Research Article
BibTex RIS Cite

Evaluation of the precise point positioning performance for Global BeiDou System (BDS-3)

Year 2023, Volume: 10 Issue: 1, 30 - 44, 01.05.2023
https://doi.org/10.9733/JGG.2023R0003.T

Abstract

The main objective of this study is to evaluate the positioning performance of the global BeiDou system (BDS-3) in terms of Precise Point Positioning (PPP). The PPP performance of BDS-3 was compared with both GPS and the regional BeiDou system (BDS-2). In addition, the contribution of BDS-3 to the PPP performance was analyzed through multi-GNSS combinations of these three systems. For this purpose, seven processing scenarios in total were composed, and the observation dataset collected at 15 International GNSS Service (IGS) stations over the period of November 21 and 30, 2021 were processed under these scenarios. The results showed that positioning accuracies of 0.0152, 0.0605, and 0.0203 m could be acquired from the GPS, BDS-2, and BDS-3 PPP solutions, respectively. Also, average convergence times obtained from these solutions were respectively computed as 60.94, 261.71, and 63.06 minutes. While results of the BDS-2 PPP solution remained substantially behind the GPS results, comparable results with the GPS PPP were acquired from the BDS-3 PPP solution. Besides, the obtained results revealed that the positioning performance could be improved significantly when double and triple combinations of these navigation systems were employed. The positioning accuracy and convergence time obtained from the PPP solution where GPS, BDS-2, and BDS-3 systems were used in common were 0.0136 m and 26.45 minutes. In this study, tropospheric delay estimations were also evaluated to analyze the PPP performance comprehensively. The results demonstrated that the BDS-3 solution could provide close results to the GPS PPP solution in terms of tropospheric delay estimation and the best troposphere estimation performance could similarly be acquired from the multi-GNSS solution where three systems were employed in common.

References

  • Abd Rabbou, M., El-Shazly, A., & Ahmed, K. (2018). Comparative analysis of multi-constellation GNSS single-frequency precise point positioning. Survey review, 50(361), 373-382.
  • Alkan, R. M., & Öcalan, T. (2013). Usability of the GPS precise point positioning technique in marine applications. The Journal of Navigation, 66(4), 579-588.
  • Bahadur, B., & Nohutcu, M. (2018). PPPH: a MATLAB-based software for multi-GNSS precise point positioning analysis. GPS solutions, 22(4), 1-10.
  • Bahadur, B. (2022). Real-time single-frequency precise positioning with Galileo satellites. The Journal of Navigation, 75(1), 124-140.
  • Cai, C., & Gao, Y. (2013). Modeling and assessment of combined GPS/GLONASS precise point positioning. GPS solutions, 17(2), 223-236.
  • Cai, C., Gao, Y., Pan, L., & Zhu, J. (2015). Precise point positioning with quad-constellations: GPS, BeiDou, GLONASS and Galileo. Advances in space research, 56(1), 133-143.
  • Chen, J., Wang, J., Zhang, Y., Yang, S., Chen, Q., & Gong, X. (2016). Modeling and assessment of GPS/BDS combined precise point positioning. Sensors, 16(7), 1151.
  • Chen, H., Liu, X., Jiang, W., Yuan, P., Ju, B., & Chen, Y. (2021). Preliminary analysis and evaluation of BDS-2/BDS-3 precise point positioning. Advances in Space Research, 68(10), 4113-4128.
  • Collins, P., Bisnath, S., Lahaye, F., & Héroux, P. (2010). Undifferenced GPS ambiguity resolution using the decoupled clock model and ambiguity datum fixing. Navigation: Journal of the Institute of Navigation, 57(2), 123-135.
  • Davis, J. L., Herring, T. A., Shapiro, I. I., Rogers, A. E. E., & Elgered, G. (1985). Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length. Radio science, 20(6), 1593-1607.
  • Ge, M., Gendt, G., Rothacher, M. A., Shi, C., & Liu, J. (2008). Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. Journal of geodesy, 82(7), 389-399.
  • Ge, Y., Ding, S., Qin, W., Zhou, F., & Yang, X. (2020). Carrier phase time transfer with Galileo observations. Measurement, 159, 107799.
  • Ge, Y., Chen, S., Wu, T., Fan, C., Qin, W., Zhou, F., & Yang, X. (2021). An analysis of BDS-3 real-time PPP: time transfer, positioning, and tropospheric delay retrieval. Measurement, 172, 108871.
  • Geng, J., Meng, X., Dodson, A. H., Ge, M., & Teferle, F. N. (2010). Rapid re-convergences to ambiguity-fixed solutions in precise point positioning. Journal of geodesy, 84(12), 705-714.
  • Hadas, T., Kazmierski, K., & Sośnica, K. (2019). Performance of Galileo-only dual-frequency absolute positioning using the fully serviceable Galileo constellation. GPS Solutions, 23(4), 1-12.
  • Hofmann-Wellenhof, B., Lichtenegger, H., & Wasle, E. (2007). GNSS–global navigation satellite systems: GPS, GLONASS, Galileo, and more. Springer Science & Business Media.
  • Kouba, J., & Héroux, P. (2001). Precise point positioning using IGS orbit and clock products. GPS solutions, 5(2), 12-28.
  • Kouba, J. (2003). Measuring seismic waves induced by large earthquakes with GPS. Studia Geophysica et Geodaetica, 47(4), 741-755.
  • Kouba, J. (2015). A Guide to Using International GNSS Service (IGS) Products. Erişim Adresi: https://kb.igs.org/hc/en-us/articles/201271873-A-Guide-to-Using-the-IGS-Products.
  • Landskron, D., & Böhm, J. (2018). VMF3/GPT3: refined discrete and empirical troposphere mapping functions. Journal of Geodesy, 92(4), 349-360.
  • Laurichesse, D., Mercier, F., Berthias, J. P., Broca, P., & Cerri, L. (2009). Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination. Navigation, 56(2), 135-149.
  • Li, X., Ge, M., Dai, X., Ren, X., Fritsche, M., Wickert, J., & Schuh, H. (2015). Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo. Journal of geodesy, 89(6), 607-635.
  • Li, X., Li, X., Liu, G., Xie, W., Guo, F., Yuan, Y., Zhang, K., & Feng, G. (2020). The phase and code biases of Galileo and BDS-3 BOC signals: effect on ambiguity resolution and precise positioning. Journal of Geodesy, 94(1), 1-14.
  • Liu, X., Jiang, W., Li, Z., Chen, H., & Zhao, W. (2019). Comparison of convergence time and positioning accuracy among BDS, GPS and BDS/GPS precise point positioning with ambiguity resolution. Advances in Space Research, 63(11), 3489-3504.
  • Lu, C., Li, X., Ge, M., Heinkelmann, R., Nilsson, T., Soja, B., Dick, G., & Schuh, H. (2016). Estimation and evaluation of real-time precipitable water vapor from GLONASS and GPS. GPS solutions, 20(4), 703-713.
  • Lv, Y., Geng, T., Zhao, Q., Xie, X., & Zhou, R. (2020). Initial assessment of BDS-3 preliminary system signal-in-space range error. GPS Solutions, 24(1), 1-13.
  • Lv, J., Gao, Z., Kan, J., Lan, R., Li, Y., Lou, Y., Yang, H., & Peng, J. (2022). Modeling and assessment of multi-frequency GPS/BDS-2/BDS-3 kinematic precise point positioning based on vehicle-borne data. Measurement, 189, 110453.
  • Odolinski, R., Teunissen, P. J. G., & Odijk, D. (2014). First combined COMPASS/BeiDou-2 and GPS positioning results in Australia. Part II: Single-and multiple-frequency single-baseline RTK positioning. Journal of Spatial Science, 59(1), 25-46.
  • Pan, L., Zhang, X., Liu, J., Li, X., & Li, X. (2017). Performance evaluation of single-frequency precise point positioning with GPS, GLONASS, BeiDou and Galileo. The journal of navigation, 70(3), 465-482.
  • Paziewski, J., Sieradzki, R., & Baryla, R. (2018). Multi-GNSS high-rate RTK, PPP and novel direct phase observation processing method: Application to precise dynamic displacement detection. Measurement Science and technology, 29(3), 035002.
  • Saastamoinen, J. (1972). Contributions to the theory of atmospheric refraction. Bulletin Géodésique (1946-1975), 105(1), 279-298.
  • Teunissen, P. J., & Montenbruck, O. (Ed.). (2017). Springer handbook of global navigation satellite systems. New York, NY, USA: Springer International Publishing.
  • Xu, P., Shu, Y., Liu, J., Nishimura, T., Shi, Y., & Freymueller, J. T. (2019). A large scale of apparent sudden movements in Japan detected by high-rate GPS after the 2011 Tohoku Mw9. 0 earthquake: Physical signals or unidentified artifacts?. Earth, Planets and Space, 71(1), 1-16.
  • Yigit, C. O., & Gurlek, E. (2017). Experimental testing of high-rate GNSS precise point positioning (PPP) method for detecting dynamic vertical displacement response of engineering structures. Geomatics, natural hazards and risk, 8(2), 893-904.
  • Zhang, B., Teunissen, P. J., Yuan, Y., Zhang, H., & Li, M. (2018). Joint estimation of vertical total electron content (VTEC) and satellite differential code biases (SDCBs) using low-cost receivers. Journal of Geodesy, 92(4), 401-413.
  • Zhang, Z., Li, B., Nie, L., Wei, C., Jia, S., & Jiang, S. (2019). Initial assessment of BeiDou-3 global navigation satellite system: Signal quality, RTK and PPP. GPS Solutions, 23(4), 1-12.
  • Zhao, W., Chen, H., Gao, Y., Jiang, W., & Liu, X. (2020). Evaluation of inter-system bias between BDS-2 and BDS-3 satellites and its impact on precise point positioning. Remote Sensing, 12(14), 2185.
  • Zhu, Y., Zheng, K., Cui, X., Zhang, Q., Jia, X., Zhang, M., & Fan, S. (2021). Preliminary analysis of the quality and positioning performance of BDS-3 global interoperable signal B1C&B2a. Advances in Space Research, 67(8), 2483-2490.
  • Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M., & Webb, F. H. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of geophysical research: solid earth, 102(B3), 5005-5017.
  • URL-1: BDS Constellation Status, http://www.csno-tarc.cn/en/system/constellation (Erişim Tarihi: 30 Mart 2022).

Küresel BeiDou Sistemi (BDS-3) için hassas nokta konumlama performansının değerlendirilmesi

Year 2023, Volume: 10 Issue: 1, 30 - 44, 01.05.2023
https://doi.org/10.9733/JGG.2023R0003.T

Abstract

Bu çalışmanın temel amacı küresel BeiDou sisteminin (BDS-3) Hassas Nokta Konumlama (Precise Point Positioning, PPP) açısından konum belirleme performansının değerlendirilmesidir. BDS-3’ün PPP performansı hem GPS hem de bölgesel BeiDou sistemi (BDS-2) ile kıyaslanarak karşılaştırılmıştır. İlave olarak bu üç sistemin çoklu GNSS kombinasyonları aracılığıyla BDS-3’ün PPP konum belirleme performansına olan katkısı da analiz edilmiştir. Bu amaçla toplamda yedi farklı PPP işleme senaryosu oluşturulmuş ve 21-30 Kasım 2021 tarihleri arasında 15 Uluslararası GNSS Servisi (International GNSS Service, IGS) istasyonunda toplanan veriler bu senaryolar altında işlenmiştir. Sonuçlar GPS, BDS-2 ve BDS-3 PPP çözümlerinden sırasıyla 0.0152, 0.0605 ve 0.0203 m konum doğruluğu elde edilebileceğini göstermiştir. Ayrıca bu çözümlerden elde edilen ortalama yakınsama süreleri de sırasıyla 60.94, 261.71 ve 63.06 dakika olarak hesaplanmıştır. BDS-2 PPP çözümünün sonuçları GPS sonuçlarının bir hayli gerisinde kalırken BDS-3 PPP’den GPS PPP ile karşılaştırılabilir sonuçlar elde edilmiştir. Diğer taraftan elde edilen sonuçlar bu sistemlerin ikili ve üçlü kombinasyonlarının kullanılması durumunda konum belirleme performansının önemli oranda iyileştirilebileceğini ortaya koymuştur. GPS, BDS-2 ve BDS-3 sistemlerinin ortak kullanıldığı PPP çözümünden elde edilen konum doğruluğu ve yakınsama süresi 0.0136 m ve 26.45 dakikadır. Bu çalışmada PPP performansını analiz edebilmek için ayrıca troposferik gecikme kestirimleri de değerlendirilmiştir. Sonuçlar BDS-3 PPP çözümünün troposferik gecikme kestirimi açısından GPS PPP çözümüne yakın sonuçlar üretebileceğini ve en iyi troposfer kestirim performansının yine üç sistemin ortak kullanıldığı çoklu GNSS çözümünden elde edilebileceğini göstermiştir.

References

  • Abd Rabbou, M., El-Shazly, A., & Ahmed, K. (2018). Comparative analysis of multi-constellation GNSS single-frequency precise point positioning. Survey review, 50(361), 373-382.
  • Alkan, R. M., & Öcalan, T. (2013). Usability of the GPS precise point positioning technique in marine applications. The Journal of Navigation, 66(4), 579-588.
  • Bahadur, B., & Nohutcu, M. (2018). PPPH: a MATLAB-based software for multi-GNSS precise point positioning analysis. GPS solutions, 22(4), 1-10.
  • Bahadur, B. (2022). Real-time single-frequency precise positioning with Galileo satellites. The Journal of Navigation, 75(1), 124-140.
  • Cai, C., & Gao, Y. (2013). Modeling and assessment of combined GPS/GLONASS precise point positioning. GPS solutions, 17(2), 223-236.
  • Cai, C., Gao, Y., Pan, L., & Zhu, J. (2015). Precise point positioning with quad-constellations: GPS, BeiDou, GLONASS and Galileo. Advances in space research, 56(1), 133-143.
  • Chen, J., Wang, J., Zhang, Y., Yang, S., Chen, Q., & Gong, X. (2016). Modeling and assessment of GPS/BDS combined precise point positioning. Sensors, 16(7), 1151.
  • Chen, H., Liu, X., Jiang, W., Yuan, P., Ju, B., & Chen, Y. (2021). Preliminary analysis and evaluation of BDS-2/BDS-3 precise point positioning. Advances in Space Research, 68(10), 4113-4128.
  • Collins, P., Bisnath, S., Lahaye, F., & Héroux, P. (2010). Undifferenced GPS ambiguity resolution using the decoupled clock model and ambiguity datum fixing. Navigation: Journal of the Institute of Navigation, 57(2), 123-135.
  • Davis, J. L., Herring, T. A., Shapiro, I. I., Rogers, A. E. E., & Elgered, G. (1985). Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length. Radio science, 20(6), 1593-1607.
  • Ge, M., Gendt, G., Rothacher, M. A., Shi, C., & Liu, J. (2008). Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. Journal of geodesy, 82(7), 389-399.
  • Ge, Y., Ding, S., Qin, W., Zhou, F., & Yang, X. (2020). Carrier phase time transfer with Galileo observations. Measurement, 159, 107799.
  • Ge, Y., Chen, S., Wu, T., Fan, C., Qin, W., Zhou, F., & Yang, X. (2021). An analysis of BDS-3 real-time PPP: time transfer, positioning, and tropospheric delay retrieval. Measurement, 172, 108871.
  • Geng, J., Meng, X., Dodson, A. H., Ge, M., & Teferle, F. N. (2010). Rapid re-convergences to ambiguity-fixed solutions in precise point positioning. Journal of geodesy, 84(12), 705-714.
  • Hadas, T., Kazmierski, K., & Sośnica, K. (2019). Performance of Galileo-only dual-frequency absolute positioning using the fully serviceable Galileo constellation. GPS Solutions, 23(4), 1-12.
  • Hofmann-Wellenhof, B., Lichtenegger, H., & Wasle, E. (2007). GNSS–global navigation satellite systems: GPS, GLONASS, Galileo, and more. Springer Science & Business Media.
  • Kouba, J., & Héroux, P. (2001). Precise point positioning using IGS orbit and clock products. GPS solutions, 5(2), 12-28.
  • Kouba, J. (2003). Measuring seismic waves induced by large earthquakes with GPS. Studia Geophysica et Geodaetica, 47(4), 741-755.
  • Kouba, J. (2015). A Guide to Using International GNSS Service (IGS) Products. Erişim Adresi: https://kb.igs.org/hc/en-us/articles/201271873-A-Guide-to-Using-the-IGS-Products.
  • Landskron, D., & Böhm, J. (2018). VMF3/GPT3: refined discrete and empirical troposphere mapping functions. Journal of Geodesy, 92(4), 349-360.
  • Laurichesse, D., Mercier, F., Berthias, J. P., Broca, P., & Cerri, L. (2009). Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination. Navigation, 56(2), 135-149.
  • Li, X., Ge, M., Dai, X., Ren, X., Fritsche, M., Wickert, J., & Schuh, H. (2015). Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo. Journal of geodesy, 89(6), 607-635.
  • Li, X., Li, X., Liu, G., Xie, W., Guo, F., Yuan, Y., Zhang, K., & Feng, G. (2020). The phase and code biases of Galileo and BDS-3 BOC signals: effect on ambiguity resolution and precise positioning. Journal of Geodesy, 94(1), 1-14.
  • Liu, X., Jiang, W., Li, Z., Chen, H., & Zhao, W. (2019). Comparison of convergence time and positioning accuracy among BDS, GPS and BDS/GPS precise point positioning with ambiguity resolution. Advances in Space Research, 63(11), 3489-3504.
  • Lu, C., Li, X., Ge, M., Heinkelmann, R., Nilsson, T., Soja, B., Dick, G., & Schuh, H. (2016). Estimation and evaluation of real-time precipitable water vapor from GLONASS and GPS. GPS solutions, 20(4), 703-713.
  • Lv, Y., Geng, T., Zhao, Q., Xie, X., & Zhou, R. (2020). Initial assessment of BDS-3 preliminary system signal-in-space range error. GPS Solutions, 24(1), 1-13.
  • Lv, J., Gao, Z., Kan, J., Lan, R., Li, Y., Lou, Y., Yang, H., & Peng, J. (2022). Modeling and assessment of multi-frequency GPS/BDS-2/BDS-3 kinematic precise point positioning based on vehicle-borne data. Measurement, 189, 110453.
  • Odolinski, R., Teunissen, P. J. G., & Odijk, D. (2014). First combined COMPASS/BeiDou-2 and GPS positioning results in Australia. Part II: Single-and multiple-frequency single-baseline RTK positioning. Journal of Spatial Science, 59(1), 25-46.
  • Pan, L., Zhang, X., Liu, J., Li, X., & Li, X. (2017). Performance evaluation of single-frequency precise point positioning with GPS, GLONASS, BeiDou and Galileo. The journal of navigation, 70(3), 465-482.
  • Paziewski, J., Sieradzki, R., & Baryla, R. (2018). Multi-GNSS high-rate RTK, PPP and novel direct phase observation processing method: Application to precise dynamic displacement detection. Measurement Science and technology, 29(3), 035002.
  • Saastamoinen, J. (1972). Contributions to the theory of atmospheric refraction. Bulletin Géodésique (1946-1975), 105(1), 279-298.
  • Teunissen, P. J., & Montenbruck, O. (Ed.). (2017). Springer handbook of global navigation satellite systems. New York, NY, USA: Springer International Publishing.
  • Xu, P., Shu, Y., Liu, J., Nishimura, T., Shi, Y., & Freymueller, J. T. (2019). A large scale of apparent sudden movements in Japan detected by high-rate GPS after the 2011 Tohoku Mw9. 0 earthquake: Physical signals or unidentified artifacts?. Earth, Planets and Space, 71(1), 1-16.
  • Yigit, C. O., & Gurlek, E. (2017). Experimental testing of high-rate GNSS precise point positioning (PPP) method for detecting dynamic vertical displacement response of engineering structures. Geomatics, natural hazards and risk, 8(2), 893-904.
  • Zhang, B., Teunissen, P. J., Yuan, Y., Zhang, H., & Li, M. (2018). Joint estimation of vertical total electron content (VTEC) and satellite differential code biases (SDCBs) using low-cost receivers. Journal of Geodesy, 92(4), 401-413.
  • Zhang, Z., Li, B., Nie, L., Wei, C., Jia, S., & Jiang, S. (2019). Initial assessment of BeiDou-3 global navigation satellite system: Signal quality, RTK and PPP. GPS Solutions, 23(4), 1-12.
  • Zhao, W., Chen, H., Gao, Y., Jiang, W., & Liu, X. (2020). Evaluation of inter-system bias between BDS-2 and BDS-3 satellites and its impact on precise point positioning. Remote Sensing, 12(14), 2185.
  • Zhu, Y., Zheng, K., Cui, X., Zhang, Q., Jia, X., Zhang, M., & Fan, S. (2021). Preliminary analysis of the quality and positioning performance of BDS-3 global interoperable signal B1C&B2a. Advances in Space Research, 67(8), 2483-2490.
  • Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M., & Webb, F. H. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of geophysical research: solid earth, 102(B3), 5005-5017.
  • URL-1: BDS Constellation Status, http://www.csno-tarc.cn/en/system/constellation (Erişim Tarihi: 30 Mart 2022).
There are 40 citations in total.

Details

Primary Language Turkish
Subjects Engineering, Geological Sciences and Engineering (Other)
Journal Section Research Article
Authors

Berkay Bahadur 0000-0003-3169-8862

Publication Date May 1, 2023
Submission Date March 31, 2022
Published in Issue Year 2023 Volume: 10 Issue: 1

Cite

APA Bahadur, B. (2023). Küresel BeiDou Sistemi (BDS-3) için hassas nokta konumlama performansının değerlendirilmesi. Jeodezi Ve Jeoinformasyon Dergisi, 10(1), 30-44. https://doi.org/10.9733/JGG.2023R0003.T
AMA Bahadur B. Küresel BeiDou Sistemi (BDS-3) için hassas nokta konumlama performansının değerlendirilmesi. hkmojjd. May 2023;10(1):30-44. doi:10.9733/JGG.2023R0003.T
Chicago Bahadur, Berkay. “Küresel BeiDou Sistemi (BDS-3) için Hassas Nokta Konumlama performansının değerlendirilmesi”. Jeodezi Ve Jeoinformasyon Dergisi 10, no. 1 (May 2023): 30-44. https://doi.org/10.9733/JGG.2023R0003.T.
EndNote Bahadur B (May 1, 2023) Küresel BeiDou Sistemi (BDS-3) için hassas nokta konumlama performansının değerlendirilmesi. Jeodezi ve Jeoinformasyon Dergisi 10 1 30–44.
IEEE B. Bahadur, “Küresel BeiDou Sistemi (BDS-3) için hassas nokta konumlama performansının değerlendirilmesi”, hkmojjd, vol. 10, no. 1, pp. 30–44, 2023, doi: 10.9733/JGG.2023R0003.T.
ISNAD Bahadur, Berkay. “Küresel BeiDou Sistemi (BDS-3) için Hassas Nokta Konumlama performansının değerlendirilmesi”. Jeodezi ve Jeoinformasyon Dergisi 10/1 (May 2023), 30-44. https://doi.org/10.9733/JGG.2023R0003.T.
JAMA Bahadur B. Küresel BeiDou Sistemi (BDS-3) için hassas nokta konumlama performansının değerlendirilmesi. hkmojjd. 2023;10:30–44.
MLA Bahadur, Berkay. “Küresel BeiDou Sistemi (BDS-3) için Hassas Nokta Konumlama performansının değerlendirilmesi”. Jeodezi Ve Jeoinformasyon Dergisi, vol. 10, no. 1, 2023, pp. 30-44, doi:10.9733/JGG.2023R0003.T.
Vancouver Bahadur B. Küresel BeiDou Sistemi (BDS-3) için hassas nokta konumlama performansının değerlendirilmesi. hkmojjd. 2023;10(1):30-44.