On The Parallel Ruled Surfaces With B-Darboux Frame
Year 2024,
Volume: 6 Issue: 2, 13 - 25, 31.12.2024
Mustafa Dede
,
Hatice Tozak
,
Cumali Ekici
Abstract
In this work, the geometric properties of parallel ruled surfaces associated with the B-Darboux frame (BDF) in $E%
%TCIMACRO{\U{b3}}%
%BeginExpansion
{{}^3}%
%EndExpansion$ are introduced. Firstly, these surfaces are presented, and their main characteristic properties, such as developability, stress points and dispersion parameter, are analyzed. The paper presents a comprehensive analysis of how these surfaces are constructed and describes the conditions under which they preserve certain geometrical properties with the B-Darboux frame in Euclidean 3-space. These results contribute to a much better understanding of the theory of parallel ruled surfaces (PRS) with regard to the B-Darboux frame and provide insights into potential applications in various fields of geometry and mathematical modeling.
References
- Hlavatý, V., & Pinl, M. (1945). Differentielle liniengeometrie. Uitg P. Noorfhoff, Groningen.
- Hoschek, J. (1973). Integralinvarianten von Regelflächen. Archiv der Mathematik, 24, 218–224.
- Yoon, D. W. (2008). Some properties of parallel surfaces in Euclidean 3-spaces, Honam Mathematical Journal, 30(4), 637–644.
- Ünlütürk, Y., Çimdiker, M., & Ekici, C. (2016). Characteristic properties of the parallel ruled surfaces with Darboux frame in Euclidean 3-space. Communication in Mathematical Modeling and Applications, 1(1), 26–43.
- Ravani, B., & Ku, T. S. (1991). Bertrand offsets of ruled and developable surfaces. Computer-Aided Design, 23(2), 145–152.
- Bloomenthal, J. (1990). Calculation of reference frames along a space curve. Graphics Gems, 1, 567–571.
- Doğan, F., & Yaylı, Y. (2012). Tubes with Darboux frame. International Journal of Contemporary Mathematical Sciences, 7(16), 751–758.
- Klok, F. (1986). Two moving coordinate frames for sweeping along a 3D trajectory. Computer Aided Geometric Design, 3(3), 217–229.
- Wang, W., Jüttler, B., Zheng, D., & Liu, Y. (2008). Computation of rotation minimizing frames. ACM Transactions on Graphics (TOG), 27(1), 1–18.
- do Carmo, M. P. (1976). Differential geometry of curves and surfaces. Prentice Hall, Englewood Cliffs, New Jersey.
- Bishop, R. L. (1975). There is more than one way to frame a curve. The American Mathematical Monthly, 82(3), 246-251.
- Dede, M,. Ekici, C., & Görgülü, A. (2015). Directional q-frame along a space curve. International Journal of Advanced Research in Computer Science and Software Engineering, 5(12), 775–780.
- Dede, M., Ekici, C., & Tozak, H. (2015). Directional tubular surfaces. International Journal of Algebra, 9(12), 527–535.
- O’Neill, B. (1996). Elementary differential geometry. Academic Press Inc, New York.
- Darboux, G. (1896). Lec¸ons sur la théorie générale des surfaces I-II-III-IV. Gauthier-Villars, Paris.
- Şentürk, G. Y., & Yüce, S. (2015). Characteristic properties of the ruled surface with Darboux frame in E3. Kuwait
Journal of Science, 42(2), 14–33.
- Ekici, C., Uğur Kaymanlı G., & Okur, S. (2021). A new characterization of ruled surfaces according to q-frame vectors in Euclidean 3-space. International Journal of Mathematical Combinatorics, 3, 20–31.
- Ekici Coşkun, A., & Akça, Z. (2023). The ruled surfaces generated by quasi-vectors in E4 space. Hagia Sophia Journal of Geometry, 5(2), 6–17.
- Uğur Kaymanlı G., Ekici, C., & Ünlütürk, Y. (2022). Constant angle ruled surfaces due to the Bishop frame in Minkowski 3-space. Journal of Science and Arts, 22(1), 105–114.
- Dede, M., & Ekici, C. (2017). B-Darboux frame of a surface. International Conference on Applied Sciences, Engineering and Mathematics (IBU-ICASEM2017), (p. 30).
- Dede, M., Çimdiker Aslan, M., & Ekici, C. (2021). On a variational problem due to the B-Darboux frame in Euclidean 3-space. Mathematical Methods in the Applied Sciences, 44(17), 12630–12639.
- Şentürk, G. Y., & Yüce, S. (2019). On the evolute offsets of ruled surface using the Darboux frame. Communications Faculty of Sciences University of Ankara Series A1: Mathematics and Statistics, 68(2), 1256–1264.
- Uğur Kaymanlı, G. (2020). Characterization of the evolute offset of ruled surfaces with B-Darboux frame. Journal of New Theory, 33, 50–55.
- Solouma, E. M., & Al-Dayel, I. (2021). Harmonic evolute surface of tubular surfaces via B-Darboux frame in Euclidean 3-space. Advances in Mathematical Physics, Article ID 5269655, 7 pages.
- Kühnel, W. (2002). Differential geometry: curves-surfaces-manifolds. American Mathematical Society.
- Hacısalihoğlu, H. H. (1983). Differential geometry (in Turkish), İnönü Üniversity Faculty of Science Publications.
- Abbena, E., Salamon, S., & Gray, A. (2006). Modern differential geometry of curves and surfaces with Mathematica. Chapman and Hall/CRC.
- Savcı, Ü. Z. (2011). On the parallel ruled Weingarten surfaces in 3-dimensional Euclid space (in Turkish). Doctoral Dissertation, Eskişehir Osmangazi University, Eskişehir.
Year 2024,
Volume: 6 Issue: 2, 13 - 25, 31.12.2024
Mustafa Dede
,
Hatice Tozak
,
Cumali Ekici
References
- Hlavatý, V., & Pinl, M. (1945). Differentielle liniengeometrie. Uitg P. Noorfhoff, Groningen.
- Hoschek, J. (1973). Integralinvarianten von Regelflächen. Archiv der Mathematik, 24, 218–224.
- Yoon, D. W. (2008). Some properties of parallel surfaces in Euclidean 3-spaces, Honam Mathematical Journal, 30(4), 637–644.
- Ünlütürk, Y., Çimdiker, M., & Ekici, C. (2016). Characteristic properties of the parallel ruled surfaces with Darboux frame in Euclidean 3-space. Communication in Mathematical Modeling and Applications, 1(1), 26–43.
- Ravani, B., & Ku, T. S. (1991). Bertrand offsets of ruled and developable surfaces. Computer-Aided Design, 23(2), 145–152.
- Bloomenthal, J. (1990). Calculation of reference frames along a space curve. Graphics Gems, 1, 567–571.
- Doğan, F., & Yaylı, Y. (2012). Tubes with Darboux frame. International Journal of Contemporary Mathematical Sciences, 7(16), 751–758.
- Klok, F. (1986). Two moving coordinate frames for sweeping along a 3D trajectory. Computer Aided Geometric Design, 3(3), 217–229.
- Wang, W., Jüttler, B., Zheng, D., & Liu, Y. (2008). Computation of rotation minimizing frames. ACM Transactions on Graphics (TOG), 27(1), 1–18.
- do Carmo, M. P. (1976). Differential geometry of curves and surfaces. Prentice Hall, Englewood Cliffs, New Jersey.
- Bishop, R. L. (1975). There is more than one way to frame a curve. The American Mathematical Monthly, 82(3), 246-251.
- Dede, M,. Ekici, C., & Görgülü, A. (2015). Directional q-frame along a space curve. International Journal of Advanced Research in Computer Science and Software Engineering, 5(12), 775–780.
- Dede, M., Ekici, C., & Tozak, H. (2015). Directional tubular surfaces. International Journal of Algebra, 9(12), 527–535.
- O’Neill, B. (1996). Elementary differential geometry. Academic Press Inc, New York.
- Darboux, G. (1896). Lec¸ons sur la théorie générale des surfaces I-II-III-IV. Gauthier-Villars, Paris.
- Şentürk, G. Y., & Yüce, S. (2015). Characteristic properties of the ruled surface with Darboux frame in E3. Kuwait
Journal of Science, 42(2), 14–33.
- Ekici, C., Uğur Kaymanlı G., & Okur, S. (2021). A new characterization of ruled surfaces according to q-frame vectors in Euclidean 3-space. International Journal of Mathematical Combinatorics, 3, 20–31.
- Ekici Coşkun, A., & Akça, Z. (2023). The ruled surfaces generated by quasi-vectors in E4 space. Hagia Sophia Journal of Geometry, 5(2), 6–17.
- Uğur Kaymanlı G., Ekici, C., & Ünlütürk, Y. (2022). Constant angle ruled surfaces due to the Bishop frame in Minkowski 3-space. Journal of Science and Arts, 22(1), 105–114.
- Dede, M., & Ekici, C. (2017). B-Darboux frame of a surface. International Conference on Applied Sciences, Engineering and Mathematics (IBU-ICASEM2017), (p. 30).
- Dede, M., Çimdiker Aslan, M., & Ekici, C. (2021). On a variational problem due to the B-Darboux frame in Euclidean 3-space. Mathematical Methods in the Applied Sciences, 44(17), 12630–12639.
- Şentürk, G. Y., & Yüce, S. (2019). On the evolute offsets of ruled surface using the Darboux frame. Communications Faculty of Sciences University of Ankara Series A1: Mathematics and Statistics, 68(2), 1256–1264.
- Uğur Kaymanlı, G. (2020). Characterization of the evolute offset of ruled surfaces with B-Darboux frame. Journal of New Theory, 33, 50–55.
- Solouma, E. M., & Al-Dayel, I. (2021). Harmonic evolute surface of tubular surfaces via B-Darboux frame in Euclidean 3-space. Advances in Mathematical Physics, Article ID 5269655, 7 pages.
- Kühnel, W. (2002). Differential geometry: curves-surfaces-manifolds. American Mathematical Society.
- Hacısalihoğlu, H. H. (1983). Differential geometry (in Turkish), İnönü Üniversity Faculty of Science Publications.
- Abbena, E., Salamon, S., & Gray, A. (2006). Modern differential geometry of curves and surfaces with Mathematica. Chapman and Hall/CRC.
- Savcı, Ü. Z. (2011). On the parallel ruled Weingarten surfaces in 3-dimensional Euclid space (in Turkish). Doctoral Dissertation, Eskişehir Osmangazi University, Eskişehir.