Research Article
BibTex RIS Cite

The Isometry Groups of $\mathbb{R}_{DH}^{3},$ $\mathbb{R}_{PD}^{3}$ and $\mathbb{R}_{TI}^{3}$

Year 2024, Volume: 6 Issue: 1, 1 - 9, 30.06.2024

Abstract

There are two aims of this paper. First one, we want to give a detailed exposition of basic properties of deltoidal hexacontahedron, pentakis dodecahedron and triakis icosahedron which are Catalan solids. Also, we construct the spaces by covering related metrics. The spheres of these spaces are deltoidal hexacontahedron, pentakis dodecahedron and triakis icosahedron. Second one is to find the isometry group of these solids. In fact, the main aim of this paper is the second one. We show that the group of isometries of the spaces covering with deltoidal hexacontahedron, pentakis dodecahedron, and triakis icosahedron metrics is the semi-direct product of the icosahedral group $I_{h}$ and $T(3)$, where $I_{h}$ is the (Euclidean) symmetry group of the icosahedron and $T(3)$ is the group of all translations of the 3-dimensional space.

References

  • Cromwell, P. R. (1997). Polyhedra, Cambridge University Press.
  • Martin, G. E. (1997). Transformation geometry. Springer-Verlag New York Inc.
  • Kaya, R., Gelişgen, Ö., Ekmekçi, S., & Bayar, A. (2006). Group of isometries of CC-plane.Missouri Journal of Mathematical Sciences, 18(3), 221-233.
  • Gelişgen, Ö., & Kaya, R. (2009). The Taxicab space group, Acta Mathematica Hungarica, 122(1-2), 187-200.
  • Kaya, R., Gelisgen, Ö ., Ekmekci, S., & Bayar, A. (2009). On The Group of isometries of the plane with generalized absolute value metric. Rocky Mountain Journal of Mathematics, 39(2), 591-603.
  • Çolak, Z., & Gelişgen, Ö . (2015). New metrics for deltoidal hexacontahedron and pentakis dodecahedron, Sakarya University Journal of Science, 19(3), 353-360.
  • Ermiş, T., & Kaya, R. (2015). On the isometries the of 3- dimensional maximum space, Konuralp Journal of Mathematics, 3(1), 103-114.
  • Gelişgen, Ö., & Kaya, R. (2015). The isometry group of Chinese Checker space. International Electronic Journal Geometry, 8(2), 82-96.
  • Gelişgen Ö., & Can, Z. (2016). On the family of metrics for some platonic and Archimedean polyhedra. Konuralp Journal of Mathematics, 4(2), 25-33.
  • Gelişgen Ö., & Çolak, Z. (2016). A family of metrics for some polyhedra. Automation Computers Applied Mathematics Scientific Journal, 25(1), 35-48.
  • Ekmekçi, S., Akça, Z., Altıntaş, A., & Bayar, A. (2016). Some coplanar points in tetrahedron. Journal of Pure and Applied Mathematics: Advances and Applications, 16(2), 109-114.
  • Gelişgen, Ö., Ermis, T., & Gunaltılı, I. (2017). A note about the metrics induced by truncated dodecahedron and truncated icosahedron. International Journal of Geometry, 6(2), 5-16.
  • Ermiş, T., Savcı, Ü. Z., & Gelişgen, Ö . (2019). A note about truncated rhombicuboctahedron and truncated rhombicicosidodecahedron space, Scientific Studies and Research Series Mathematics and Informatics, 29(1), 73-88.
  • Gelisgen Ö., & Yavuz, S. (2019). A note about isometry groups of chamfered dodecahedron and chamfered icosahedron spaces. International Journal of Geometry, 8(2), 33-45.
  • Gelisgen Ö., & Yavuz, S. (2019). Isometry groups of chamfered cube and chamfered octahedron spaces. Mathematical Sciences and Applications e-Notes, 7(2), 174-182.
  • Savcı, Ü. Z. (2019). Truncated truncated dodecahedron and truncated truncated icosahedron spaces. Cumhuriyet Science Journal (CSJ), 40(2), 457-470.
  • Ermiş, T. (2020) Geometric analysis of the some rectified Archimedean solids spaces via their isometry groups. Mathematical Sciences and Applications E-Notes, 8(2), 96-109.
  • Gelisgen Ö., & Ermiş, T. (2020). The metrics for rhombicuboctahedron and rhombicosidodecahedron. Palestine Journal of Mathematics, 9(1), 15-25.
  • Akça, Z., & Nazlı, S. (2022). On the shortest distance in the plane $R^{2}_{\pi/3}$. New Trends in Mathematical Sciences, 10(4), 128–132.
  • Wikipedia, https://en.wikipedia.org/wiki/Deltoidal hexecontahedron. [Accessed 28 July 2023].
  • Wikipedia, https://en.wikipedia.org/wiki/Pentakis dodecahedron. [Accessed 28 July 2023].
  • Wikipedia, https://en.wikipedia.org/wiki/Triakis icosahedron. [Accessed 28 July 2023].
  • Can, Z., Gelişgen, Ö., & Kaya, R. (2015). On the metrics induced by icosidodecahedron and rhombic triacontahedron. Scientific and Professional Journal of the Croatian Society for Geometry and Graphics (KoG), 19, 17-23.
  • Can, Z., Çolak, Z., & Gelişgen, Ö. (2015). A note On the metrics induced By triakis icosahedron and disdyakis triacontahedron. Eurasian Academy of Sciences Eurasian Life Sciences Journal / Avrasya Fen Bilimleri Dergisi, 1, 1-11.
  • Deza, M. M., & Deza, E. (2009). Encyclopedia of distances. German: Springer, Berlin.
  • Horvath, A. G. (2017). Isometries of Minkowski geometries. Linear Algebra and its Applications, 512, 172-190.
Year 2024, Volume: 6 Issue: 1, 1 - 9, 30.06.2024

Abstract

References

  • Cromwell, P. R. (1997). Polyhedra, Cambridge University Press.
  • Martin, G. E. (1997). Transformation geometry. Springer-Verlag New York Inc.
  • Kaya, R., Gelişgen, Ö., Ekmekçi, S., & Bayar, A. (2006). Group of isometries of CC-plane.Missouri Journal of Mathematical Sciences, 18(3), 221-233.
  • Gelişgen, Ö., & Kaya, R. (2009). The Taxicab space group, Acta Mathematica Hungarica, 122(1-2), 187-200.
  • Kaya, R., Gelisgen, Ö ., Ekmekci, S., & Bayar, A. (2009). On The Group of isometries of the plane with generalized absolute value metric. Rocky Mountain Journal of Mathematics, 39(2), 591-603.
  • Çolak, Z., & Gelişgen, Ö . (2015). New metrics for deltoidal hexacontahedron and pentakis dodecahedron, Sakarya University Journal of Science, 19(3), 353-360.
  • Ermiş, T., & Kaya, R. (2015). On the isometries the of 3- dimensional maximum space, Konuralp Journal of Mathematics, 3(1), 103-114.
  • Gelişgen, Ö., & Kaya, R. (2015). The isometry group of Chinese Checker space. International Electronic Journal Geometry, 8(2), 82-96.
  • Gelişgen Ö., & Can, Z. (2016). On the family of metrics for some platonic and Archimedean polyhedra. Konuralp Journal of Mathematics, 4(2), 25-33.
  • Gelişgen Ö., & Çolak, Z. (2016). A family of metrics for some polyhedra. Automation Computers Applied Mathematics Scientific Journal, 25(1), 35-48.
  • Ekmekçi, S., Akça, Z., Altıntaş, A., & Bayar, A. (2016). Some coplanar points in tetrahedron. Journal of Pure and Applied Mathematics: Advances and Applications, 16(2), 109-114.
  • Gelişgen, Ö., Ermis, T., & Gunaltılı, I. (2017). A note about the metrics induced by truncated dodecahedron and truncated icosahedron. International Journal of Geometry, 6(2), 5-16.
  • Ermiş, T., Savcı, Ü. Z., & Gelişgen, Ö . (2019). A note about truncated rhombicuboctahedron and truncated rhombicicosidodecahedron space, Scientific Studies and Research Series Mathematics and Informatics, 29(1), 73-88.
  • Gelisgen Ö., & Yavuz, S. (2019). A note about isometry groups of chamfered dodecahedron and chamfered icosahedron spaces. International Journal of Geometry, 8(2), 33-45.
  • Gelisgen Ö., & Yavuz, S. (2019). Isometry groups of chamfered cube and chamfered octahedron spaces. Mathematical Sciences and Applications e-Notes, 7(2), 174-182.
  • Savcı, Ü. Z. (2019). Truncated truncated dodecahedron and truncated truncated icosahedron spaces. Cumhuriyet Science Journal (CSJ), 40(2), 457-470.
  • Ermiş, T. (2020) Geometric analysis of the some rectified Archimedean solids spaces via their isometry groups. Mathematical Sciences and Applications E-Notes, 8(2), 96-109.
  • Gelisgen Ö., & Ermiş, T. (2020). The metrics for rhombicuboctahedron and rhombicosidodecahedron. Palestine Journal of Mathematics, 9(1), 15-25.
  • Akça, Z., & Nazlı, S. (2022). On the shortest distance in the plane $R^{2}_{\pi/3}$. New Trends in Mathematical Sciences, 10(4), 128–132.
  • Wikipedia, https://en.wikipedia.org/wiki/Deltoidal hexecontahedron. [Accessed 28 July 2023].
  • Wikipedia, https://en.wikipedia.org/wiki/Pentakis dodecahedron. [Accessed 28 July 2023].
  • Wikipedia, https://en.wikipedia.org/wiki/Triakis icosahedron. [Accessed 28 July 2023].
  • Can, Z., Gelişgen, Ö., & Kaya, R. (2015). On the metrics induced by icosidodecahedron and rhombic triacontahedron. Scientific and Professional Journal of the Croatian Society for Geometry and Graphics (KoG), 19, 17-23.
  • Can, Z., Çolak, Z., & Gelişgen, Ö. (2015). A note On the metrics induced By triakis icosahedron and disdyakis triacontahedron. Eurasian Academy of Sciences Eurasian Life Sciences Journal / Avrasya Fen Bilimleri Dergisi, 1, 1-11.
  • Deza, M. M., & Deza, E. (2009). Encyclopedia of distances. German: Springer, Berlin.
  • Horvath, A. G. (2017). Isometries of Minkowski geometries. Linear Algebra and its Applications, 512, 172-190.
There are 26 citations in total.

Details

Primary Language English
Subjects Pure Mathematics (Other)
Journal Section Articles
Authors

Özcan Gelişgen 0000-0001-7071-6758

Zeynep Çolak

Publication Date June 30, 2024
Published in Issue Year 2024 Volume: 6 Issue: 1

Cite

APA Gelişgen, Ö., & Çolak, Z. (2024). The Isometry Groups of $\mathbb{R}_{DH}^{3},$ $\mathbb{R}_{PD}^{3}$ and $\mathbb{R}_{TI}^{3}$. Hagia Sophia Journal of Geometry, 6(1), 1-9.