Year 2020,
Volume: 2 Issue: 2, 1 - 11, 09.12.2020
Nour Elhouda Djaa
,
Abderrahim Zagane
References
-
[1] Abbassi, M. T. K., & Sarih, M. (2005). On natural metrics on tangent bundles of Riemannian manifolds. Archivum Mathematicum, 41(1), 71-92.
-
[2] Cengiz, N., & Salimov, A. A. (2003). Diagonal lift in the tensor bundle and its applications. Applied mathematics and computation, 142(2-3), 309-319.
-
[3] Cheeger, J., & Gromoll, D. (1972). On the structure of complete manifolds of nonnegative curvature. Annals of Mathematics, 413-443.
-
[4] Djaa, M. & Gancarzewicz, J. (1985). The geometry of tangent bundles of order r. Boletin Academia , Galega de Ciencias, 4, 147-165.
-
[5] Dombrowski, P. (1962). On the Geometry of the Tangent Bundle, Journal für die reine und angewandte Mathematik, 210, 73-88.
-
[6] Gezer, A. (2013). On the tangent bundle with deormed sasaki metric, International Electronic Journal of Geometry, 6(2), 19-31.
-
[7] Gudmundsson, S. & Kappos, E. (2002). On the Geometry of the Tangent Bundle with the Cheeger-Gromoll Metric. Tokyo Journal of Mathematics, 25(1), 75-83.
-
[8] Kobayashi, S. & Nomizu, K. (1963). Foundation of differential geometry. Interscience Publisher, New York-London.
-
[9] Salimov, A.A., Gezer, A. & Akbulut, K. (2009). Geodesics of Sasakian metrics on tensor bundles. Mediterranean Journal of Mathematics, 6(2), 135-147.
-
[10] Salimov, A. A. & Kazimova, S. (2009). Geodesics of the Cheeger-Gromoll Metric. Turkish Journal of Mathematics, 33(1), 99-105
-
[11] Salimov, A. A & Gezer, A. (2011). On the geometry of the (1, 1)-tensor bundle with Sasaki type metric. Chinese Annals of Mathematics, Series B, 32(3), 369.
-
[12] Salimov, A. A., & Agca, F. (2011). Some Properties of Sasakian Metrics in Cotangent Bundles. Mediterranean Journal of Mathematics, 8(2), 243-255.
-
[13] Sasaki, S. (1962). On the differential geometry of tangent bundles of Riemannian manifolds II. Tohoku Mathematical Journal, Second Series, 14(2), 146-155.
-
[14] Sekizawa, M. (1991). Curvatures of Tangent Bundles with Cheeger-Gromoll Metric. Tokyo Journal of Mathematics, 14(2), 407-417.
-
[15] Tachibana, S. (1960). Analytic tensor and its generalization. Tohoku Mathematical Journal, Second Series, 12(2), 208-221.
-
[16] Yano, K. & Ishihara, S. (1973). Tangent and cotangent bundles. Marcel dekker, Inc., New York.
-
[17] Zagane, A. & Djaa, M. (2017). On geodesics of warped Sasaki metric. Mathematical sciences and Applications E-Notes. 5, 85-92.
-
[18] Zagane, A. & Djaa, M. (2018). Geometry of Mus-Sasaki metric. Communication in Mathematics. 26(2), 113-126.
Mus-Sasaki Metric and Complex Structures
Year 2020,
Volume: 2 Issue: 2, 1 - 11, 09.12.2020
Nour Elhouda Djaa
,
Abderrahim Zagane
Abstract
In this paper we study the geometry of some paracomplex structures on tangent fiber bundle $TM$ equipped with a Mus-Sasaki metrics.
Supporting Institution
This note was supported by G.A.C.A Laboratory of Saida University and National Algerian P.R.F.U. project.
References
-
[1] Abbassi, M. T. K., & Sarih, M. (2005). On natural metrics on tangent bundles of Riemannian manifolds. Archivum Mathematicum, 41(1), 71-92.
-
[2] Cengiz, N., & Salimov, A. A. (2003). Diagonal lift in the tensor bundle and its applications. Applied mathematics and computation, 142(2-3), 309-319.
-
[3] Cheeger, J., & Gromoll, D. (1972). On the structure of complete manifolds of nonnegative curvature. Annals of Mathematics, 413-443.
-
[4] Djaa, M. & Gancarzewicz, J. (1985). The geometry of tangent bundles of order r. Boletin Academia , Galega de Ciencias, 4, 147-165.
-
[5] Dombrowski, P. (1962). On the Geometry of the Tangent Bundle, Journal für die reine und angewandte Mathematik, 210, 73-88.
-
[6] Gezer, A. (2013). On the tangent bundle with deormed sasaki metric, International Electronic Journal of Geometry, 6(2), 19-31.
-
[7] Gudmundsson, S. & Kappos, E. (2002). On the Geometry of the Tangent Bundle with the Cheeger-Gromoll Metric. Tokyo Journal of Mathematics, 25(1), 75-83.
-
[8] Kobayashi, S. & Nomizu, K. (1963). Foundation of differential geometry. Interscience Publisher, New York-London.
-
[9] Salimov, A.A., Gezer, A. & Akbulut, K. (2009). Geodesics of Sasakian metrics on tensor bundles. Mediterranean Journal of Mathematics, 6(2), 135-147.
-
[10] Salimov, A. A. & Kazimova, S. (2009). Geodesics of the Cheeger-Gromoll Metric. Turkish Journal of Mathematics, 33(1), 99-105
-
[11] Salimov, A. A & Gezer, A. (2011). On the geometry of the (1, 1)-tensor bundle with Sasaki type metric. Chinese Annals of Mathematics, Series B, 32(3), 369.
-
[12] Salimov, A. A., & Agca, F. (2011). Some Properties of Sasakian Metrics in Cotangent Bundles. Mediterranean Journal of Mathematics, 8(2), 243-255.
-
[13] Sasaki, S. (1962). On the differential geometry of tangent bundles of Riemannian manifolds II. Tohoku Mathematical Journal, Second Series, 14(2), 146-155.
-
[14] Sekizawa, M. (1991). Curvatures of Tangent Bundles with Cheeger-Gromoll Metric. Tokyo Journal of Mathematics, 14(2), 407-417.
-
[15] Tachibana, S. (1960). Analytic tensor and its generalization. Tohoku Mathematical Journal, Second Series, 12(2), 208-221.
-
[16] Yano, K. & Ishihara, S. (1973). Tangent and cotangent bundles. Marcel dekker, Inc., New York.
-
[17] Zagane, A. & Djaa, M. (2017). On geodesics of warped Sasaki metric. Mathematical sciences and Applications E-Notes. 5, 85-92.
-
[18] Zagane, A. & Djaa, M. (2018). Geometry of Mus-Sasaki metric. Communication in Mathematics. 26(2), 113-126.