Assessment of GNSS-IR performance using multi-GNSS and multi-frequency SNR data from smartphones
Yıl 2025,
Cilt: 12 Sayı: 1, 1 - 19
Cemali Altuntaş
,
Nursu Tunalıoğlu
Öz
Smartphones are equipped with embedded Global Navigation Satellite Systems (GNSS) chips that support multiple satellite systems, enhancing precision in positioning, navigation, and timing services. The introduction of GNSS Interferometric Reflectometry (GNSS-IR) leverages these capabilities by analyzing multipath signals and reflections to estimate surface properties more accurately. Given their multi-GNSS and multi-frequency capabilities, along with lower cost and greater portability compared to traditional geodetic receivers, smartphones hold significant potential for application in GNSS-IR technologies. In this study, we conducted a three-day experimental evaluation, observing for six hours each day to assess the accuracy of reflector height and change estimations from multi-frequency multi-GNSS SNR data provided by geodetic receivers and smartphones. The setup included two CHC i90 Pro geodetic receivers and two Samsung Galaxy Note 20 Ultra smartphones, positioned in both zenith-looking and nadir-looking orientations, facilitated by an experimental setup developed under TÜBİTAK project number 121Y348. Our analysis focused on the number of valid estimations, peak-to-background noise ratio (PBNR) values, and the accuracy of reflector height and height difference estimations with satellite-based and frequency-based assessments. According to the results, geodetic receivers consistently outperform smartphones in data collection stability for GNSS-IR applications. We also found that the platform orientation of smartphones (flat, inverted, or inclined) has a minimal impact on the accuracy of GNSS-IR estimations, and the most reliable smartphone data is obtained from GPS satellites. Furthermore, using signals with wavelengths shorter than 20 cm in smartphone-based GNSS-IR studies provides better results and offers a cost-effective method for long-term monitoring of climatological parameters such as snow depth, sea level, and vegetation height.
Etik Beyan
This study has been supported by the Scientific and Technological Research Council of Türkiye (TÜBİTAK) within the scope of the Research Support Projects Directorate (ARDEB) under project number 121Y348.
Destekleyen Kurum
TÜBİTAK
Teşekkür
This study was conducted as part of the doctoral thesis being prepared by the first author at Yildiz Technical University, Graduate School of Science and Engineering, Department of Geomatic Engineering, and has been supported by the Scientific and Technological Research Council of Türkiye (TÜBİTAK) within the scope of the Research Support Projects Directorate (ARDEB) under project number 121Y348.
Kaynakça
- Altuntas, C., & Tunalioglu, N. (2020). Estimation performance of soil moisture with GPS-IR method. Sigma Journal of Engineering and Natural Sciences, 38(4), 2217-2230.
- Altuntas, C., & Tunalioglu, N. (2021). Feasibility of retrieving effective reflector height using GNSS-IR from a single-frequency android smartphone SNR data. Digital Signal Processing, 112, 103011.
- Altuntas, C., Iban, M. C., Şentürk, E., Durdag, U. M., & Tunalioglu, N. (2022). Machine learning-based snow depth retrieval using GNSS signal-to-noise ratio data. GPS Solutions, 26(4), 117.
- Altuntas, C., & Tunalioglu, N. (2023). A systematic approach for identifying optimal azimuth and elevation angle masks in GNSS-IR: validation through a sea level experiment. GPS Solutions, 27(4), 198.
- Banville, S., & van Diggelen, F. (2016). Precise positioning using raw GPS measurements from Android smartphones, GPS World, 27(11), 43-48.
- Besel, C., & Kayikci, E. T. (2021). Investigation of sea level variations in Turkish coasts using GNSS reflectometry (in Turkish). Journal of Geodesy and Geoinformation, 8(1), 1-17.
- Chen, L., Chai, H., Zheng, N., Wang, M., & Xiang, M. (2023). Feasibility and performance evaluation of low-cost GNSS devices for sea level measurement based on GNSS-IR. Advances in Space Research, 72(11), 4651-4662.
- Chew, C. C., Small, E. E., Larson, K. M., & Zavorotny, V. U. (2013). Effects of near-surface soil moisture on GPS SNR data: Development of a retrieval algorithm for soil moisture. IEEE Transactions on Geoscience and Remote Sensing, 52(1), 537-543.
- EUSPA. (2024). EUSPA EO and GNSS Market Report, Issue 2. Publications Office of the European Union, Luxembourg.
- GSA. (2019) GNSS Market Report, Issue 6. Publications Office of the European Union, Luxembourg.
- Hu, Y., Yuan, X., Liu, W., Wickert, J., Jiang, Z., & Haas, R. (2021). GNSS-IR model of sea level height estimation combining variational mode decomposition. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 10405-10414.
- Larson, K. M., Small, E. E., Gutmann, E. D., Bilich, A. L., Braun, J. J., & Zavorotny, V. U. (2008). Use of GPS receivers as a soil moisture network for water cycle studies. Geophysical Research Letters, 35(24).
- Larson, K. M., Gutmann, E. D., Zavorotny, V. U., Braun, J. J., Williams, M. W., & Nievinski, F. G. (2009). Can we measure snow depth with GPS receivers?. Geophysical research letters, 36(17).
- Larson, K. M., Löfgren, J. S., & Haas, R. (2013). Coastal sea level measurements using a single geodetic GPS receiver. Advances in space research, 51(8), 1301-1310.
- Larson, K. M., & Nievinski, F. G. (2013). GPS snow sensing: results from the EarthScope Plate Boundary Observatory. GPS Solutions, 17, 41-52.
- Liu, Z., Du, L., Zhou, P., Liu, Z., Zhang, Z., & Xu, Z. (2022). Performance assessment of GNSS-IR altimetry using signal-to-noise ratio data from a Huawei P30 smartphone. GPS Solutions, 26(2), 42.
- Lomb, N. R. (1976). Least-squares frequency analysis of unequally spaced data. Astrophysics and space science, 39, 447-462.
- Nievinski, F. G., & Larson, K. M. (2014). Inverse modeling of GPS multipath for snow depth estimation—Part II: Application and validation. IEEE transactions on geoscience and remote sensing, 52(10), 6564-6573.
- Robustelli, U., Baiocchi, V., & Pugliano, G. (2019). Assessment of dual frequency GNSS observations from a Xiaomi Mi 8 Android smartphone and positioning performance analysis. Electronics, 8(1), 91.
- Scargle, J. D. (1982). Studies in astronomical time series analysis. II-Statistical aspects of spectral analysis of unevenly spaced data. Astrophysical Journal, 263, 835-853.
- Strandberg, J., & Haas, R. (2019). Can we measure sea level with a tablet computer?. IEEE Geoscience and Remote Sensing Letters, 17(11), 1876-1878.
- Tunalioglu, N., Dogan, A. H., & Durdag, U. M. (2019). Determination of snow depth by GPS signal to noise ratio (in Turkish). Journal of Geodesy and Geoinformation, 6(1), 1-9.
- Williams, S. D., Bell, P. S., McCann, D. L., Cooke, R., & Sams, C. (2020). Demonstrating the potential of low-cost GPS units for the remote measurement of tides and water levels using interferometric reflectometry. Journal of atmospheric and oceanic technology, 37(10), 1925-1935.
- Zheng, N., & Chai, H. (2023). Preliminary inquiry on the linear relationship between the height of the station and the ground height error retrieved by GNSS-IR with low-cost smart electronic equipment. Measurement Science and Technology, 34(12), 125115.
Akıllı telefonların çok frekanslı çoklu-GNSS SNR verilerinin GNSS-IR performansının değerlendirilmesi
Yıl 2025,
Cilt: 12 Sayı: 1, 1 - 19
Cemali Altuntaş
,
Nursu Tunalıoğlu
Öz
Akıllı telefonlar, birden fazla uydu sistemini destekleyen gömülü Küresel Navigasyon Uydu Sistemleri (GNSS) çipleri ile donatılmıştır. Bu durum konum belirleme, navigasyon ve zaman ölçümü çalışmalarında doğruluğu artırmaktadır. GNSS İnterferometrik Reflektometri (GNSS-IR) yöntemiyle, bu özelliklerden faydalanılarak yüzey özelliklerini daha doğru kestirmek için çok yolluluk etkisindeki sinyallerin ve yansımaların analizi gerçekleştirilebilmektedir. Çok frekanslı çoklu-GNSS veri toplama kabiliyetine sahip olmalarının yanı sıra, geleneksel jeodezik alıcılara kıyasla daha düşük maliyetli ve taşınabilir olmaları nedeniyle akıllı telefonlar, GNSS-IR çalışmalarında uygulama için önemli bir potansiyele sahiptir. Bu çalışmada, jeodezik alıcılar ve akıllı telefonlardan sağlanan çok frekanslı çoklu-GNSS SNR verilerinden elde edilen reflektör yüksekliği ve yükseklik değişimine ilişkin kestirimlerin doğruluğunu değerlendirmek için her gün altı saatlik ortak gözlem içeren üç günlük bir deneysel çalışma gerçekleştirilmiştir. 121Y348 numaralı TÜBİTAK projesi kapsamında geliştirilen deney düzeneğine, iki CHC i90 Pro jeodezik alıcı ve iki Samsung Galaxy Note 20 Ultra akıllı telefon, başucu ve ayakucu doğrultularına bakacak şekilde yerleştirilmiştir. Geçerli kestirim sayısı, pik-arka plan gürültü oranı değerleri, reflektör yüksekliği ve yükseklik değişimi kestirimlerinin doğruluğu üzerinden uydu sistemi ve frekans temelli değerlendirme yapılmıştır. Bulgular, jeodezik alıcıların GNSS-IR uygulamalarında veri toplama stabilitesi yönünden akıllı telefonlardan daha üstün performans sağladığını göstermiştir. Ayrıca, akıllı telefonların yöneliminin (düz, ters veya eğimli) GNSS-IR kestirimlerinin doğruluğu üzerindeki etkisinin çok az olduğu ve en stabil akıllı telefon verilerinin GPS uydularından elde edildiği görülmüştür. Buna ek olarak, 20 cm’den kısa dalga boyuna sahip sinyallerin akıllı telefon tabanlı GNSS-IR çalışmalarında kullanılmasının daha iyi sonuçlar sağladığı ve kar kalınlığı, deniz seviyesi ve bitki yüksekliği gibi iklimbilimsel parametrelerin uzun vadeli izlenmesi için düşük maliyetli bir alternatif teşkil ettiği tespit edilmiştir.
Kaynakça
- Altuntas, C., & Tunalioglu, N. (2020). Estimation performance of soil moisture with GPS-IR method. Sigma Journal of Engineering and Natural Sciences, 38(4), 2217-2230.
- Altuntas, C., & Tunalioglu, N. (2021). Feasibility of retrieving effective reflector height using GNSS-IR from a single-frequency android smartphone SNR data. Digital Signal Processing, 112, 103011.
- Altuntas, C., Iban, M. C., Şentürk, E., Durdag, U. M., & Tunalioglu, N. (2022). Machine learning-based snow depth retrieval using GNSS signal-to-noise ratio data. GPS Solutions, 26(4), 117.
- Altuntas, C., & Tunalioglu, N. (2023). A systematic approach for identifying optimal azimuth and elevation angle masks in GNSS-IR: validation through a sea level experiment. GPS Solutions, 27(4), 198.
- Banville, S., & van Diggelen, F. (2016). Precise positioning using raw GPS measurements from Android smartphones, GPS World, 27(11), 43-48.
- Besel, C., & Kayikci, E. T. (2021). Investigation of sea level variations in Turkish coasts using GNSS reflectometry (in Turkish). Journal of Geodesy and Geoinformation, 8(1), 1-17.
- Chen, L., Chai, H., Zheng, N., Wang, M., & Xiang, M. (2023). Feasibility and performance evaluation of low-cost GNSS devices for sea level measurement based on GNSS-IR. Advances in Space Research, 72(11), 4651-4662.
- Chew, C. C., Small, E. E., Larson, K. M., & Zavorotny, V. U. (2013). Effects of near-surface soil moisture on GPS SNR data: Development of a retrieval algorithm for soil moisture. IEEE Transactions on Geoscience and Remote Sensing, 52(1), 537-543.
- EUSPA. (2024). EUSPA EO and GNSS Market Report, Issue 2. Publications Office of the European Union, Luxembourg.
- GSA. (2019) GNSS Market Report, Issue 6. Publications Office of the European Union, Luxembourg.
- Hu, Y., Yuan, X., Liu, W., Wickert, J., Jiang, Z., & Haas, R. (2021). GNSS-IR model of sea level height estimation combining variational mode decomposition. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 10405-10414.
- Larson, K. M., Small, E. E., Gutmann, E. D., Bilich, A. L., Braun, J. J., & Zavorotny, V. U. (2008). Use of GPS receivers as a soil moisture network for water cycle studies. Geophysical Research Letters, 35(24).
- Larson, K. M., Gutmann, E. D., Zavorotny, V. U., Braun, J. J., Williams, M. W., & Nievinski, F. G. (2009). Can we measure snow depth with GPS receivers?. Geophysical research letters, 36(17).
- Larson, K. M., Löfgren, J. S., & Haas, R. (2013). Coastal sea level measurements using a single geodetic GPS receiver. Advances in space research, 51(8), 1301-1310.
- Larson, K. M., & Nievinski, F. G. (2013). GPS snow sensing: results from the EarthScope Plate Boundary Observatory. GPS Solutions, 17, 41-52.
- Liu, Z., Du, L., Zhou, P., Liu, Z., Zhang, Z., & Xu, Z. (2022). Performance assessment of GNSS-IR altimetry using signal-to-noise ratio data from a Huawei P30 smartphone. GPS Solutions, 26(2), 42.
- Lomb, N. R. (1976). Least-squares frequency analysis of unequally spaced data. Astrophysics and space science, 39, 447-462.
- Nievinski, F. G., & Larson, K. M. (2014). Inverse modeling of GPS multipath for snow depth estimation—Part II: Application and validation. IEEE transactions on geoscience and remote sensing, 52(10), 6564-6573.
- Robustelli, U., Baiocchi, V., & Pugliano, G. (2019). Assessment of dual frequency GNSS observations from a Xiaomi Mi 8 Android smartphone and positioning performance analysis. Electronics, 8(1), 91.
- Scargle, J. D. (1982). Studies in astronomical time series analysis. II-Statistical aspects of spectral analysis of unevenly spaced data. Astrophysical Journal, 263, 835-853.
- Strandberg, J., & Haas, R. (2019). Can we measure sea level with a tablet computer?. IEEE Geoscience and Remote Sensing Letters, 17(11), 1876-1878.
- Tunalioglu, N., Dogan, A. H., & Durdag, U. M. (2019). Determination of snow depth by GPS signal to noise ratio (in Turkish). Journal of Geodesy and Geoinformation, 6(1), 1-9.
- Williams, S. D., Bell, P. S., McCann, D. L., Cooke, R., & Sams, C. (2020). Demonstrating the potential of low-cost GPS units for the remote measurement of tides and water levels using interferometric reflectometry. Journal of atmospheric and oceanic technology, 37(10), 1925-1935.
- Zheng, N., & Chai, H. (2023). Preliminary inquiry on the linear relationship between the height of the station and the ground height error retrieved by GNSS-IR with low-cost smart electronic equipment. Measurement Science and Technology, 34(12), 125115.