Year 2019, Volume 6 , Issue 2, Pages 128 - 142 2019-11-01

Paradigm shift by spatial intelligence
Mekansal zekanın getirdiği paradigma değişimi

Caner GÜNEY [1]


It is becoming prevalent to produce meaningful and useful information based on artificial learning from quantitative and qualitatively increasing data sources. In order to make informed decisions in spatial information system applications, determining the context, relations, patterns and trends related to objects, facts and environment by artificial learning techniques increases the performance and efficiency of spatial information system projects. Such trends will accelerate the spread of GeoAI-based systems in the spatial informatics industry. A wide range of spatial intelligence solutions can be developed from observation and measurement systems to cloud computing information systems. In the scope of the study, it has been examined that first what the concept of spatial intelligence means, then in which areas geospatial intelligence can be utilized, and finally, how to create a road map to provide a higher added value from spatial intelligence.

Niceliksel ve niteliksel olarak artan, veri türü olarak çeşitlenen görüntü kaynaklarından anlamlı ve faydalı bilginin yapay öğrenme temelli olarak üretilmesi giderek yaygınlık kazanmaktadır. Mekansal bilgi sistemi uygulamalarında bilinçli karar verebilmek için nesnelere, olgulara ve içinde bulundukları ortama ilişkin bağlamın, ilişkilerin, örüntülerin ve eğilimlerin yapay öğrenme teknikleri ile belirlenmesi mekansal bilgi sistemi projelerinin başarımını ve verimliliğini arttırmaktadır. Bu tür yönelimler mekansal bilişim endüstrisinde mekansal zeka temelli sistemlerin kullanımını yaygınlaştırmaktadır. Gözlem ve ölçme sistemlerinden bulut ortamında çalışan bilgi sistemlerine kadar geniş bir yelpazede mekansal zeka özellikli çözümler geliştirilebilmektedir. Mekansal zeka özellikli sistemlerin etkin ve verimli biçimde kullanılabilmesi için mekansal zeka kavramının ne olduğu, hangi alanlarda kullanılabileceği ve daha yüksek bir katma değer sağlayabilmesi için nasıl bir yol haritasının oluşturulması gerektiği bu çalışma kapsamında irdelenmeye çalışılmıştır. 
  • Blum, A. L., & Langley, P. (1997). Selection of relevant features and examples in machine learning. Artificial intelligence, 97(1-2), 245-271.
  • Christensen, C. M. (1997). The innovator's dilemma: when new technologies cause great firms to fail. Harvard Business Review Press.
  • Collobert, R., & Weston, J. (2008). A unified architecture for natural language processing: Deep neural networks with multitask learning. Proceedings of the 25th international conference on Machine learning. 160-167.
  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297.
  • Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. Advances in neural information processing systems. 2672-2680.
  • Güney, C. (2016). Yeni Nesil Coğrafi Bilgi Sistemlerinde Yapay Zeka, XVIII. Akademik Bilişim Konferansı (AB 2016). Aydın.
  • Güney, C., & Çelik, R. N. (2017). Geomatik Mühendisliğinin Rekabet Gücü ve Endüstri 4.0, 16. Türkiye Harita Bilimsel ve Teknik Kurultayı, Ankara.
  • Güney, C. (2019), Yerel Yönetimlerde Paradigma Değişimi, Sosyal Demokrat Dergi, 97-98.
  • Hassan, N., Gillani, S., Ahmed, E., Yaqoob, I., & Imran, M. (2018). The role of edge computing in internet of things. IEEE Communications Magazine, 56(11), 110-115.
  • He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, 770-778.
  • Jiao, J. (2018). Machine Learning Assisted High-Definition Map Creation. 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), 1, 367-373.
  • Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A survey. Journal of artificial intelligence research, 4, 237-285.
  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 1097-1105.
  • LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.
  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436.
  • Lin, Y., Chiang, Y. Y., Pan, F., Stripelis, D., Ambite, J. L., Eckel, S. P., & Habre, R. (2017). Mining public datasets for modeling intra-city PM2. 5 concentrations at a fine spatial resolution. Proceedings of the 25th ACM SIGSPATIAL international conference on advances in geographic information systems, 25.
  • Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. (2016). Ssd: Single shot multibox detector. In European conference on computer vision. 21-37. Springer, Cham.
  • Mason, L., Baxter, J., Bartlett, P. L., & Frean, M. R. (1999). Boosting algorithms as gradient descent. Advances in neural information processing systems. 512-518.
  • Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural networks, 61, 85-117.
  • Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition. 1-9.
  • VoPham, T., Hart, J. E., Laden, F., & Chiang, Y. Y. (2018). Emerging trends in geospatial artificial intelligence (geoAI): potential applications for environmental epidemiology. Environmental Health, 17(1), 40.
  • Yu, D., & Hang, C. C. (2010). A reflective review of disruptive innovation theory. International journal of management reviews, 12(4), 435-452.
  • Yu, R., Shi, Z., Huang, C., Li, T., & Ma, Q. (2017). Deep reinforcement learning based optimal trajectory tracking control of autonomous underwater vehicle. In 2017 36th Chinese Control Conference (CCC). 4958-4965.
  • URL-1: http://benchmark.ini.rub.de/, (Erişim Tarihi: 17 Kasım 2018).
  • URL-2: https://xgboost.ai/about, (Erişim Tarihi: 8 Aralık 2018).
  • URL-3: https://www.opengeospatial.org/standards/wps, (Erişim Tarihi: 7 Temmuz 2018).
  • URL-4: https://www.whitehouse.gov/articles/accelerating-americas-leadership-in-artificial-intelligence/?utm_source=twitter&utm_mediu m=social&utm_campaign=wh, (Erişim Tarihi: 16 Mart 2019).
  • URL-5: https://udi.ornl.gov/geoai, (Erişim Tarihi: 4 Eylül 2018).
  • URL-6: https://aag.secure-abstracts.com/AAG%20Annual%20Meeting%202019/sessions-gallery/23171, (Erişim Tarihi: 23 Mart 2019).
  • URL-7: http://www.opengeospatial.org/pressroom/pressreleases?from=hogzpqvtpaj&page=98, (Erişim Tarihi: 5 Ocak 2019).
  • URL-8: https://www.esri.com/en-us/landing-page/lp/product/2018/geo-ai, (Erişim Tarihi: 2 Şubat 2019).
  • URL-9: https://www.meetup.com/Mekansal-Zeka/, (Erişim Tarihi: 30 Mart 2019).
Primary Language tr
Subjects Engineering
Journal Section Articles
Authors

Orcid: 0000-0002-1620-1347
Author: Caner GÜNEY (Primary Author)
Institution: İSTANBUL TEKNİK ÜNİVERSİTESİ
Country: Turkey


Dates

Publication Date : November 1, 2019

Bibtex @review { hkmojjd548082, journal = {Jeodezi ve Jeoinformasyon Dergisi}, issn = {2147-1339}, eissn = {2667-8519}, address = {TMMOB Harita ve Kadastro Mühendisleri Odası Sümer 1. sokak No:12/4 06440 Kızılay/Ankara}, publisher = {TMMOB Harita ve Kadastro Mühendisleri Odası}, year = {2019}, volume = {6}, pages = {128 - 142}, doi = {10.9733/JGG.2019R0006.T}, title = {Mekansal zekanın getirdiği paradigma değişimi}, key = {cite}, author = {Güney, Caner} }
APA Güney, C . (2019). Mekansal zekanın getirdiği paradigma değişimi. Jeodezi ve Jeoinformasyon Dergisi , 6 (2) , 128-142 . DOI: 10.9733/JGG.2019R0006.T
MLA Güney, C . "Mekansal zekanın getirdiği paradigma değişimi". Jeodezi ve Jeoinformasyon Dergisi 6 (2019 ): 128-142 <https://dergipark.org.tr/en/pub/hkmojjd/issue/47472/548082>
Chicago Güney, C . "Mekansal zekanın getirdiği paradigma değişimi". Jeodezi ve Jeoinformasyon Dergisi 6 (2019 ): 128-142
RIS TY - JOUR T1 - Mekansal zekanın getirdiği paradigma değişimi AU - Caner Güney Y1 - 2019 PY - 2019 N1 - doi: 10.9733/JGG.2019R0006.T DO - 10.9733/JGG.2019R0006.T T2 - Jeodezi ve Jeoinformasyon Dergisi JF - Journal JO - JOR SP - 128 EP - 142 VL - 6 IS - 2 SN - 2147-1339-2667-8519 M3 - doi: 10.9733/JGG.2019R0006.T UR - https://doi.org/10.9733/JGG.2019R0006.T Y2 - 2019 ER -
EndNote %0 Jeodezi ve Jeoinformasyon Dergisi Mekansal zekanın getirdiği paradigma değişimi %A Caner Güney %T Mekansal zekanın getirdiği paradigma değişimi %D 2019 %J Jeodezi ve Jeoinformasyon Dergisi %P 2147-1339-2667-8519 %V 6 %N 2 %R doi: 10.9733/JGG.2019R0006.T %U 10.9733/JGG.2019R0006.T
ISNAD Güney, Caner . "Mekansal zekanın getirdiği paradigma değişimi". Jeodezi ve Jeoinformasyon Dergisi 6 / 2 (November 2019): 128-142 . https://doi.org/10.9733/JGG.2019R0006.T
AMA Güney C . Mekansal zekanın getirdiği paradigma değişimi. hkmojjd. 2019; 6(2): 128-142.
Vancouver Güney C . Mekansal zekanın getirdiği paradigma değişimi. Jeodezi ve Jeoinformasyon Dergisi. 2019; 6(2): 142-128.