Research Article
BibTex RIS Cite

Year 2025, Volume: 12 Issue: 3, 145 - 154, 30.09.2025
https://doi.org/10.17350/HJSE19030000361

Abstract

References

  • 1. Al-Majed AA, Adebayo AR, Hossain ME. A sustainable approach to controlling oil spills. J Environ Manage. 2012;113:213-27. https://doi.org/10.1016/j.jenvman.2012.07.034
  • 2. Adebajo MO, Frost RL, Kloprogge JT, Carmody O, Kokot S. Porous materials for oil spill cleanup: a review of synthesis and absorbing properties. J Porous Mater. 2003;10:159-70. https://doi.org/10.1023/A:1027484117065
  • 3. Okeke ES, Okoye CE, Ezeorba TPC, Mao G, Chen Y, Xu H, Song C, Feng W, Wu X. Emerging bio-dispersant and bioremediation technologies as environmentally friendly management responses toward marine oil spill: A comprehensive review. J Environ Manage. 2022;322:116123. https://doi.org/10.1016/j. jenvman.2022.116123
  • 4. Lahann J. Nanomaterials clean up. Nat Nanotechnol. 2008;3(6):320-1. https://doi.org/10.1038/nnano.2008.143
  • 5. Zhou J, Zhang Y, Yang Y, Chen Z, Jia G, Zhang L. Silk fibroin-graphene oxide functionalized melamine sponge for efficient oil absorption and oil/water separation. Appl Surf Sci. 2019;497:143762. https://doi.org/10.1016/j.apsusc.2019.143762
  • 6. Kujawinski EB, Kido Soule MC, Valentine DL, Boysen AK, Longnecker K, Redmond MC. Fate of dispersants associated with the Deepwater Horizon oil spill. Environ Sci Technol. 2011;45(4):1298-306. https://doi.org/10.1021/es103838p
  • 7. Hu H, Zhao Z, Gogotsi Y, Qiu J. Compressible carbon nanotube–graphene hybrid aerogels with superhydrophobicity and superoleophilicity for oil sorption. Environ Sci Technol Lett. 2014;1(3):214-20. https://doi.org/10.1021/ez500021w
  • 8. Adebajo MO, Frost RL, Kloprogge JT, Carmody O, Kokot S. Porous materials for oil spill cleanup: a review of synthesis and absorbing properties. J Porous Mater. 2003;10:159-70. https://doi.org/10.1023/A:1027484117065
  • 9. Duan B, Gao H, He M, Zhang L. Hydrophobic modification on surface of chitin sponges for highly effective separation of oil. ACS Appl Mater Interfaces. 2014;6(22):19933-42. https://doi. org/10.1021/am505414y
  • 10. Wen L, Tian Y, Jiang L. Bioinspired super-wettability from fundamental research to practical applications. Angew Chem Int Ed. 2015;54(11):3387-99. https://doi.org/10.1002/anie.201409911
  • 11. Xiang B, Sun Q, Zhong Q, Mu P, Li J. Current research situation and future prospect of superwetting smart oil/water separation materials. J Mater Chem A. 2022;10(38):20190-217. https://doi. org/10.1039/D2TA04469B
  • 12. Yang J, Zhang Z, Xu X, Zhu X, Men X, Zhau X. Superhydrophilic–superoleophobic coatings. J Mater Chem. 2012;22(7):2834-7. https://doi.org/10.1039/C2JM15987B
  • 13. Yang J, Song H, Yan X, Tang H, Li C. Superhydrophilic and superoleophobic chitosan-based nanocomposite coatings for oil/water separation. Cellulose. 2014;21:1851-7. https://doi. org/10.1007/s10570-014-0244-0
  • 14. Wang C, Yao T, Wu J, Ma C, Fan Z, Wang Z, Cheng Y, Lin Q, Yang B. Facile approach in fabricating superhydrophobic and superoleophilic surface for water and oil mixture separation. ACS Appl Mater Interfaces. 2009;1(11):2613-7. https://doi. org/10.1021/am900520z
  • 15. Chen N, Pan Q. Versatile fabrication of ultralight magnetic foams and application for oil–water separation. ACS Nano. 2013;7(8):6875-83. https://doi.org/10.1021/nn4020533
  • 16. Cho EC, Chang-Jian CW, Hsiao YS, Lee KC, Huang JH. Interfacial engineering of melamine sponges using hydrophobic TiO₂ nanoparticles for effective oil/water separation. J Taiwan Inst Chem Eng. 2016;67:476-83. https://doi.org/10.1016/j. jtice.2016.08.002
  • 17. Zhu Q, Pan Q, Liu F. Facile removal and collection of oils from water surfaces through superhydrophobic and superoleophilic sponges. J Phys Chem C. 2011;115(35):17464-70. https://doi. org/10.1021/jp2043027
  • 18. Abu-Thabit NY, Uwaezuoke OJ, Elella MHA. Superhydrophobic nanohybrid sponges for separation of oil/water mixtures. Chemosphere. 2022;294:133644. https://doi.org/10.1016/j. chemosphere.2022.133644
  • 19. He L, Li H, Wang C, et al. Research progress in hydrophobic modification of melamine sponge and its application in oil-water separation field. J Environ Chem Eng. 2024;112536. https://doi. org/10.1016/j.jece.2024.112536
  • 20. Zhang X, Zhang, L, Chen J, Jiang X, Wei Y, Xiao F, Hu J, Ding J. Synergistic enhancement of oil-water separation and flame retardant properties of melamine sponges based on 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) and perfluorinated compounds. Surf Coat Technol. 2024;492:131201. https://doi.org/10.1016/j.surfcoat.2024.131201
  • 21. Zhang B, Li J, Zhang L, Wang X, Quan J. Facile fabrication of silane modified melamine sponge for highly efficient oil absorption properties. J Water Process Eng. 2024;63:105407. https://doi.org/10.1016/j.jwpe.2024.105407
  • 22. Ding L, Chen M, Lu H, He H, Liu X, Wang Y. 3D multiscale sponges with plant-inspired controllable superhydrophobic coating for oil spill cleanup. Prog Org Coat. 2021;151:106075. https://doi. org/10.1016/j.porgcoat.2020.106075
  • 23. Gupta S, He WD, Tai NH. A comparative study on superhydrophobic sponges and their application as fluid channel for continuous separation of oils and organic solvents from water. Compos Part B Eng. 2016;101:99-106. https://doi. org/10.1016/j.compositesb.2016.06.002
  • 24. Kilic GA, Yalcin E, Aydin AA. Optimum operating temperature range of phase change materials used in cold storage applications: A case study. In: Environmentally-benign energy solutions; 2019; 711-26. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-20637-6_35
  • 25. Kibishov A, Kilic GA, Rustamov N, Genc N. Thermal analysis of radiation heat transfer of improved fractal solar collectors. Appl Sci. 2024;14(23):11155. https://doi.org/10.3390/app142311155
  • 26. Minju N, Ananthakumar S, Savithri S. Superswelling hybrid sponge from water glass for selective absorption of crude oil and organic solvents. ACS Omega. 2019;4(19):17990-8001. https://doi.org/10.1021/acsomega.9b01655
  • 27. Josyula T, Malla LK, Thomas TM, Kalichetty SS, Mahapatra PS, Pattamatta A. Fundamentals and applications of surface wetting. Langmuir. 2024;40(16):8293-326. https://doi. org/10.1021/acs.langmuir.3c03339
  • 28. Selvaraj V, Karthika TS, Mansiya C, Andal V, Alagar M. Review on superhydrophobic polymer composite coating materials and its coating technology for advanced applications. Polym Plast Technol Mater. 2025;64(5):694-734. https://doi.org/10.1080/25 740881.2024.2431220
  • 29. Liang L, Xue Y, Wu Q, Dong Y, Meng X. Self-assembly modification of polyurethane sponge for application in oil/water separation. RSC Adv. 2019;9(69):40378-87. https://doi. org/10.1039/C9RA05855A
  • 30. Perera HJ, Goyal A, Alhassan SM, Banu H. Biobased castor oil-based polyurethane foams grafted with octadecylsilane-modified diatomite for use as eco-friendly and low-cost sorbents for crude oil clean-up applications. Polymers. 2022;14(23):5310. https://doi.org/10.3390/polym14235310
  • 31. Liu, D., Wang, S., Wu, T., & Li, Y. A robust superhydrophobic polyurethane sponge loaded with multi-walled carbon nanotubes for efficient and selective oil-water separation. Nanomaterials, 2021; 11(12), 3344. https://doi.org/10.3390/nano11123344

Investigation of Absorption Capacity of Surface Modified PU Sponges for Oil Spills Using Different Silane Coating Agents

Year 2025, Volume: 12 Issue: 3, 145 - 154, 30.09.2025
https://doi.org/10.17350/HJSE19030000361

Abstract

Today’s marine oil spills are causing environmental concerns on a global scale. In order to effectively remove such pollutants, various absorbent materials with two-dimensional (2D) and three-dimensional (3D) structures and super-wetting properties have been developed. However, there are significant difficulties in desorption of the absorbed oil from these materials. The strong adsorption of oil components on the surface of the material limits both the efficiency of sorbent materials and the potential for reuse. In this study, polyurethane (PU) sponge adsorbents coated with different silane agents were fabricated to treat oil spills. Four different types of silanes Polydimethylsiloxane (PDMS), Octadecyltrichlorosilane (ODTCS), Methyltrichlorosilane (MTCS) and Dodecyltrimethoxysilane (DTMS) were used as silane agents. For the prepared test specimens; silane binder ratios of 0.1%, 0.5% and 1% were used in three different ways, respectively. The coating temperatures were 25°C, 40°C and 55°C and the coating times were 15 minutes, 30 minutes and 45 minutes. The contact angles and absorption capacities of the obtained PU sponge adsorbents with water were measured. In addition, their surface morphologies were examined by SEM analysis. The data obtained showed that the best absorption capacity for 81 g was achieved in the coating with PU-MTCS silane agent when 1% silane agent, 25 °C reaction temperature and 30 minutes time were applied.

References

  • 1. Al-Majed AA, Adebayo AR, Hossain ME. A sustainable approach to controlling oil spills. J Environ Manage. 2012;113:213-27. https://doi.org/10.1016/j.jenvman.2012.07.034
  • 2. Adebajo MO, Frost RL, Kloprogge JT, Carmody O, Kokot S. Porous materials for oil spill cleanup: a review of synthesis and absorbing properties. J Porous Mater. 2003;10:159-70. https://doi.org/10.1023/A:1027484117065
  • 3. Okeke ES, Okoye CE, Ezeorba TPC, Mao G, Chen Y, Xu H, Song C, Feng W, Wu X. Emerging bio-dispersant and bioremediation technologies as environmentally friendly management responses toward marine oil spill: A comprehensive review. J Environ Manage. 2022;322:116123. https://doi.org/10.1016/j. jenvman.2022.116123
  • 4. Lahann J. Nanomaterials clean up. Nat Nanotechnol. 2008;3(6):320-1. https://doi.org/10.1038/nnano.2008.143
  • 5. Zhou J, Zhang Y, Yang Y, Chen Z, Jia G, Zhang L. Silk fibroin-graphene oxide functionalized melamine sponge for efficient oil absorption and oil/water separation. Appl Surf Sci. 2019;497:143762. https://doi.org/10.1016/j.apsusc.2019.143762
  • 6. Kujawinski EB, Kido Soule MC, Valentine DL, Boysen AK, Longnecker K, Redmond MC. Fate of dispersants associated with the Deepwater Horizon oil spill. Environ Sci Technol. 2011;45(4):1298-306. https://doi.org/10.1021/es103838p
  • 7. Hu H, Zhao Z, Gogotsi Y, Qiu J. Compressible carbon nanotube–graphene hybrid aerogels with superhydrophobicity and superoleophilicity for oil sorption. Environ Sci Technol Lett. 2014;1(3):214-20. https://doi.org/10.1021/ez500021w
  • 8. Adebajo MO, Frost RL, Kloprogge JT, Carmody O, Kokot S. Porous materials for oil spill cleanup: a review of synthesis and absorbing properties. J Porous Mater. 2003;10:159-70. https://doi.org/10.1023/A:1027484117065
  • 9. Duan B, Gao H, He M, Zhang L. Hydrophobic modification on surface of chitin sponges for highly effective separation of oil. ACS Appl Mater Interfaces. 2014;6(22):19933-42. https://doi. org/10.1021/am505414y
  • 10. Wen L, Tian Y, Jiang L. Bioinspired super-wettability from fundamental research to practical applications. Angew Chem Int Ed. 2015;54(11):3387-99. https://doi.org/10.1002/anie.201409911
  • 11. Xiang B, Sun Q, Zhong Q, Mu P, Li J. Current research situation and future prospect of superwetting smart oil/water separation materials. J Mater Chem A. 2022;10(38):20190-217. https://doi. org/10.1039/D2TA04469B
  • 12. Yang J, Zhang Z, Xu X, Zhu X, Men X, Zhau X. Superhydrophilic–superoleophobic coatings. J Mater Chem. 2012;22(7):2834-7. https://doi.org/10.1039/C2JM15987B
  • 13. Yang J, Song H, Yan X, Tang H, Li C. Superhydrophilic and superoleophobic chitosan-based nanocomposite coatings for oil/water separation. Cellulose. 2014;21:1851-7. https://doi. org/10.1007/s10570-014-0244-0
  • 14. Wang C, Yao T, Wu J, Ma C, Fan Z, Wang Z, Cheng Y, Lin Q, Yang B. Facile approach in fabricating superhydrophobic and superoleophilic surface for water and oil mixture separation. ACS Appl Mater Interfaces. 2009;1(11):2613-7. https://doi. org/10.1021/am900520z
  • 15. Chen N, Pan Q. Versatile fabrication of ultralight magnetic foams and application for oil–water separation. ACS Nano. 2013;7(8):6875-83. https://doi.org/10.1021/nn4020533
  • 16. Cho EC, Chang-Jian CW, Hsiao YS, Lee KC, Huang JH. Interfacial engineering of melamine sponges using hydrophobic TiO₂ nanoparticles for effective oil/water separation. J Taiwan Inst Chem Eng. 2016;67:476-83. https://doi.org/10.1016/j. jtice.2016.08.002
  • 17. Zhu Q, Pan Q, Liu F. Facile removal and collection of oils from water surfaces through superhydrophobic and superoleophilic sponges. J Phys Chem C. 2011;115(35):17464-70. https://doi. org/10.1021/jp2043027
  • 18. Abu-Thabit NY, Uwaezuoke OJ, Elella MHA. Superhydrophobic nanohybrid sponges for separation of oil/water mixtures. Chemosphere. 2022;294:133644. https://doi.org/10.1016/j. chemosphere.2022.133644
  • 19. He L, Li H, Wang C, et al. Research progress in hydrophobic modification of melamine sponge and its application in oil-water separation field. J Environ Chem Eng. 2024;112536. https://doi. org/10.1016/j.jece.2024.112536
  • 20. Zhang X, Zhang, L, Chen J, Jiang X, Wei Y, Xiao F, Hu J, Ding J. Synergistic enhancement of oil-water separation and flame retardant properties of melamine sponges based on 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) and perfluorinated compounds. Surf Coat Technol. 2024;492:131201. https://doi.org/10.1016/j.surfcoat.2024.131201
  • 21. Zhang B, Li J, Zhang L, Wang X, Quan J. Facile fabrication of silane modified melamine sponge for highly efficient oil absorption properties. J Water Process Eng. 2024;63:105407. https://doi.org/10.1016/j.jwpe.2024.105407
  • 22. Ding L, Chen M, Lu H, He H, Liu X, Wang Y. 3D multiscale sponges with plant-inspired controllable superhydrophobic coating for oil spill cleanup. Prog Org Coat. 2021;151:106075. https://doi. org/10.1016/j.porgcoat.2020.106075
  • 23. Gupta S, He WD, Tai NH. A comparative study on superhydrophobic sponges and their application as fluid channel for continuous separation of oils and organic solvents from water. Compos Part B Eng. 2016;101:99-106. https://doi. org/10.1016/j.compositesb.2016.06.002
  • 24. Kilic GA, Yalcin E, Aydin AA. Optimum operating temperature range of phase change materials used in cold storage applications: A case study. In: Environmentally-benign energy solutions; 2019; 711-26. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-20637-6_35
  • 25. Kibishov A, Kilic GA, Rustamov N, Genc N. Thermal analysis of radiation heat transfer of improved fractal solar collectors. Appl Sci. 2024;14(23):11155. https://doi.org/10.3390/app142311155
  • 26. Minju N, Ananthakumar S, Savithri S. Superswelling hybrid sponge from water glass for selective absorption of crude oil and organic solvents. ACS Omega. 2019;4(19):17990-8001. https://doi.org/10.1021/acsomega.9b01655
  • 27. Josyula T, Malla LK, Thomas TM, Kalichetty SS, Mahapatra PS, Pattamatta A. Fundamentals and applications of surface wetting. Langmuir. 2024;40(16):8293-326. https://doi. org/10.1021/acs.langmuir.3c03339
  • 28. Selvaraj V, Karthika TS, Mansiya C, Andal V, Alagar M. Review on superhydrophobic polymer composite coating materials and its coating technology for advanced applications. Polym Plast Technol Mater. 2025;64(5):694-734. https://doi.org/10.1080/25 740881.2024.2431220
  • 29. Liang L, Xue Y, Wu Q, Dong Y, Meng X. Self-assembly modification of polyurethane sponge for application in oil/water separation. RSC Adv. 2019;9(69):40378-87. https://doi. org/10.1039/C9RA05855A
  • 30. Perera HJ, Goyal A, Alhassan SM, Banu H. Biobased castor oil-based polyurethane foams grafted with octadecylsilane-modified diatomite for use as eco-friendly and low-cost sorbents for crude oil clean-up applications. Polymers. 2022;14(23):5310. https://doi.org/10.3390/polym14235310
  • 31. Liu, D., Wang, S., Wu, T., & Li, Y. A robust superhydrophobic polyurethane sponge loaded with multi-walled carbon nanotubes for efficient and selective oil-water separation. Nanomaterials, 2021; 11(12), 3344. https://doi.org/10.3390/nano11123344
There are 31 citations in total.

Details

Primary Language English
Subjects Polymers and Plastics
Journal Section Research Articles
Authors

Mehmet Ekici 0000-0001-6259-3524

Publication Date September 30, 2025
Submission Date May 12, 2025
Acceptance Date September 11, 2025
Published in Issue Year 2025 Volume: 12 Issue: 3

Cite

Vancouver Ekici M. Investigation of Absorption Capacity of Surface Modified PU Sponges for Oil Spills Using Different Silane Coating Agents. Hittite J Sci Eng. 2025;12(3):145-54.

Hittite Journal of Science and Engineering is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).