.
Year 2025, Volume: 12 Issue: 1, 25 - 34, 25.03.2025
https://doi.org/10.17350/HJSE19030000348

Abstract

Project Number

GTU BAP 2023-A-105-01

References

  • 1. Bunn JK, Fang RL, Albing MR, Mehta A, Kramer MJ, Besser MF,et al. A high-throughput investigation of Fe-Cr-Al as a novel high-temperature coating for nuclear cladding materials. Nanotechnology. 2015;26(27).
  • 2. Naumenko D, Quadakkers WJ, Galerie A, Wouters Y, Jourdain S. Parameters affecting transient oxide formation on FeCrAl based foil and fibre materials. Materials at High Temperatures. 2003 Jan 1;20(3):287–93.
  • 3. Eklund J, Persdotter A, Ssenteza V, Jonsson T. The long-term corrosion behavior of FeCrAl(Si) alloys after breakaway oxidation at 600 °C. Corros Sci. 2023;217:111155.
  • 4. Dryepondt S, Pint BA, Lara-Curzio E. Creep behavior of commercial FeCrAl foils: Beneficial and detrimental effects of oxidation. Materials Science and Engineering: A. 2012;550:10–8.
  • 5. Kim C, Tang C, Grosse M, Maeng Y, Jang C, Steinbrueck M. Oxidation mechanism and kinetics of nuclear-grade FeCrAl alloys in the temperature range of 500–1500 °C in steam. Journal of Nuclear Materials. 2022;564:153696
  • 6. Meier GH, Pettit FS, Smialek JL. The effects of reactive element additions and sulfur removal on the adherence of alumina to Ni- and Fe-base alloys. Materials and Corrosion. 1995 Apr 1;46(4):232–40.
  • 7. Pint BA. Optimization of reactive-element additions to improve oxidation performance of alumina-forming alloys. In: Journal of the American Ceramic Society. 2003.
  • 8. Naumenko D, Pint BA, Quadakkers WJ. Current Thoughts on Reactive Element Effects in Alumina-Forming Systems: In Memory of John Stringer. Vol. 86, Oxidation of Metals. 2016.
  • 9. Brady MP, Yamamoto Y, Santella ML, Maziasz PJ, Pint BA, Liu CT, et al. The development of alumina-forming austenitic stainless steels for high-temperature structural use. JOM. 2008;60(7).
  • 10. Dong Y, Lu Y, Kong J, Zhang J, Li T. Microstructure and mechanical properties of multi-component AlCrFeNiMo x high-entropy alloys. J Alloys Compd. 2013;573.
  • 11. Ren M, Wang G, Li B. Microstructure and properties of AlCrFeNi intermetallic for electronic packaging shell. In: 18th International Conference on Electronic Packaging Technology, ICEPT 2017. 2017.
  • 12. Jiang Z, Chen W, Xia Z, Xiong W, Fu Z. Influence of synthesis method on microstructure and mechanical behavior of Co-free AlCrFeNi medium-entropy alloy. Intermetallics. 2019;108.
  • 13. Jumaev E, Abbas MA, Mun SC, Song G, Hong SJ, Kim KB. Nano-scale structural evolution of quaternary AlCrFeNi based high entropy alloys by the addition of specific minor elements and its effect on mechanical characteristics. J Alloys Compd. 2021;868.
  • 14. Yang D, Liu Y, Han T, Zhou F, Qu N, Liao M, et al. High thermal stability and oxidation behavior of FeCrNiAl-based medium-entropy alloys prepared by powder metallurgy. J Alloys Compd. 2022;918:165562.
  • 15. Hwang YJ, Kim KS, Na YS, Lim KR, Lee KA. High-temperature oxidation properties of economical and lightweight Fe-Cr-Ni-Al medium-entropy alloy. Corros Sci. 2023;219:111231.
  • 16. Ozgenc T, Gunduz KO. Effect of Fe Concentration on the High Temperature Oxidation Behavior of Fex(CrAlNi)100−x Medium Entropy Alloys. High Temperature Corrosion of Materials. 2024;101(2):251–78.
  • 17. Kim S, Lee CH, Kim T, Jang JH, Moon J, Falaakh DF, et al. Effects of yttrium on the oxidation behavior of Fe13Cr6AlY alloys under 1200 °C steam. J Alloys Compd. 2023;960:170642.
  • 18. Tang C, Shi H, Jianu A, Weisenburger A, Victor G, Grosse M, et al. High-temperature oxidation of AlCrFeNi-(Mn or Co) high-entropy alloys: Effect of atmosphere and reactive element addition. Corros Sci. 2021;192.
  • 19. Lu Z, Peng S, Li H, Gao S. Improved oxidation resistance of ODS-CrFeNi medium entropy alloys by different Y2O3/Ti/Zradditions. J Alloys Compd. 2023;960:171017.
  • 20. Polat G, Kotan H. Microstructural Evolution and Mechanical Properties of Y Added CoCrFeNi High-entropy Alloys Produced by Arc-melting. Hittite Journal of Science and Engineering. 2024;11(1):25–31.
  • 21. Polat G, Tekin M, Kotan H. Role of yttrium addition and annealing temperature on thermal stability and hardness of nanocrystalline CoCrFeNi high entropy alloy. Intermetallics. 2022;146:107589.
  • 22. Tekin M, Polat G, Kalay YE, Kotan H. Grain size stabilization of oxide dispersion strengthened CoCrFeNi-Y2O3 high entropy alloys synthesized by mechanical alloying. J Alloys Compd. 2021;887:161363.
  • 23. Gunduz KO, Visibile A, Sattari M, Fedorova I, Saleem S, Stiller K, et al. The effect of additive manufacturing on the initial High temperature oxidation properties of RE-containing FeCrAl alloys. Corros Sci. 2021;188:109553.
  • 24. Hellström K, Israelsson N, Mortazavi N, Canovic S, Halvarsson M, Svensson JE, et al. Oxidation of a Dispersion-Strengthened Powder Metallurgical FeCrAl Alloy in the Presence of O2 at 1,100 °C: The Influence of Water Vapour. Oxidation of Metals. 2015;83(5):533–58.
  • 25. Singh AK, Subramaniam A. On the formation of disordered solid solutions in multi-component alloys. J Alloys Compd. 2014;587.
  • 26. Tripathy B, Malladi SRK, Bhattacharjee PP. Development of ultrafine grained cobalt-free AlCrFe2Ni2 high entropy alloy with superior mechanical properties by thermo-mechanical processing. Materials Science and Engineering: A. 2022;831:142190.
  • 27. Cui P, Liu Y, Zhou F, Lai Z, Zhu J. Enhancing high temperature mechanical properties via modulating B2 phase with Al contents in FeCrNiAlx(x = 0.63,0.71,0.77) high entropy alloys. J Alloys Compd. 2022;903.
  • 28. Zhou Y, Zhou D, Jin X, Zhang L, Du X, Li B. Design of non-equiatomic medium-entropy alloys. Sci Rep. 2018;8(1).
  • 29. Ma Y, Jiang B, Li C, Wang Q, Dong C, Liaw PK, et al. The BCC/B2 morphologies in Al x NiCoFeCr high-entropy alloys. Metals. 2017;7(2):57.
  • 30. Diao G, Wu M, He A, Xu Z, Mousavi SE, Li D. Manipulate A2/B2 structures in AlCrFexNi alloys for improved mechanical properties and wear resistance. Lubricants. 2023;11(9):392.
  • 31. Ren H, Chen RR, Liu T, Gao XF, Qin G, Wu SP, et al. Unraveling the oxidation mechanism of Y-doped AlCoCrFeNi high-entropy alloy at 1100 °C. Appl Surf Sci. 2024;652:159316.
  • 32. Diao G, Wu M, He A, Xu Z, Bajaj D, Chen D, et al. Adjusting (AlNi)/(FeCr) ratio to tailor microstructure and properties of A2-B2 dual-phase (AlNi)x(FeCr)100-x medium-entropy alloys. Journal of Materials Research and Technology. 2025;34:1921–32.
  • 33. Li JL, Li Z, Wang Q, Dong C, Liaw PK. Phase-field simulation of coherent BCC/B2 microstructures in high entropy alloys. Acta Mater. 2020;197:10–9.
  • 34. Field KG, Snead MA, Yamamoto Y, Terrani KA. Handbook on the material properties of FeCrAl alloys for nuclear power production applications. Nuclear Technology Research and Development. 2017;
  • 35. Berthomé G, N’Dah E, Wouters Y, Galerie A. Temperature dependence of metastable alumina formation during thermal oxidation of FeCrAl foils. Materials and Corrosion. 2005;56(6):389–92.
  • 36. Andoh A, Taniguchi S, Shibata T. TEM observation of phase transformations of alumina scales formed on Al-deposited Fe-Cr-Al foils. In: Materials science forum. Trans Tech Publ; 2001.p. 303–10.
  • 37. Chevalier S, Strehl G, Buscail H, Borchardt G, Larpin JP. Influence of the mode of introduction of a reactive element on the high temperature oxidation behavior of an alumina-forming alloy. Part I: Isothermal oxidation tests. Materials and Corrosion. 2004 May 1;55(5):352–7.
  • 38. Tolpygo VK, Clarke DR. Microstructural study of the theta-alpha transformation in alumina scales formed on nickel-aluminides. Materials at High Temperatures. 2000 Jan 1;17(1):59–70.
  • 39. Issartel C, Buscail H, Chevalier S, Favergeon J. Effect of Yttrium as Alloying Element on a Model Alumina-Forming Alloy Oxidation at 1100 °C. Oxidation of Metals. 2017;88(3–4).
  • 40. Lu J, Zhang H, Chen Y, Li L, Liu X, Xiao W, et al. Y-doped AlCoCrFeNi2.1 eutectic high-entropy alloy with excellent oxidation resistance and structure stability at 1000°C and 1100°C. Corros Sci. 2021;180.
  • 41. Wright JK, Williamson RL, Renusch D, Veal B, Grimsditch M, Hou PY, et al. Residual stresses in convoluted oxide scales. Materials Science and Engineering: A. 1999;262(1):246–55.
  • 42. Evans HE. Stress effects in high temperature oxidation of metals. International materials reviews. 1995;40(1):1–40.
  • 43. Echsler H, Martinez EA, Singheiser L, Quadakkers WJ. Residual stresses in alumina scales grown on different types of Fe–Cr–Al alloys: effect of specimen geometry and cooling rate. Materials Science and Engineering: A. 2004;384(1):1–11.
  • 44. Smialek JL. Invited Review Paper in Commemoration of Over 50 Years of Oxidation of Metals: Alumina Scale Adhesion Mechanisms: A Retrospective Assessment. Oxidation of Metals. 2022;97(1):1–50.
  • 45. Whittle DP, Stringer J. Improvements in high temperature oxidation resistance by additions of reactive elements or oxide dispersions. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences. 1997 Jan 1;295(1413):309–29.
  • 46. Naumenko D, Gleeson B, Wessel E, Singheiser L, Quadakkers WJ. Correlation between the Microstructure, Growth Mechanism, and Growth Kinetics of Alumina Scales on a FeCrAlY Alloy. Metallurgical and Materials Transactions A. 2007;38(12):2974–83.
  • 47. Cueff R, Buscail H, Caudron E, Riffard F, Issartel C, El Messki S. Effect of reactive element oxide coating on the high temperature oxidation behaviour of FeCrAl alloys. Appl Surf Sci. 2004;229(1):233–41.
  • 48. Chevalier S, Issartel C, Cueff R, Buscaif H, Strehl G, Borchardt G. Influence of the mode of introduction of a reactive element on the high temperature oxidation behavior of an alumina-forming alloy. Part III: The use of two stage oxidation experiments and in situ X-ray diffraction to understand the oxidation mechanisms. Materials and Corrosion. 2006 Jun 1;57(6):476–83.
  • 49. 49. Abell JS, Harris IR, Cockayne B, Lent B. An investigation of phase stability in the Y2O3-Al2O3 system. J Mater Sci. 1974;9(4):527–37.
  • 50. 50. Lu J, Chen Y, Zhang H, Ni N, Li L, He L, et al. Y/Hf-doped AlCoCrFeNi high-entropy alloy with ultra oxidation and spallation resistance. Corros Sci. 2020;166.
  • 51. 51. Lu J, Li L, Chen Y, Liu X, Zhao X, Guo F, et al. Y-Hf co-doped AlCoCrFeNi high-entropy alloy coating with superior oxidation and spallation resistance at 1100 °C. Corros Sci. 2021;182:109267.
There are 51 citations in total.

Details

Primary Language English
Subjects Metals and Alloy Materials, Materials Engineering (Other)
Journal Section Research Articles
Authors

Kerem Özgür Gündüz 0000-0001-6610-9584

Project Number GTU BAP 2023-A-105-01
Publication Date March 25, 2025
Submission Date November 11, 2024
Acceptance Date January 27, 2025
Published in Issue Year 2025 Volume: 12 Issue: 1

Cite

Vancouver Gündüz KÖ. High Temperature Oxidation of Y doped Equiatomic AlCrFeNi Medium Entropy Alloy. Hittite J Sci Eng. 2025;12(1):25-34.

Hittite Journal of Science and Engineering is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).