BibTex RIS Cite

DIFFERENT IMAGE FUSION ALGORITHMS and SPOT 5 Data

Year 2010, Issue: 101, 0 - 0, 01.02.2010

Abstract

Image fusion term includes multiple techniques used to combine the detail of a high-resolution panchromatic image and the color information of a low-resolution multispectral image to producea a new image with the highest spatial resolution available in within the data set. The main objective of image fusion of multi resolution data is to preserve maximum spectral information quality from the MS data while increasing the spatial resolution by producing new images with enhanced interpretability. The fusion method used should not deteriorate and distroy the spectral characteristics of the MS data. Objects, which are spectrally separable in the original data, must be still separable in the fused data. There are many advantages of using fused data such as visual interpretation improvement, derivation of more accurate and reliable data for change detection and classification analysis. In this study, IHS, Multiplicative, Brovey, PCA and High Pass Filter fusion methods were used to fuse SPOT 5 MS and SPOT 5 PAN data. Results were compared by using quantitative and qualitative methods.

References

  • Abdikan S, Balik Sanli F, Bektas Balcik F, Goksel C, 2008: Fusion of SAR Images (PALSAR and RADARSAT-1) with Multispectral SPOT image: A Comparative Analysis of Resulting Images, The XXI Congress The International Society for Photogrammetry and Remote Sensing , Beijing, China.
  • Bektas Balcik F, Sertel E, 2007: Wavelet-based image fusion of Landsat ETM images: A case study for different landscape categories of Istanbul, Conference on Information Extraction from SAR and Optical Data, with Emphasis on Developing Countries, Istanbul.
  • Bethune S, Muller F, Donnay J.P, 1998: Fusion of multispectral and panchromatic images by local mean and variance matching filtering techniques. Fusion of Earth Data, Sophia Antipolis, France.
  • Carper W. J, Lillesand T. M, Kiefer R. W, 1990: The use of Intensity-Hue- Saturation transformations for merging SPOT Panchromatic and Multispectral image data, Photogrammetric Engineering and Remote Sensing, 56: 459–67.
  • Chavez Jr, ve P. S, 1988: An improved dark-object subtraction technique for atmospheric scattering correction of multispectral Data, Remote Sensing of Environment, 24, 459–479.
  • Chavez P.S, Jr. S.C. Side, ve J.A. Anderson, 1991 : Comparison of three different methods to merge multi- resolution and multi-sectoral data: Landsat TM and SPOT Panchromatic, Photogrammetric Engineering and Remote Sensing, 57(3): 295-303.
  • Doxaran D, Froidefond J, Lavender S, ve Castaing P, 2002b: Spectral signature of highly turbid waters application with SPOT data to quantify suspended particulate matter concentrations, Remote Sensing of Environment, 81, 149-61.
  • Garguet-Duport B, Girel J, Chassery J, ve Pautou G, 1996: The use of multiresolution analysis and wavelets
  • transform for merging Spot panchromaic and multiespectral image data, Photogrammetric Engineering and Remote Sensing, 62(9):1057-1066.
  • http://www.spot.com/, 1 Nisan 2009.
  • Liang S, 2004: Quantitative Remote Sensing of Land Surfaces, John Wiley and Sons, New Jersey, USA.
  • Nikolakopoulos K. G, 2008: Comparison of Nine Fusion Techniques for Very High Resolution Data, Photogrammetric engineering and remote sensing, 74 (5): 47-659
  • Özhatay N, Byfield A. ve Atay S, 2003: Türkiyenin Önemli Bitki Alanları, WWF Türkiye, 88 sf
  • Pohl C, Van Genderen J. L, 1998: Multisensor Image Fusion in Remote Sensing: Concepts, Methods and Applications, International Journal of Remote Sensing, vol. 19, sayı. 5, sayfa:823-854
  • Richards J. A, 2003: Remote Sensing Digital Image Analysis An Introduction. 2 nd Edition Springer-Verlag New York, Inc
  • Schowengerdt, R, 1980: Reconstruction of multi-spatial, multispectral image data using spatial frequency content, Photogrammetric Engineering and Remote Sensing, 46(10): 1325-1334.
  • Song C, Woodcock C E, Seto KC, 2001: Classification and change detection using Landsat TM data: when and how to correct atmospheric effects? Remote Sensing of Environment 75:230–44.
  • Vermote, E. F, Tanre´ D, Deuze´ J. L, Herman M, ve Morcrette, J. J, 1997: Second simulation of the satellite signal in the solar spectrum: An overview, IEEE Transactions on Geoscience and Remote Sensing, 35: 675– 686.
  • Wald L, Ranchin T, ve Mangolini M, 1997: Fusion of satellite images of different spatial resolutions : Assessing the quality of resulting images, Photogrammetric engineering and remote sensing, 63 (6) : 691-699.
  • Welch R, ve Ehlers M., 1987: Merging multi-Resolution SPOT HRV and Landsat TM data, Photogrammetric Engineering and Remote Sensing, 52: 301-303.
  • Yocky D.A, 1996: Multiresolution wavelet decomposition image merger of Landsat thematic mapper and SPOT panchromatic data, Photogrametric Engeneering & Remote Sensing, 62 (9): 1067-1074.
  • Zhang Y, 1999: A new merging method and its spectral and spatial effects, International Journal of Remote Sensing, 20 (10) :2003-2014.
  • Zhou J, Civco D. L, ve Silander J. A, 1998: A wavelet transform method to merge Landsat TM and SPOT panchromatic data, International Journal of Remote Sensing, 19 (4): 743–757.

SPOT 5 ve Farklı Görüntü Birleştirme Algoritmaları

Year 2010, Issue: 101, 0 - 0, 01.02.2010

Abstract

Görüntü birleştirme terimi ile genellikle, yüksek mekansal çözünürlüklü tek bantlı Pankromatik- PAN görüntünün, yüksek spektral çözünürlüklü fakat düşük mekansal çözünürlüklü çok bantlı Multispectral-MS görüntü ile veri kalitesinin arttırılması için birleştirilmesi tanımlanmaktadır. Elde edilen sonuç görüntüler maksimum mekansal çözünürlüğe ve kaliteli spektral bilgiye sahip olmaktadır. Uygulanan algoritmaların spektral özellikleri tahrip etmemesi gerekmektedir. Yöntemin kullanılmasının, görüntünün görsel yorumlanmasının arttırılması, görüntüden değişim tespiti ve sınıflandırma için doğru bilgi çıkarımı gibi avantajları bulunmaktadır. Bu çalışmada, SPOT 5 MS ve SPOT 5 PAN görüntülerinin birleştirilmesi için IHS, Brovey, Multiplicative, HPF ve PCA görüntü birleştirme yöntemleri uygulanmış ve elde edilen sonuçlar görsel ve istatistik açıdan karşılaştırılmıştır.

References

  • Abdikan S, Balik Sanli F, Bektas Balcik F, Goksel C, 2008: Fusion of SAR Images (PALSAR and RADARSAT-1) with Multispectral SPOT image: A Comparative Analysis of Resulting Images, The XXI Congress The International Society for Photogrammetry and Remote Sensing , Beijing, China.
  • Bektas Balcik F, Sertel E, 2007: Wavelet-based image fusion of Landsat ETM images: A case study for different landscape categories of Istanbul, Conference on Information Extraction from SAR and Optical Data, with Emphasis on Developing Countries, Istanbul.
  • Bethune S, Muller F, Donnay J.P, 1998: Fusion of multispectral and panchromatic images by local mean and variance matching filtering techniques. Fusion of Earth Data, Sophia Antipolis, France.
  • Carper W. J, Lillesand T. M, Kiefer R. W, 1990: The use of Intensity-Hue- Saturation transformations for merging SPOT Panchromatic and Multispectral image data, Photogrammetric Engineering and Remote Sensing, 56: 459–67.
  • Chavez Jr, ve P. S, 1988: An improved dark-object subtraction technique for atmospheric scattering correction of multispectral Data, Remote Sensing of Environment, 24, 459–479.
  • Chavez P.S, Jr. S.C. Side, ve J.A. Anderson, 1991 : Comparison of three different methods to merge multi- resolution and multi-sectoral data: Landsat TM and SPOT Panchromatic, Photogrammetric Engineering and Remote Sensing, 57(3): 295-303.
  • Doxaran D, Froidefond J, Lavender S, ve Castaing P, 2002b: Spectral signature of highly turbid waters application with SPOT data to quantify suspended particulate matter concentrations, Remote Sensing of Environment, 81, 149-61.
  • Garguet-Duport B, Girel J, Chassery J, ve Pautou G, 1996: The use of multiresolution analysis and wavelets
  • transform for merging Spot panchromaic and multiespectral image data, Photogrammetric Engineering and Remote Sensing, 62(9):1057-1066.
  • http://www.spot.com/, 1 Nisan 2009.
  • Liang S, 2004: Quantitative Remote Sensing of Land Surfaces, John Wiley and Sons, New Jersey, USA.
  • Nikolakopoulos K. G, 2008: Comparison of Nine Fusion Techniques for Very High Resolution Data, Photogrammetric engineering and remote sensing, 74 (5): 47-659
  • Özhatay N, Byfield A. ve Atay S, 2003: Türkiyenin Önemli Bitki Alanları, WWF Türkiye, 88 sf
  • Pohl C, Van Genderen J. L, 1998: Multisensor Image Fusion in Remote Sensing: Concepts, Methods and Applications, International Journal of Remote Sensing, vol. 19, sayı. 5, sayfa:823-854
  • Richards J. A, 2003: Remote Sensing Digital Image Analysis An Introduction. 2 nd Edition Springer-Verlag New York, Inc
  • Schowengerdt, R, 1980: Reconstruction of multi-spatial, multispectral image data using spatial frequency content, Photogrammetric Engineering and Remote Sensing, 46(10): 1325-1334.
  • Song C, Woodcock C E, Seto KC, 2001: Classification and change detection using Landsat TM data: when and how to correct atmospheric effects? Remote Sensing of Environment 75:230–44.
  • Vermote, E. F, Tanre´ D, Deuze´ J. L, Herman M, ve Morcrette, J. J, 1997: Second simulation of the satellite signal in the solar spectrum: An overview, IEEE Transactions on Geoscience and Remote Sensing, 35: 675– 686.
  • Wald L, Ranchin T, ve Mangolini M, 1997: Fusion of satellite images of different spatial resolutions : Assessing the quality of resulting images, Photogrammetric engineering and remote sensing, 63 (6) : 691-699.
  • Welch R, ve Ehlers M., 1987: Merging multi-Resolution SPOT HRV and Landsat TM data, Photogrammetric Engineering and Remote Sensing, 52: 301-303.
  • Yocky D.A, 1996: Multiresolution wavelet decomposition image merger of Landsat thematic mapper and SPOT panchromatic data, Photogrametric Engeneering & Remote Sensing, 62 (9): 1067-1074.
  • Zhang Y, 1999: A new merging method and its spectral and spatial effects, International Journal of Remote Sensing, 20 (10) :2003-2014.
  • Zhou J, Civco D. L, ve Silander J. A, 1998: A wavelet transform method to merge Landsat TM and SPOT panchromatic data, International Journal of Remote Sensing, 19 (4): 743–757.
There are 23 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Filiz Bektaş Balçık This is me

Çiğdem Göksel This is me

Publication Date February 1, 2010
Published in Issue Year 2010 Issue: 101

Cite

APA Balçık, F. B., & Göksel, Ç. (2010). SPOT 5 ve Farklı Görüntü Birleştirme Algoritmaları. Jeodezi Ve Jeoinformasyon Dergisi(101).
AMA Balçık FB, Göksel Ç. SPOT 5 ve Farklı Görüntü Birleştirme Algoritmaları. hkmojjd. February 2010;(101).
Chicago Balçık, Filiz Bektaş, and Çiğdem Göksel. “SPOT 5 Ve Farklı Görüntü Birleştirme Algoritmaları”. Jeodezi Ve Jeoinformasyon Dergisi, no. 101 (February 2010).
EndNote Balçık FB, Göksel Ç (February 1, 2010) SPOT 5 ve Farklı Görüntü Birleştirme Algoritmaları. Jeodezi ve Jeoinformasyon Dergisi 101
IEEE F. B. Balçık and Ç. Göksel, “SPOT 5 ve Farklı Görüntü Birleştirme Algoritmaları”, hkmojjd, no. 101, February 2010.
ISNAD Balçık, Filiz Bektaş - Göksel, Çiğdem. “SPOT 5 Ve Farklı Görüntü Birleştirme Algoritmaları”. Jeodezi ve Jeoinformasyon Dergisi 101 (February 2010).
JAMA Balçık FB, Göksel Ç. SPOT 5 ve Farklı Görüntü Birleştirme Algoritmaları. hkmojjd. 2010.
MLA Balçık, Filiz Bektaş and Çiğdem Göksel. “SPOT 5 Ve Farklı Görüntü Birleştirme Algoritmaları”. Jeodezi Ve Jeoinformasyon Dergisi, no. 101, 2010.
Vancouver Balçık FB, Göksel Ç. SPOT 5 ve Farklı Görüntü Birleştirme Algoritmaları. hkmojjd. 2010(101).