Research Article
BibTex RIS Cite

Year 2025, Volume: 12 Issue: 3, 121 - 127, 30.09.2025
https://doi.org/10.17350/HJSE19030000358

Abstract

References

  • 1. Cui Y, Liu L, Shi M, Wang Y, Meng X, Chen Y, et al. A review of advances in graphene quantum dots: from preparation and modification methods to application. C-J. Carbon Res. 2024;10(1):7.
  • 2. Iravani S, Varma RS. Green synthesis, biomedical and biotechnological applications of carbon and graphene quantum dots. A review. Environ. Chem. Lett. 2020;18:703-727.
  • 3. Yan Y, Gong J, Chen J, Zeng Z, Huang W, Pu K, et al. Recent advances on graphene quantum dots: from chemistry and physics to applications. Adv. Mater. 2019;31(21):1808283.
  • 4. Zheng XT, Ananthanarayanan A, Luo KQ, Chen P. Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small. 2015;11(14):1620-1636.
  • 5. Chung S, Revia RA, Zhang M. Graphene quantum dots and their applications in bioimaging, biosensing, and therapy. Adv. Mater. 2021;33(22):1904362.
  • 6. Ghaffarkhah A, Hosseini E, Kamkar M, Sehat AA, Dordanihaghighi S, Allahbakhsh A, et al. Synthesis, applications, and prospects of graphene quantum dots: a comprehensive review. Small. 2022;18(2):2102683.
  • 7. Hung YC, Wu J-R, Periasamy AP, Aoki N, Chuang C. Advances in spin properties of plant leaf-derived graphene quantum dots from materials to applications. Nanotechnology. 2025.
  • 8. Rodríguez-Caicedo JP, Joya-Cárdenas DR, Corona-Rivera MA, Saldaña-Robles N, Damian-Ascencio CE, Saldaña-Robles A. Efficiency of Graphene Quantum Dots in Water Contaminant Removal: Trends and Future Research Directions. Water. 2025;17(2):166.
  • 9. Sharma P, Yadav P, Kumar A, Mudila H. Exploration of graphene quantum dots: Design, properties, energy storage and conversion. J. Power Sources. 2025;630:236177.
  • 10. Das N, Srivastava R, Roy S, De AK, Kar RK. Physico-chemical properties and biological evaluation of graphene quantum dots for anticancer drug susceptibility. Colloids Surf. B: Biointerfaces. 2025;245:114322.
  • 11. Saeidi S, Rezaei B, Irannejad N, Ensafi AA. Efficiency improvement of luminescent solar concentrators using upconversion nitrogen-doped graphene quantum dots. J. Power Sources. 2020;476:228647.
  • 12. Huang C-L, Huang C-C, Mai F-D, Yen C-L, Tzing S-H, Hsieh H-T, et al. Application of paramagnetic graphene quantum dots as a platform for simultaneous dual-modality bioimaging and tumor-targeted drug delivery. J. Mater. Chem. B. 2015;3(4):651-664.
  • 13. Anusuya T, Kumar V, Kumar V. Hydrophilic graphene quantum dots as turn-off fluorescent nanoprobes for toxic heavy metal ions detection in aqueous media. Chemosphere. 2021;282:131019.
  • 14. Balkanloo PG, Sharifi KM, Marjani AP. Graphene quantum dots: Synthesis, characterization, and application in wastewater treatment: A review. Mater. Adv. 2023;4(19):4272-4293.
  • 15. Haque E, Kim J, Malgras V, Reddy KR, Ward AC, You J, et al. Recent advances in graphene quantum dots: synthesis, properties, and applications. Small Methods. 2018;2(10):1800050.
  • 16. Tian P, Tang L, Teng K, Lau S. Graphene quantum dots from chemistry to applications. Mater. Today Chem. 2018;10:221-258.
  • 17. Kadyan P, Malik R, Bhatia S, Al Harrasi A, Mohan S, Yadav M, et al. Comprehensive review on synthesis, applications, and challenges of graphene quantum dots (GQDs). J. Nanomater. 2023;2023(1):2832964.
  • 18. Dong Y, Shao J, Chen C, Li H, Wang R, Chi Y, et al. Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon. 2012;50(12):4738-4743.
  • 19. Bezuneh TT, Fereja TH, Li H, Jin Y. Solid-phase pyrolysis synthesis of highly fluorescent nitrogen/sulfur codoped graphene quantum dots for selective and sensitive diversity detection of Cr (VI). Langmuir. 2023;39(4):1538-1547.
  • 20. Gu S, Hsieh C-T, Yuan C-Y, Gandomi YA, Chang J-K, Fu C-C, et al. Fluorescence of functionalized graphene quantum dots prepared from infrared-assisted pyrolysis of citric acid and urea. J. Lumin. 2020;217:116774.
  • 21. Sweetman MJ, Hickey SM, Brooks DA, Hayball JD, Plush SE. A practical guide to prepare and synthetically modify graphene quantum dots. Adv. Funct. Mater. 2019;29(14):1808740.
  • 22. Üzek R, Sari E, Şenel S, Denizli A, Merkoçi A. A nitrocellulose paper strip for fluorometric determination of bisphenol A using molecularly imprinted nanoparticles. Mikrochim. Acta. 2019;186:1-10.
  • 23. Sari E, Uzek R, Merkoci A. Paper based photoluminescent sensing platform with recognition sites for tributyltin. ACS sensors. 2019;4(3):645-653.
  • 24. Bal FB, Sari E, Üzek R, Loğoğlu E. Nanocomposite as visible sensing platform for Hg²⁺. IEEE Sens. J. 2021;21(9):10595-10602.
  • 25. Üzek R. Engineering a Graphene Quantum Dot‐Enhanced Surface Plasmon Resonance Sensor for Ultra‐Sensitive Detection of Hg2⁺ Ions. Adv. Mater. Interfaces. 2025;12(5):2400679.
  • 26. Sari E. Synthesis and characterization of high quantum yield graphene quantum dots via pyrolysis of glutamic acid and aspartic acid. J. Nanoparticle Res. 2022;24(2):37.
  • 27. Li L, Li L, Wang C, Liu K, Zhu R, Qiang H, et al. Synthesis of nitrogen-doped and amino acid-functionalized graphene quantum dots from glycine, and their application to the fluorometric determination of ferric ion. Mikrochim. Acta. 2015;182:763-770.
  • 28. Kostromin S, Borodina A, Pankin D, Povolotskiy A, Bronnikov S. N-doped carbon quantum dots obtained from citric acid and L-phenylalanine. Chem. Phys. Lett. 2024;841:141175.
  • 29. Ruiyi L, Sili Q, Zhangyi L, Ling L, Zaijun L. Histidine-functionalized graphene quantum dot-graphene micro-aerogel based voltammetric sensing of dopamine. Sens. actuators B Chem. 2017;250:372-382.
  • 30. Moon BJ, Kim SJ, Lee A, Oh Y, Lee S-K, Lee SH, et al. Structure-controllable growth of nitrogenated graphene quantum dots via solvent catalysis for selective CN bond activation. Nat. Commun. 2021;12(1):5879.
  • 31. Li M, Tang N, Ren W, Cheng H, Wu W, Zhong W, et al. Quenching of fluorescence of reduced graphene oxide by nitrogen-doping. Appl. Phys. Lett. 2012;100(23).
  • 32. Nguyen KG, Huš M, Baragau I-A, Puccinelli E, Bowen J, Heil T, et al. Controlling the optoelectronic properties of nitrogen-doped carbon quantum dots using biomass-derived precursors in a continuous flow system. Carbon. 2024;230:119623.
  • 33. Shi L, Wang B, Lu S. Efficient bottom-up synthesis of graphene quantum dots at an atomically precise level. Matter. 2023;6(3):728-760.
  • 34. Wu X, Tian F, Wang W, Chen J, Wu M, Zhao JX. Fabrication of highly fluorescent graphene quantum dots using L-glutamic acid for in vitro/in vivo imaging and sensing. Journal of Materials Chemistry C. 2013;1(31):4676-4684.
  • 35. Wang S, Chen Z-G, Cole I, Li Q. Structural evolution of graphene quantum dots during thermal decomposition of citric acid and the corresponding photoluminescence. Carbon. 2015;82:304-313.
  • 36. Ke Y, Liu YC, Ren WW, Bai AM, Li XY, Hu YJ. Preparation of graphene quantum dots with glycine as nitrogen source and its interaction with human serum albumin. Luminescence. 2021;36(4):894-903.

Tailoring Graphene Quantum Dots through the Pyrolysis of Citric Acid, Phenylalanine, and Tryptophan: Effect of Precursor Ratios on Synthesis Efficiency and Properties

Year 2025, Volume: 12 Issue: 3, 121 - 127, 30.09.2025
https://doi.org/10.17350/HJSE19030000358

Abstract

Graphene Quantum Dots (GQDs) are gaining significant attention due to their unique optical, electronic, and biocompatible properties, making them ideal candidates for applications in bioimaging, sensing, and drug delivery. This study explores the synthesis of GQDs derived from citric acid (CA), phenylalanine (Phe), and tryptophan (Trp) using a pyrolysis method, where GQDs were synthesized using 2.0 g of CA with varying amounts of Phe (0.75 g, 0.50 g, 0.25 g) and Trp (0.25 g, 0.50 g, 0.75 g), corresponding to GQDs1, GQDs2, and GQDs3, respectively. The influence of precursor composition on the structural, optical, and physicochemical properties of GQDs was analyzed. Particle size measurements showed a hydrodynamic diameter range of 0.89 nm to 1.5 nm, with increasing Trp content leading to larger particles and a broader size distribution, reflected in polydispersity index (PDI) values of 0.221, 0.312, and 0.368 for GQDs1, GQDs2, and GQDs3, respectively. Zeta potential analysis revealed values of -21.4 mV, -12.2 mV, and -7.5 mV for GQDs1, GQDs2, and GQDs3, respectively, indicating reduced surface charge with higher Trp content, which may affect colloidal stability. Optical characterization showed π→π* (~230–270 nm) and n→π* (~300–350 nm) transitions in the UV-Vis spectra, with varying absorbance intensities across samples. Fluorescence spectroscopy confirmed strong emission properties, which were highly dependent on precursor ratios. Quantum yield (QY) values were 32.2%, 95.5%, and 75.6% for GQDs1, GQDs2, and GQDs3, respectively, highlighting the role of nitrogen doping in fluorescence enhancement. These findings demonstrate that controlled precursor composition can fine-tune GQD properties, offering potential for optoelectronic, bioimaging, and sensing applications. Further exploration of functionalization strategies could enhance their practical utility.

References

  • 1. Cui Y, Liu L, Shi M, Wang Y, Meng X, Chen Y, et al. A review of advances in graphene quantum dots: from preparation and modification methods to application. C-J. Carbon Res. 2024;10(1):7.
  • 2. Iravani S, Varma RS. Green synthesis, biomedical and biotechnological applications of carbon and graphene quantum dots. A review. Environ. Chem. Lett. 2020;18:703-727.
  • 3. Yan Y, Gong J, Chen J, Zeng Z, Huang W, Pu K, et al. Recent advances on graphene quantum dots: from chemistry and physics to applications. Adv. Mater. 2019;31(21):1808283.
  • 4. Zheng XT, Ananthanarayanan A, Luo KQ, Chen P. Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small. 2015;11(14):1620-1636.
  • 5. Chung S, Revia RA, Zhang M. Graphene quantum dots and their applications in bioimaging, biosensing, and therapy. Adv. Mater. 2021;33(22):1904362.
  • 6. Ghaffarkhah A, Hosseini E, Kamkar M, Sehat AA, Dordanihaghighi S, Allahbakhsh A, et al. Synthesis, applications, and prospects of graphene quantum dots: a comprehensive review. Small. 2022;18(2):2102683.
  • 7. Hung YC, Wu J-R, Periasamy AP, Aoki N, Chuang C. Advances in spin properties of plant leaf-derived graphene quantum dots from materials to applications. Nanotechnology. 2025.
  • 8. Rodríguez-Caicedo JP, Joya-Cárdenas DR, Corona-Rivera MA, Saldaña-Robles N, Damian-Ascencio CE, Saldaña-Robles A. Efficiency of Graphene Quantum Dots in Water Contaminant Removal: Trends and Future Research Directions. Water. 2025;17(2):166.
  • 9. Sharma P, Yadav P, Kumar A, Mudila H. Exploration of graphene quantum dots: Design, properties, energy storage and conversion. J. Power Sources. 2025;630:236177.
  • 10. Das N, Srivastava R, Roy S, De AK, Kar RK. Physico-chemical properties and biological evaluation of graphene quantum dots for anticancer drug susceptibility. Colloids Surf. B: Biointerfaces. 2025;245:114322.
  • 11. Saeidi S, Rezaei B, Irannejad N, Ensafi AA. Efficiency improvement of luminescent solar concentrators using upconversion nitrogen-doped graphene quantum dots. J. Power Sources. 2020;476:228647.
  • 12. Huang C-L, Huang C-C, Mai F-D, Yen C-L, Tzing S-H, Hsieh H-T, et al. Application of paramagnetic graphene quantum dots as a platform for simultaneous dual-modality bioimaging and tumor-targeted drug delivery. J. Mater. Chem. B. 2015;3(4):651-664.
  • 13. Anusuya T, Kumar V, Kumar V. Hydrophilic graphene quantum dots as turn-off fluorescent nanoprobes for toxic heavy metal ions detection in aqueous media. Chemosphere. 2021;282:131019.
  • 14. Balkanloo PG, Sharifi KM, Marjani AP. Graphene quantum dots: Synthesis, characterization, and application in wastewater treatment: A review. Mater. Adv. 2023;4(19):4272-4293.
  • 15. Haque E, Kim J, Malgras V, Reddy KR, Ward AC, You J, et al. Recent advances in graphene quantum dots: synthesis, properties, and applications. Small Methods. 2018;2(10):1800050.
  • 16. Tian P, Tang L, Teng K, Lau S. Graphene quantum dots from chemistry to applications. Mater. Today Chem. 2018;10:221-258.
  • 17. Kadyan P, Malik R, Bhatia S, Al Harrasi A, Mohan S, Yadav M, et al. Comprehensive review on synthesis, applications, and challenges of graphene quantum dots (GQDs). J. Nanomater. 2023;2023(1):2832964.
  • 18. Dong Y, Shao J, Chen C, Li H, Wang R, Chi Y, et al. Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon. 2012;50(12):4738-4743.
  • 19. Bezuneh TT, Fereja TH, Li H, Jin Y. Solid-phase pyrolysis synthesis of highly fluorescent nitrogen/sulfur codoped graphene quantum dots for selective and sensitive diversity detection of Cr (VI). Langmuir. 2023;39(4):1538-1547.
  • 20. Gu S, Hsieh C-T, Yuan C-Y, Gandomi YA, Chang J-K, Fu C-C, et al. Fluorescence of functionalized graphene quantum dots prepared from infrared-assisted pyrolysis of citric acid and urea. J. Lumin. 2020;217:116774.
  • 21. Sweetman MJ, Hickey SM, Brooks DA, Hayball JD, Plush SE. A practical guide to prepare and synthetically modify graphene quantum dots. Adv. Funct. Mater. 2019;29(14):1808740.
  • 22. Üzek R, Sari E, Şenel S, Denizli A, Merkoçi A. A nitrocellulose paper strip for fluorometric determination of bisphenol A using molecularly imprinted nanoparticles. Mikrochim. Acta. 2019;186:1-10.
  • 23. Sari E, Uzek R, Merkoci A. Paper based photoluminescent sensing platform with recognition sites for tributyltin. ACS sensors. 2019;4(3):645-653.
  • 24. Bal FB, Sari E, Üzek R, Loğoğlu E. Nanocomposite as visible sensing platform for Hg²⁺. IEEE Sens. J. 2021;21(9):10595-10602.
  • 25. Üzek R. Engineering a Graphene Quantum Dot‐Enhanced Surface Plasmon Resonance Sensor for Ultra‐Sensitive Detection of Hg2⁺ Ions. Adv. Mater. Interfaces. 2025;12(5):2400679.
  • 26. Sari E. Synthesis and characterization of high quantum yield graphene quantum dots via pyrolysis of glutamic acid and aspartic acid. J. Nanoparticle Res. 2022;24(2):37.
  • 27. Li L, Li L, Wang C, Liu K, Zhu R, Qiang H, et al. Synthesis of nitrogen-doped and amino acid-functionalized graphene quantum dots from glycine, and their application to the fluorometric determination of ferric ion. Mikrochim. Acta. 2015;182:763-770.
  • 28. Kostromin S, Borodina A, Pankin D, Povolotskiy A, Bronnikov S. N-doped carbon quantum dots obtained from citric acid and L-phenylalanine. Chem. Phys. Lett. 2024;841:141175.
  • 29. Ruiyi L, Sili Q, Zhangyi L, Ling L, Zaijun L. Histidine-functionalized graphene quantum dot-graphene micro-aerogel based voltammetric sensing of dopamine. Sens. actuators B Chem. 2017;250:372-382.
  • 30. Moon BJ, Kim SJ, Lee A, Oh Y, Lee S-K, Lee SH, et al. Structure-controllable growth of nitrogenated graphene quantum dots via solvent catalysis for selective CN bond activation. Nat. Commun. 2021;12(1):5879.
  • 31. Li M, Tang N, Ren W, Cheng H, Wu W, Zhong W, et al. Quenching of fluorescence of reduced graphene oxide by nitrogen-doping. Appl. Phys. Lett. 2012;100(23).
  • 32. Nguyen KG, Huš M, Baragau I-A, Puccinelli E, Bowen J, Heil T, et al. Controlling the optoelectronic properties of nitrogen-doped carbon quantum dots using biomass-derived precursors in a continuous flow system. Carbon. 2024;230:119623.
  • 33. Shi L, Wang B, Lu S. Efficient bottom-up synthesis of graphene quantum dots at an atomically precise level. Matter. 2023;6(3):728-760.
  • 34. Wu X, Tian F, Wang W, Chen J, Wu M, Zhao JX. Fabrication of highly fluorescent graphene quantum dots using L-glutamic acid for in vitro/in vivo imaging and sensing. Journal of Materials Chemistry C. 2013;1(31):4676-4684.
  • 35. Wang S, Chen Z-G, Cole I, Li Q. Structural evolution of graphene quantum dots during thermal decomposition of citric acid and the corresponding photoluminescence. Carbon. 2015;82:304-313.
  • 36. Ke Y, Liu YC, Ren WW, Bai AM, Li XY, Hu YJ. Preparation of graphene quantum dots with glycine as nitrogen source and its interaction with human serum albumin. Luminescence. 2021;36(4):894-903.
There are 36 citations in total.

Details

Primary Language English
Subjects Functional Materials, Material Characterization
Journal Section Research Articles
Authors

Recep Üzek 0000-0002-7566-7817

Publication Date September 30, 2025
Submission Date February 25, 2025
Acceptance Date July 3, 2025
Published in Issue Year 2025 Volume: 12 Issue: 3

Cite

Vancouver Üzek R. Tailoring Graphene Quantum Dots through the Pyrolysis of Citric Acid, Phenylalanine, and Tryptophan: Effect of Precursor Ratios on Synthesis Efficiency and Properties. Hittite J Sci Eng. 2025;12(3):121-7.

Hittite Journal of Science and Engineering is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).