Loading [a11y]/accessibility-menu.js
Research Article
BibTex RIS Cite
Year 2025, Volume: 12 Issue: 1, 15 - 23, 25.03.2025
https://doi.org/10.17350/HJSE19030000347

Abstract

References

  • 1. K. Roshanai, Recent advances in lithium–ion battery utilization: A mini review, Sigma J. Eng. Nat. Sci. – Sigma Mühendislik ve Fen Bilim. Derg. (2023) 1272–1286. https://doi.org/10.14744/sigma.2021.00077.
  • 2. T. Kim, W. Song, D.-Y. Son, L.K. Ono, Y. Qi, Lithium-ion batteries: outlook on present, future, and hybridized technologies, J. Mater. Chem. A 7 (2019) 2942–2964. https://doi.org/10.1039/C8TA10513H.
  • 3. A. Khan, M. Ali, S. Yaqub, H.A. Khalid, R.R.U. Khan, K. Mushtaq, H. Nazir, Z. Said, Hybrid thermal management of Li-ion battery pack: An experimental study with eutectic PCM-embedded heat transfer fluid, J. Energy Storage 77 (2024) 109929. https://doi. org/10.1016/j.est.2023.109929.
  • 4. A. Belgibayeva, A. Rakhmetova, M. Rakhatkyzy, M. Kairova, I. Mukushev, N. Issatayev, G. Kalimuldina, A. Nurpeissova, Y.-K. Sun, Z. Bakenov, Lithium-ion batteries for low-temperature applications: Limiting factors and solutions, J. Power Sources 557 (2023) 232550. https://doi.org/10.1016/j.jpowsour.2022.232550.
  • 5. V.G. Choudhari, D.A.S. Dhoble, T.M. Sathe, A review on effect of heat generation and various thermal management systems for lithium ion battery used for electric vehicle, J. Energy Storage 32 (2020) 101729. https://doi.org/10.1016/j.est.2020.101729.
  • 6. S. Ma, M. Jiang, P. Tao, C. Song, J. Wu, J. Wang, T. Deng, W. Shang, Temperature effect and thermal impact in lithium-ion batteries: A review, Prog. Nat. Sci. Mater. Int. 28 (2018) 653–666. https://doi.org/10.1016/j.pnsc.2018.11.002.
  • 7. M.W. Nazar, N. Iqbal, M. Ali, H. Nazir, M.Z. Bin Amjad, Thermal management of Li-ion battery by using active and passive cooling method, J. Energy Storage 61 (2023) 106800. https://doi.org/10.1016/j.est.2023.106800.
  • 8. M.S. Mert, M. Sert, H.H. Mert, Isıl Enerji Depolama Sistemleri İçin Organik Faz Değiştiren Maddelerin Mevcut Durumu Üzerine Bir İnceleme, Mühendislik Bilim. ve Tasarım Derg. 6 (2018) 161–174. https://doi.org/10.21923/jesd.331998.
  • 9. C.A. Saleel, A review on the use of coconut oil as an organic phase change material with its melting process, heat transfer, and energy storage characteristics, J. Therm. Anal. Calorim. 147 (2022) 4451–4472. https://doi.org/10.1007/s10973-021-10839-7.
  • 10. P.K.S. Rathore, K.K. Gupta, B. Patel, R.K. Sharma, N.K. Gupta, Beeswax as a potential replacement of paraffin wax as shape stabilized solar thermal energy storage material: An experimental study, J. Energy Storage 68 (2023) 107714. https://doi.org/10.1016/j.est.2023.107714.
  • 11. T. Trisnadewi, E. Kusrini, D.M. Nurjaya, N. Putra, T.M.I. Mahlia, Experimental analysis of natural wax as phase change material by thermal cycling test using thermoelectric system, J. Energy Storage 40 (2021) 102703. https://doi.org/10.1016/j. est.2021.102703.
  • 12. R.M. Kalombe, S. Sobhansarbandi, J. Kevern, Assessment of low-cost organic phase change materials for improving infrastructure thermal performance, Constr. Build. Mater. 369 (2023) 130285. https://doi.org/10.1016/j.conbuildmat.2022.130285.
  • 13. A. Ariwibowo, M. Irsyad, A. Amrul, An Experimental Study of the Use of Coconut Oil-based PCM to Reduce the Thermal Load of Air Conditioners as an Effort to Save Energy, Motiv. J. Mech. Electr. Ind. Eng. 4 (2022) 35–44. https://doi.org/10.46574/motivection.v4i1.107.
  • 14. Y.S. Indartono, A. Suwono, A.D. Pasek, D. Mujahidin, I. Rizal, Thermal Characteristics Evaluation of Vegetables Oil to be Used as Phase Change Material in Air Conditioning System, J. Tek.Mesin 12 (2011). https://doi.org/10.9744/jtm.12.2.119-124.
  • 15. L. Safira, N. Putra, T. Trisnadewi, E. Kusrini, T.M.I. Mahlia, Thermal properties of sonicated graphene in coconut oil as a phase change material for energy storage in building applications1, Int. J. Low-Carbon Technol. 15 (2020) 629–636. https://doi. org/10.1093/ijlct/ctaa018.
  • 16. J. Jeon, J.H. Park, S. Wi, S. Yang, Y.S. Ok, S. Kim, Latent heat storage biocomposites of phase change material-biochar as feasible eco-friendly building materials, Environ. Res. 172 (2019) 637–648. https://doi.org/10.1016/j.envres.2019.01.058.
  • 17. A. Benhorma, A. Bensenouci, M. Teggar, K.A.R. Ismail, M. Arıcı, E. Mezaache, A. Laouer, F.A.M. Lino, Prospects and challenges of bio-based phase change materials: An up to date review,J. Energy Storage 90 (2024) 111713. https://doi.org/10.1016/j. est.2024.111713.
  • 18. A.R. Abdulmunem, H.M. Hamed, P.M. Samin, I.I. Mazali, K. Sopian, Thermal management of lithium-ion batteries using palm fatty acid distillate as a sustainable bio-phase change material, J. Energy Storage 73 (2023) 109187. https://doi.org/10.1016/j. est.2023.109187.
  • 19. A. Verma, S. Shashidhara, D. Rakshit, A comparative study on battery thermal management using phase change material (PCM), Therm. Sci. Eng. Prog. 11 (2019) 74–83. https://doi. org/10.1016/j.tsep.2019.03.003.
  • 20. S. John, K. Sreyas, Y. Mohan, A.D. Thampi, S. Rani, Numerical investigation on the effect of PCM thickness and nano-additive on the cooling performance of Stearic Acid based battery thermal management system, Mater. Today Proc. 80 (2023) 1442–1447. https://doi.org/10.1016/j.matpr.2023.01.267.
  • 21. Z. Ling, S. Li, C. Cai, S. Lin, X. Fang, Z. Zhang, Battery thermal management based on multiscale encapsulated inorganic phase change material of high stability, Appl. Therm. Eng. 193 (2021) 117002. https://doi.org/10.1016/j.applthermaleng.2021.117002.
  • 22. V.M. Goud, G. Satyanarayana, J. Ramesh, G.A. Pathanjali, D. Ruben Sudhakar, An experimental investigation and hybrid neural network modelling of thermal management of lithium-ion batteries using a non-paraffinic organic phase change material, Myristyl alcohol, J. Energy Storage 72 (2023) 108395. https://doi.org/10.1016/j.est.2023.108395.
  • 23. M.Y. Yazıcı, Thermal Management of Small-Scale Li-ion Battery Module Using Graphite Matrix Composite with Phase Change: Effect of Discharge Rate, Iğdır Üniversitesi Fen Bilim. Enstitüsü Derg. 12 (2022) 389–402. https://doi.org/10.21597/jist.952021.
  • 24. Y. Su, J. Shen, X. Chen, X. Xu, S. Shi, X. Wang, F. Zhou, X. Huang, Bio-based eutectic composite phase change materials with enhanced thermal conductivity and excellent shape stabilization for battery thermal management, J. Energy Storage 100 (2024) 113712. https://doi.org/10.1016/j.est.2024.113712.
  • 25. J. Mei, G. Shi, H. Liu, Z. Wang, Organic and Inorganic Hybrid Composite Phase Change Material for Inhibiting the Thermal Runaway of Lithium-Ion Batteries, Batteries 9 (2023) 513. https://doi.org/10.3390/batteries9100513.
  • 26. F.L. Rashid, M.A. Al-Obaidi, N.S. Dhaidan, A.K. Hussein, B. Ali, M.B. Ben Hamida, O. Younis, Bio-based phase change materials for thermal energy storage and release: A review, J. Energy Storage 73 (2023) 109219. https://doi.org/10.1016/j.est.2023.109219.
  • 27. C. Tambe, D. Graiver, R. Narayan, Moisture resistancecoating of packaging paper from biobased silylated soybean oil, Prog. Org. Coatings 101 (2016) 270–278. https://doi. org/10.1016/j.porgcoat.2016.08.016.
  • 28. M.S.M. Al-Jethelah, A. Al-Sammarraie, S.H. Tasnim, S. Mahmud, A. Dutta, Effect of convection heat transfer on thermal energy storage unit, Open Phys. 16 (2018) 861–867. https://doi. org/10.1515/phys-2018-0108.
  • 29. S. Kulandaivel, W.K. Ngui, M. Samykano, R.K. Rajamony, S.K. Suraparaju, N.S. Abd Ghafar, M. Mat Noor, Enhanced Heat Transfer Efficiency through Formulation and Rheo-Thermal Analysis of Palm Oil-Based CNP/SiO 2 Binary Nanofluid, Energy Technol. (2024). https://doi.org/10.1002/ente.202400314.
  • 30. D.K. Yadav, P.K.S. Rathore, R.K. Singh, A.K. Gupta, B.S. Sikarwar, Experimental Study on Paraffin Wax and Soya Wax Supported by High-Density Polyethylene and Loaded with Nano-Additives for Thermal Energy Storage, Energies 17 (2024) 2461. https://doi.org/10.3390/en17112461.
  • 31. S. Nurul Syahida, M.R. Ismail-Fitry, Z.M.A. Ainun, Z.A. Nur Hanani, Effects of palm wax on the physical, mechanical and water barrier properties of fish gelatin films for food packaging application, Food Packag. Shelf Life 23 (2020) 100437. https://doi.org/10.1016/j.fpsl.2019.100437.
  • 32. A.N. Surendran, K.P.K. Ajjarapu, A.A. Arumugham, K. Kate, J. Satyavolu, Characterization of industry grade soybean wax for potential applications in natural fiber reinforced composite (NFRC) filaments, Ind. Crops Prod. 186 (2022) 115163. https://doi.org/10.1016/j.indcrop.2022.115163.
  • 33. A. Farrahnoor, N.A.A. Sazali, H. Yusoff, B.T. Zhou, Effect of beeswax and coconut oil as natural coating agents on morphological, degradation behaviour, and water barrier properties of mycelium-based composite in modified controlled environment, Prog. Org. Coatings 196 (2024) 108763. https://doi.org/10.1016/j.porgcoat.2024.108763.
  • 34. J. Liu, Y. Fan, Q. Xie, An experimental study on the thermal performance of mixed phase change materials-based battery cooling system, J. Energy Storage 46 (2022) 103839. https://doi.org/10.1016/j.est.2021.103839.
  • 35. C. Qiu, C. Wu, X. Yuan, L. Wu, J. Yang, H. Shi, Multi-objective optimization of PCM-fin structure for staggered Li-ion battery packs, Bull. Polish Acad. Sci. Tech. Sci. (2023) 145677–145677. https://doi.org/10.24425/bpasts.2023.145677.
  • 36. J. Liu, Y. Fan, Q. Xie, An experimental study on the thermal performance of mixed phase change materials-based battery cooling system, J. Energy Storage 46 (2022) 103839. https://doi.org/10.1016/j.est.2021.103839.
  • 37. C. Wang, Y. Zhu, X. Fan, C. Qi, F. Gao, Mathematical model for thermal behavior of lithium-ion battery pack under overheating, Appl. Therm. Eng. 191 (2021) 116894. https://doi.org/10.1016/j. applthermaleng.2021.116894.
  • 38. M. Sheikh, A. Elmarakbi, M. Elkady, Thermal runaway detection of cylindrical 18650 lithium-ion battery under quasi-static loading conditions, J. Power Sources 370 (2017) 61–70. https://doi.org/10.1016/j.jpowsour.2017.10.013.
  • 39. M.Y. Gökaslan, E. Yıldız, Experimental investigation of pressure drop and heat transfer in porous media based on 3D printed triple periodic minimum surfaces, Exp. Heat Transf. (2024) 1–16. https://doi.org/10.1080/08916152.2024.2312464.

Investigation of the Effect on Thermal Performance Using Organic Phase Change Material in Battery Cooling Systems

Year 2025, Volume: 12 Issue: 1, 15 - 23, 25.03.2025
https://doi.org/10.17350/HJSE19030000347

Abstract

The thermal performance of lithium-ion battery under passive cooling (organic PCM) is investigated experimentally. Coconut oil, soy wax and palm wax are used as organic PCM. This study investigates the temperatures at the anode, cathode and midpoint of the battery in natural convection and the effects of passive cooling method on three different organic PCMs located around Li-ion battery during different discharges (1C, 2C and 3C). The results with PCM are also compared with the cases without PCM and the effects of organic PCMs on battery thermal performance are determined. According to the experimental results, it is determined that at the highest discharge rate, coconut oil completely melted, palm wax is in mushy phase region and soy wax does not change phase. Depending on discharge rates, in the case without PCM, while the maximum battery surface temperatures range from 30.7 °C to 48.8 °C, these temperatures range from 25.5 °C to 42.6 °C for coconut oil, 24.8 °C to 41.8 °C for soy wax, and 25 °C to 40.5 °C for palm wax. Battery cooling performance is better in palm wax. In addition, when the surface temperatures of the battery are compared with organic PCMs temperature, it is identified that there is very little difference. These findings indicate that passive cooling can also reduce battery operating temperature and the use of organic PCMs can make positive contributions to battery thermal performance.

References

  • 1. K. Roshanai, Recent advances in lithium–ion battery utilization: A mini review, Sigma J. Eng. Nat. Sci. – Sigma Mühendislik ve Fen Bilim. Derg. (2023) 1272–1286. https://doi.org/10.14744/sigma.2021.00077.
  • 2. T. Kim, W. Song, D.-Y. Son, L.K. Ono, Y. Qi, Lithium-ion batteries: outlook on present, future, and hybridized technologies, J. Mater. Chem. A 7 (2019) 2942–2964. https://doi.org/10.1039/C8TA10513H.
  • 3. A. Khan, M. Ali, S. Yaqub, H.A. Khalid, R.R.U. Khan, K. Mushtaq, H. Nazir, Z. Said, Hybrid thermal management of Li-ion battery pack: An experimental study with eutectic PCM-embedded heat transfer fluid, J. Energy Storage 77 (2024) 109929. https://doi. org/10.1016/j.est.2023.109929.
  • 4. A. Belgibayeva, A. Rakhmetova, M. Rakhatkyzy, M. Kairova, I. Mukushev, N. Issatayev, G. Kalimuldina, A. Nurpeissova, Y.-K. Sun, Z. Bakenov, Lithium-ion batteries for low-temperature applications: Limiting factors and solutions, J. Power Sources 557 (2023) 232550. https://doi.org/10.1016/j.jpowsour.2022.232550.
  • 5. V.G. Choudhari, D.A.S. Dhoble, T.M. Sathe, A review on effect of heat generation and various thermal management systems for lithium ion battery used for electric vehicle, J. Energy Storage 32 (2020) 101729. https://doi.org/10.1016/j.est.2020.101729.
  • 6. S. Ma, M. Jiang, P. Tao, C. Song, J. Wu, J. Wang, T. Deng, W. Shang, Temperature effect and thermal impact in lithium-ion batteries: A review, Prog. Nat. Sci. Mater. Int. 28 (2018) 653–666. https://doi.org/10.1016/j.pnsc.2018.11.002.
  • 7. M.W. Nazar, N. Iqbal, M. Ali, H. Nazir, M.Z. Bin Amjad, Thermal management of Li-ion battery by using active and passive cooling method, J. Energy Storage 61 (2023) 106800. https://doi.org/10.1016/j.est.2023.106800.
  • 8. M.S. Mert, M. Sert, H.H. Mert, Isıl Enerji Depolama Sistemleri İçin Organik Faz Değiştiren Maddelerin Mevcut Durumu Üzerine Bir İnceleme, Mühendislik Bilim. ve Tasarım Derg. 6 (2018) 161–174. https://doi.org/10.21923/jesd.331998.
  • 9. C.A. Saleel, A review on the use of coconut oil as an organic phase change material with its melting process, heat transfer, and energy storage characteristics, J. Therm. Anal. Calorim. 147 (2022) 4451–4472. https://doi.org/10.1007/s10973-021-10839-7.
  • 10. P.K.S. Rathore, K.K. Gupta, B. Patel, R.K. Sharma, N.K. Gupta, Beeswax as a potential replacement of paraffin wax as shape stabilized solar thermal energy storage material: An experimental study, J. Energy Storage 68 (2023) 107714. https://doi.org/10.1016/j.est.2023.107714.
  • 11. T. Trisnadewi, E. Kusrini, D.M. Nurjaya, N. Putra, T.M.I. Mahlia, Experimental analysis of natural wax as phase change material by thermal cycling test using thermoelectric system, J. Energy Storage 40 (2021) 102703. https://doi.org/10.1016/j. est.2021.102703.
  • 12. R.M. Kalombe, S. Sobhansarbandi, J. Kevern, Assessment of low-cost organic phase change materials for improving infrastructure thermal performance, Constr. Build. Mater. 369 (2023) 130285. https://doi.org/10.1016/j.conbuildmat.2022.130285.
  • 13. A. Ariwibowo, M. Irsyad, A. Amrul, An Experimental Study of the Use of Coconut Oil-based PCM to Reduce the Thermal Load of Air Conditioners as an Effort to Save Energy, Motiv. J. Mech. Electr. Ind. Eng. 4 (2022) 35–44. https://doi.org/10.46574/motivection.v4i1.107.
  • 14. Y.S. Indartono, A. Suwono, A.D. Pasek, D. Mujahidin, I. Rizal, Thermal Characteristics Evaluation of Vegetables Oil to be Used as Phase Change Material in Air Conditioning System, J. Tek.Mesin 12 (2011). https://doi.org/10.9744/jtm.12.2.119-124.
  • 15. L. Safira, N. Putra, T. Trisnadewi, E. Kusrini, T.M.I. Mahlia, Thermal properties of sonicated graphene in coconut oil as a phase change material for energy storage in building applications1, Int. J. Low-Carbon Technol. 15 (2020) 629–636. https://doi. org/10.1093/ijlct/ctaa018.
  • 16. J. Jeon, J.H. Park, S. Wi, S. Yang, Y.S. Ok, S. Kim, Latent heat storage biocomposites of phase change material-biochar as feasible eco-friendly building materials, Environ. Res. 172 (2019) 637–648. https://doi.org/10.1016/j.envres.2019.01.058.
  • 17. A. Benhorma, A. Bensenouci, M. Teggar, K.A.R. Ismail, M. Arıcı, E. Mezaache, A. Laouer, F.A.M. Lino, Prospects and challenges of bio-based phase change materials: An up to date review,J. Energy Storage 90 (2024) 111713. https://doi.org/10.1016/j. est.2024.111713.
  • 18. A.R. Abdulmunem, H.M. Hamed, P.M. Samin, I.I. Mazali, K. Sopian, Thermal management of lithium-ion batteries using palm fatty acid distillate as a sustainable bio-phase change material, J. Energy Storage 73 (2023) 109187. https://doi.org/10.1016/j. est.2023.109187.
  • 19. A. Verma, S. Shashidhara, D. Rakshit, A comparative study on battery thermal management using phase change material (PCM), Therm. Sci. Eng. Prog. 11 (2019) 74–83. https://doi. org/10.1016/j.tsep.2019.03.003.
  • 20. S. John, K. Sreyas, Y. Mohan, A.D. Thampi, S. Rani, Numerical investigation on the effect of PCM thickness and nano-additive on the cooling performance of Stearic Acid based battery thermal management system, Mater. Today Proc. 80 (2023) 1442–1447. https://doi.org/10.1016/j.matpr.2023.01.267.
  • 21. Z. Ling, S. Li, C. Cai, S. Lin, X. Fang, Z. Zhang, Battery thermal management based on multiscale encapsulated inorganic phase change material of high stability, Appl. Therm. Eng. 193 (2021) 117002. https://doi.org/10.1016/j.applthermaleng.2021.117002.
  • 22. V.M. Goud, G. Satyanarayana, J. Ramesh, G.A. Pathanjali, D. Ruben Sudhakar, An experimental investigation and hybrid neural network modelling of thermal management of lithium-ion batteries using a non-paraffinic organic phase change material, Myristyl alcohol, J. Energy Storage 72 (2023) 108395. https://doi.org/10.1016/j.est.2023.108395.
  • 23. M.Y. Yazıcı, Thermal Management of Small-Scale Li-ion Battery Module Using Graphite Matrix Composite with Phase Change: Effect of Discharge Rate, Iğdır Üniversitesi Fen Bilim. Enstitüsü Derg. 12 (2022) 389–402. https://doi.org/10.21597/jist.952021.
  • 24. Y. Su, J. Shen, X. Chen, X. Xu, S. Shi, X. Wang, F. Zhou, X. Huang, Bio-based eutectic composite phase change materials with enhanced thermal conductivity and excellent shape stabilization for battery thermal management, J. Energy Storage 100 (2024) 113712. https://doi.org/10.1016/j.est.2024.113712.
  • 25. J. Mei, G. Shi, H. Liu, Z. Wang, Organic and Inorganic Hybrid Composite Phase Change Material for Inhibiting the Thermal Runaway of Lithium-Ion Batteries, Batteries 9 (2023) 513. https://doi.org/10.3390/batteries9100513.
  • 26. F.L. Rashid, M.A. Al-Obaidi, N.S. Dhaidan, A.K. Hussein, B. Ali, M.B. Ben Hamida, O. Younis, Bio-based phase change materials for thermal energy storage and release: A review, J. Energy Storage 73 (2023) 109219. https://doi.org/10.1016/j.est.2023.109219.
  • 27. C. Tambe, D. Graiver, R. Narayan, Moisture resistancecoating of packaging paper from biobased silylated soybean oil, Prog. Org. Coatings 101 (2016) 270–278. https://doi. org/10.1016/j.porgcoat.2016.08.016.
  • 28. M.S.M. Al-Jethelah, A. Al-Sammarraie, S.H. Tasnim, S. Mahmud, A. Dutta, Effect of convection heat transfer on thermal energy storage unit, Open Phys. 16 (2018) 861–867. https://doi. org/10.1515/phys-2018-0108.
  • 29. S. Kulandaivel, W.K. Ngui, M. Samykano, R.K. Rajamony, S.K. Suraparaju, N.S. Abd Ghafar, M. Mat Noor, Enhanced Heat Transfer Efficiency through Formulation and Rheo-Thermal Analysis of Palm Oil-Based CNP/SiO 2 Binary Nanofluid, Energy Technol. (2024). https://doi.org/10.1002/ente.202400314.
  • 30. D.K. Yadav, P.K.S. Rathore, R.K. Singh, A.K. Gupta, B.S. Sikarwar, Experimental Study on Paraffin Wax and Soya Wax Supported by High-Density Polyethylene and Loaded with Nano-Additives for Thermal Energy Storage, Energies 17 (2024) 2461. https://doi.org/10.3390/en17112461.
  • 31. S. Nurul Syahida, M.R. Ismail-Fitry, Z.M.A. Ainun, Z.A. Nur Hanani, Effects of palm wax on the physical, mechanical and water barrier properties of fish gelatin films for food packaging application, Food Packag. Shelf Life 23 (2020) 100437. https://doi.org/10.1016/j.fpsl.2019.100437.
  • 32. A.N. Surendran, K.P.K. Ajjarapu, A.A. Arumugham, K. Kate, J. Satyavolu, Characterization of industry grade soybean wax for potential applications in natural fiber reinforced composite (NFRC) filaments, Ind. Crops Prod. 186 (2022) 115163. https://doi.org/10.1016/j.indcrop.2022.115163.
  • 33. A. Farrahnoor, N.A.A. Sazali, H. Yusoff, B.T. Zhou, Effect of beeswax and coconut oil as natural coating agents on morphological, degradation behaviour, and water barrier properties of mycelium-based composite in modified controlled environment, Prog. Org. Coatings 196 (2024) 108763. https://doi.org/10.1016/j.porgcoat.2024.108763.
  • 34. J. Liu, Y. Fan, Q. Xie, An experimental study on the thermal performance of mixed phase change materials-based battery cooling system, J. Energy Storage 46 (2022) 103839. https://doi.org/10.1016/j.est.2021.103839.
  • 35. C. Qiu, C. Wu, X. Yuan, L. Wu, J. Yang, H. Shi, Multi-objective optimization of PCM-fin structure for staggered Li-ion battery packs, Bull. Polish Acad. Sci. Tech. Sci. (2023) 145677–145677. https://doi.org/10.24425/bpasts.2023.145677.
  • 36. J. Liu, Y. Fan, Q. Xie, An experimental study on the thermal performance of mixed phase change materials-based battery cooling system, J. Energy Storage 46 (2022) 103839. https://doi.org/10.1016/j.est.2021.103839.
  • 37. C. Wang, Y. Zhu, X. Fan, C. Qi, F. Gao, Mathematical model for thermal behavior of lithium-ion battery pack under overheating, Appl. Therm. Eng. 191 (2021) 116894. https://doi.org/10.1016/j. applthermaleng.2021.116894.
  • 38. M. Sheikh, A. Elmarakbi, M. Elkady, Thermal runaway detection of cylindrical 18650 lithium-ion battery under quasi-static loading conditions, J. Power Sources 370 (2017) 61–70. https://doi.org/10.1016/j.jpowsour.2017.10.013.
  • 39. M.Y. Gökaslan, E. Yıldız, Experimental investigation of pressure drop and heat transfer in porous media based on 3D printed triple periodic minimum surfaces, Exp. Heat Transf. (2024) 1–16. https://doi.org/10.1080/08916152.2024.2312464.
There are 39 citations in total.

Details

Primary Language English
Subjects Experimental Methods in Fluid Flow, Heat and Mass Transfer, Energy Generation, Conversion and Storage (Excl. Chemical and Electrical)
Journal Section Research Articles
Authors

Mustafa Yasin Gökaslan 0000-0003-3859-8485

Publication Date March 25, 2025
Submission Date November 18, 2024
Acceptance Date January 14, 2025
Published in Issue Year 2025 Volume: 12 Issue: 1

Cite

Vancouver Gökaslan MY. Investigation of the Effect on Thermal Performance Using Organic Phase Change Material in Battery Cooling Systems. Hittite J Sci Eng. 2025;12(1):15-23.

Hittite Journal of Science and Engineering is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).