Review
BibTex RIS Cite
Year 2023, , 34 - 39, 30.04.2023
https://doi.org/10.30704/http-www-jivs-net.1263320

Abstract

References

  • Alonso, M.J.(1996). Nanoparticulate drug carrier technology . Drugs and the pharmaceutical sciences, 77, 203-242.
  • Benelli, G., Maggi, F., Romano, D., Stefanini, C., Vaseeharan, B., Kumar, S., ... & Canale, A. (2017). Nanoparticles as effective acaricides against ticks–a review. Ticks and tick-borne diseases, 8(6), 821-826.
  • Bentolila, L. A., Ebenstein, Y., & Weiss, S. (2009). Quantum dots for in vivo small-animal imaging. Journal of nuclear medicine, 50(4), 493-496.
  • Blasi P., Schoubben A., Giovagnoli S., Rossi C., Ricci M. (2009). Lipid nanoparticles for drug delivery to the brain: in vivo veritas. J Bıomed Nanotechnol, 5(4), 344-350.
  • Boca S., Berce C., Jurj A., Petrushev B., Pop L., Gafencu G. A., Berindan-Neagoe I. (2017). Ruxolitinib-conjugated gold nanoparticles for topical administration: An alternative for treating alopecia?. Med Hypotheses, 109, 42-45.+
  • Dağlar B. (2009). Altın Nanoparçacıkların Biyolojik Uygulamaları, Bilim ve Teknik Dergisi,Ekim ,73-75
  • Dams E. T. M. , Oyen W. J., Boerman O. C., Storm G., Laverman P., Kok P. J., Corstens F. H.(2000). 99mTc-PEG liposomes for the scintigraphic detection of infection and inflammation: clinical evaluation. J Nucl Med, 41(4), 622-630.
  • Derman S., Kızılbey K., Akdeste Z. M. (2013). Polymeric nanoparticles. Sigma Journal of Engineering and Natural Sciences, 31(1), 107-120.
  • Fadeel B., Garcia-Bennett A. E. (2010). Better safe than sorry: Understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv Drug Delıver Rev, 62(3), 362-374.
  • Fang C. L., Aljuffali I. A., Li Y. C., Fang J. Y.(2014). Delivery and targeting of nanoparticles into hair follicles. Therapeutic delivery, 5(9),991-1006.
  • Ghosh P., Han G., De M., Kim C. K., Rotello, V. M.( 2008). Gold nanoparticles in delivery applications. Adv Drug Delıver Rev, 60(11), 1307-1315.
  • Guo, D., Dou, D., Li, X., Zhang, Q., Bhutto, Z. A., & Wang, L. (2018). Ivermection-loaded solid lipid nanoparticles: preparation, characterisation, stability and transdermal behaviour. Artificial cells, nanomedicine, and biotechnology, 46(2), 255-262.
  • Huaizhi Z., Yuantao N.(2001). China’s ancient gold drugs. Gold Bull, 34(1), 24-29.
  • Huang L., Dai T., Xuan Y., Tegos G. P., Hamblin M. R.(2011). Synergistic combination of chitosan acetate with nanoparticle silver as a topical antimicrobial: efficacy against bacterial burn infections. Antımıcrob Agents Ch, 55(7), 3432-3438.
  • Islam R., Rima U. K., Haq M. M., Hossain M. M., Rahman M. M., Khan M. A. H. N. A.(2015). Topical application of silver-curcumin on wound healing in rabbits. Bangladesh Veterinarian, 32(2), 55-64.
  • Jain P. K., El-Sayed I. H., El-Sayed M. A.( 2007). Au nanoparticles target cancer. Nano Today, 2(1), 18-29.
  • Jeevanandam J., Barhoum A., Chan Y. S., Dufresne A., Danquah M. K.( 2018). Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations.Beılsteın J Nanotech, 9(1), 1050-1074.
  • Kang B. K., Chon S. K., Kim S. H., Jeong S. Y., Kim M. S., Cho S. H., Khang G.(2004). Controlled release of paclitaxel from microemulsion containing PLGA and evaluation of anti-tumor activity in vitro and in vivo. International journal of pharmaceutics, 286(1-2), 147-156.
  • Karaoğlan G.( 2017). Klinoptilolit içeren polimer nanopartiküllerin cryptosporidium parvum üzerine in vitro etkinliğinin araştırılması.Master's thesis, Adnan Menderes Üniversitesi, Sağlık Bilimleri Enstitüsü.
  • Ke W. T., Lin S. Y., Ho H. O., Sheu M. T.(2005). Physical characterizations of microemulsion systems using tocopheryl polyethylene glycol 1000 succinate (TPGS) as a surfactant for the oral delivery of protein drugs. J Control Release, 102(2), 489-507.
  • Kim S., Shi Y., Kim J. Y., Park K., Cheng J. X.( 2010). Overcoming the barriers in micellar drug delivery: loading efficiency, in vivo stability, and micelle–cell interaction. Expert opinion on drug delivery, 7(1), 49-62.
  • Kumar, N.; Kumbhat, S.(2016). Carbon-Based Nanomaterials. Essentials in Nanoscience and Nanotechnology; John Wiley & Sons, Inc.: Hoboken, NJ, U.S.A.; pp 189–236.
  • Leu J. G., Chen S. A., Chen H. M., Wu W. M., Hung C. F., Yao Y. D., Liang Y. J.( 2012). The effects of gold nanoparticles in wound healing with antioxidant epigallocatechin gallate and α-lipoic acid. Nanomedicine: Nanotechnology, Biology and Medicine, 8(5), 767-775.https://doi.org/10.1016/j.nano.2011.08.013
  • Mathes C., Melero A., Conrad P., Vogt T., Rigo L., Selzer D., Schaefer U. F. (2016). Nanocarriers for optimizing the balance between interfollicular permeation and follicular uptake of topically applied clobetasol to minimize adverse effects. Journal of Controlled Release, 223, 207-214.
  • Mishra B. B. T. S., Patel B. B., Tiwari S.(2010). Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine: Nanotechnology, biology and medicine, 6(1), 9-24.
  • Nascimento C. L., Ribeiro M. S., Sellera F. P., Dutra G. H. P., Simões A., Teixeira C. R.( 2015). Comparative study between photodynamic and antibiotic therapies for treatment of footpad dermatitis (bumblefoot) in Magellanic penguins (Spheniscus magellanicus). Photodiagnosis and Photodynamic Therapy, 12(1), 36-44.
  • Naves L. B., Dhand C., Venugopal J. R., Rajamani L., Ramakrishna S., Almeida L.(2017). Nanotechnology for the treatment of melanoma skin cancer,Prog. Biomater , 6.1: 13-26. https://doi.org/10.1007/s40204-017-0064-z
  • Pantarotto D., Partidos C. D., Hoebeke J., Brown F., Kramer E. D., Briand J. P., Bianco, A.(2003). Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chemistry & biology, 10(10), 961-966.https://doi.org/10.1016/j.chembiol.2003.09.011
  • PAS 71:2011, Nanoparticles. Vocabulary. British Standards Institution: London, United Kingdom, 2011
  • Patzelt A., Mak W. C., Jung S., Knorr F., Meinke M. C., Richter H.,Lademann J.( 2016). Do nanoparticles have a future in dermal drug delivery?. Journal of Controlled Release, 246, 174-182.
  • Patzelt A., Lademann J.(2020). Recent advances in follicular drug delivery of nanoparticles. Expert Opinion on Drug Delivery, 17(1), 49-60.6
  • Patwekar, S. L., Khavane, K. B., Chainpure, P. R., & Shivpuje, S. A. P. S. S. (2021). A review on different preparation methods used for development of curcumin nanoparticles. International Journal of Creative Research Thoughts, 9(1), 4088-4101.
  • Pohlit H., Bellinghausen I., Frey H., Saloga J.(2017). Recent advances in the use of nanoparticles for allergen specific immunotherapy. Allergy, 72(10), 1461-1474. https://doi.org/10.1111/all.13199
  • Saranya S., Vijayarani K., Ramya K., Revathi K., Kumanan K.( 2016). Synthesis and characterization of silver nanoparticles using Azadirachta indica leaf extract and their anti-fungal activity against malassezia species. In Journal of Nano Research ,Vol. 43, pp. 1-10 .https://doi.org/10.4028/www.scientific.net/JNanoR.43.1
  • Underwood C., Van Eps A. W.(2012). Nanomedicine and veterinary science: The reality and the practicality. The Veterinary Journal, 193(1), 12-23.https://doi.org/10.1016/j.tvjl.2012.01.002
  • Vandamme T. F., Anton N. (2010). Low-energy nano emulsification to design veterinary controlled drug delivery devices. International Journal of Nanomedicine, 5, 867.doi: 10.2147/IJN.S13273
  • Venat O., Lacomi B., Peticilă A. G.(2018). In vitro studies of antifungal activity of colloidal silver against important plants pathogens. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46(2), 533-537.4
  • Yokoyama M.(2019). Polymeric micelles as a new drug carrier system and their required considerations for clinical trials. Expert opinion on drug delivery, 7(2), 145-158.
  • Wagner I., Geh K. J., Hubert M., Winter G., Weber K., Classen J., Mueller R. S.( 2017). Preliminary evaluation of cytosine phosphate guanine oligodeoxynucleotides bound to gelatine nanoparticles as immunotherapy for canine atopic dermatitis. Veterinary Record, 181(5),
  • Wang L., Hu C., Shao L. (2017). The antimicrobial activity of nanoparticles: present situation and prospects for the future. International journal of nanomedicine, 12, 1227.
  • Weber D. M., Voss G. T., de Oliveira R. L., da Fonseca C. A., Paltian J., Rodrigues K. C., Wilhelm E. A. (2018). Topic application of meloxicam-loaded polymeric nanocapsules as a technological alternative for treatment of the atopic dermatitis in mice. Journal of Applied Biomedicine, 16(4), 337-343.

Usage areas of nanoparticles in veterinary dermatology

Year 2023, , 34 - 39, 30.04.2023
https://doi.org/10.30704/http-www-jivs-net.1263320

Abstract

Elements such as gold and silver have been used to treat various diseases since ancient times. These elements, which are used today, have been diversified and sized with many researches. Recently, it is seen that nanoparticles are frequently used in the medical field. Nanoparticles can be 1-1000 nanometers in size and gain biological, physical and chemical functionality due to their nano size. The type and size of these nanoparticles are chosen according to the area in which they will be used. These prepared drugs are used for purposes such as biosensor imaging, transporting drugs to the target organ, protecting the transported substance against denaturations, increasing the immunological response, and transporting chemotherapeutic drugs.

Today, with the increase in the number of dermatological cases in clinics, different treatment methods and systems are being developed. There are various nanoparticles used in dermatological cases to increase the bioavailability of topical, oral or injectable drugs and to increase the effect in the targeted area. These drugs have been used in conditions such as antimicrobial, antiparasitic, antifungal, allergen-specific immunotherapy, wound healing, tumors and atopic dermatitis. Many studies have also been carried out in the field of dermatology and it has been shown that nanoparticles used for follicular application provide advantages in dermal drug delivery, including improved skin bioavailability, increased depth of penetration, prolonged residence time, rapid transport to the skin and tissue targeting, in dermal drug delivery by using the appropriate nanoparticles in the right sizes. Particles can collect in the follicular opening and penetrate through the follicular canal when applied to the skin surface. This review has been prepared to investigate the usability of nanoparticle-derived drugs used in human medicine in veterinary applications.

References

  • Alonso, M.J.(1996). Nanoparticulate drug carrier technology . Drugs and the pharmaceutical sciences, 77, 203-242.
  • Benelli, G., Maggi, F., Romano, D., Stefanini, C., Vaseeharan, B., Kumar, S., ... & Canale, A. (2017). Nanoparticles as effective acaricides against ticks–a review. Ticks and tick-borne diseases, 8(6), 821-826.
  • Bentolila, L. A., Ebenstein, Y., & Weiss, S. (2009). Quantum dots for in vivo small-animal imaging. Journal of nuclear medicine, 50(4), 493-496.
  • Blasi P., Schoubben A., Giovagnoli S., Rossi C., Ricci M. (2009). Lipid nanoparticles for drug delivery to the brain: in vivo veritas. J Bıomed Nanotechnol, 5(4), 344-350.
  • Boca S., Berce C., Jurj A., Petrushev B., Pop L., Gafencu G. A., Berindan-Neagoe I. (2017). Ruxolitinib-conjugated gold nanoparticles for topical administration: An alternative for treating alopecia?. Med Hypotheses, 109, 42-45.+
  • Dağlar B. (2009). Altın Nanoparçacıkların Biyolojik Uygulamaları, Bilim ve Teknik Dergisi,Ekim ,73-75
  • Dams E. T. M. , Oyen W. J., Boerman O. C., Storm G., Laverman P., Kok P. J., Corstens F. H.(2000). 99mTc-PEG liposomes for the scintigraphic detection of infection and inflammation: clinical evaluation. J Nucl Med, 41(4), 622-630.
  • Derman S., Kızılbey K., Akdeste Z. M. (2013). Polymeric nanoparticles. Sigma Journal of Engineering and Natural Sciences, 31(1), 107-120.
  • Fadeel B., Garcia-Bennett A. E. (2010). Better safe than sorry: Understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv Drug Delıver Rev, 62(3), 362-374.
  • Fang C. L., Aljuffali I. A., Li Y. C., Fang J. Y.(2014). Delivery and targeting of nanoparticles into hair follicles. Therapeutic delivery, 5(9),991-1006.
  • Ghosh P., Han G., De M., Kim C. K., Rotello, V. M.( 2008). Gold nanoparticles in delivery applications. Adv Drug Delıver Rev, 60(11), 1307-1315.
  • Guo, D., Dou, D., Li, X., Zhang, Q., Bhutto, Z. A., & Wang, L. (2018). Ivermection-loaded solid lipid nanoparticles: preparation, characterisation, stability and transdermal behaviour. Artificial cells, nanomedicine, and biotechnology, 46(2), 255-262.
  • Huaizhi Z., Yuantao N.(2001). China’s ancient gold drugs. Gold Bull, 34(1), 24-29.
  • Huang L., Dai T., Xuan Y., Tegos G. P., Hamblin M. R.(2011). Synergistic combination of chitosan acetate with nanoparticle silver as a topical antimicrobial: efficacy against bacterial burn infections. Antımıcrob Agents Ch, 55(7), 3432-3438.
  • Islam R., Rima U. K., Haq M. M., Hossain M. M., Rahman M. M., Khan M. A. H. N. A.(2015). Topical application of silver-curcumin on wound healing in rabbits. Bangladesh Veterinarian, 32(2), 55-64.
  • Jain P. K., El-Sayed I. H., El-Sayed M. A.( 2007). Au nanoparticles target cancer. Nano Today, 2(1), 18-29.
  • Jeevanandam J., Barhoum A., Chan Y. S., Dufresne A., Danquah M. K.( 2018). Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations.Beılsteın J Nanotech, 9(1), 1050-1074.
  • Kang B. K., Chon S. K., Kim S. H., Jeong S. Y., Kim M. S., Cho S. H., Khang G.(2004). Controlled release of paclitaxel from microemulsion containing PLGA and evaluation of anti-tumor activity in vitro and in vivo. International journal of pharmaceutics, 286(1-2), 147-156.
  • Karaoğlan G.( 2017). Klinoptilolit içeren polimer nanopartiküllerin cryptosporidium parvum üzerine in vitro etkinliğinin araştırılması.Master's thesis, Adnan Menderes Üniversitesi, Sağlık Bilimleri Enstitüsü.
  • Ke W. T., Lin S. Y., Ho H. O., Sheu M. T.(2005). Physical characterizations of microemulsion systems using tocopheryl polyethylene glycol 1000 succinate (TPGS) as a surfactant for the oral delivery of protein drugs. J Control Release, 102(2), 489-507.
  • Kim S., Shi Y., Kim J. Y., Park K., Cheng J. X.( 2010). Overcoming the barriers in micellar drug delivery: loading efficiency, in vivo stability, and micelle–cell interaction. Expert opinion on drug delivery, 7(1), 49-62.
  • Kumar, N.; Kumbhat, S.(2016). Carbon-Based Nanomaterials. Essentials in Nanoscience and Nanotechnology; John Wiley & Sons, Inc.: Hoboken, NJ, U.S.A.; pp 189–236.
  • Leu J. G., Chen S. A., Chen H. M., Wu W. M., Hung C. F., Yao Y. D., Liang Y. J.( 2012). The effects of gold nanoparticles in wound healing with antioxidant epigallocatechin gallate and α-lipoic acid. Nanomedicine: Nanotechnology, Biology and Medicine, 8(5), 767-775.https://doi.org/10.1016/j.nano.2011.08.013
  • Mathes C., Melero A., Conrad P., Vogt T., Rigo L., Selzer D., Schaefer U. F. (2016). Nanocarriers for optimizing the balance between interfollicular permeation and follicular uptake of topically applied clobetasol to minimize adverse effects. Journal of Controlled Release, 223, 207-214.
  • Mishra B. B. T. S., Patel B. B., Tiwari S.(2010). Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine: Nanotechnology, biology and medicine, 6(1), 9-24.
  • Nascimento C. L., Ribeiro M. S., Sellera F. P., Dutra G. H. P., Simões A., Teixeira C. R.( 2015). Comparative study between photodynamic and antibiotic therapies for treatment of footpad dermatitis (bumblefoot) in Magellanic penguins (Spheniscus magellanicus). Photodiagnosis and Photodynamic Therapy, 12(1), 36-44.
  • Naves L. B., Dhand C., Venugopal J. R., Rajamani L., Ramakrishna S., Almeida L.(2017). Nanotechnology for the treatment of melanoma skin cancer,Prog. Biomater , 6.1: 13-26. https://doi.org/10.1007/s40204-017-0064-z
  • Pantarotto D., Partidos C. D., Hoebeke J., Brown F., Kramer E. D., Briand J. P., Bianco, A.(2003). Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chemistry & biology, 10(10), 961-966.https://doi.org/10.1016/j.chembiol.2003.09.011
  • PAS 71:2011, Nanoparticles. Vocabulary. British Standards Institution: London, United Kingdom, 2011
  • Patzelt A., Mak W. C., Jung S., Knorr F., Meinke M. C., Richter H.,Lademann J.( 2016). Do nanoparticles have a future in dermal drug delivery?. Journal of Controlled Release, 246, 174-182.
  • Patzelt A., Lademann J.(2020). Recent advances in follicular drug delivery of nanoparticles. Expert Opinion on Drug Delivery, 17(1), 49-60.6
  • Patwekar, S. L., Khavane, K. B., Chainpure, P. R., & Shivpuje, S. A. P. S. S. (2021). A review on different preparation methods used for development of curcumin nanoparticles. International Journal of Creative Research Thoughts, 9(1), 4088-4101.
  • Pohlit H., Bellinghausen I., Frey H., Saloga J.(2017). Recent advances in the use of nanoparticles for allergen specific immunotherapy. Allergy, 72(10), 1461-1474. https://doi.org/10.1111/all.13199
  • Saranya S., Vijayarani K., Ramya K., Revathi K., Kumanan K.( 2016). Synthesis and characterization of silver nanoparticles using Azadirachta indica leaf extract and their anti-fungal activity against malassezia species. In Journal of Nano Research ,Vol. 43, pp. 1-10 .https://doi.org/10.4028/www.scientific.net/JNanoR.43.1
  • Underwood C., Van Eps A. W.(2012). Nanomedicine and veterinary science: The reality and the practicality. The Veterinary Journal, 193(1), 12-23.https://doi.org/10.1016/j.tvjl.2012.01.002
  • Vandamme T. F., Anton N. (2010). Low-energy nano emulsification to design veterinary controlled drug delivery devices. International Journal of Nanomedicine, 5, 867.doi: 10.2147/IJN.S13273
  • Venat O., Lacomi B., Peticilă A. G.(2018). In vitro studies of antifungal activity of colloidal silver against important plants pathogens. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46(2), 533-537.4
  • Yokoyama M.(2019). Polymeric micelles as a new drug carrier system and their required considerations for clinical trials. Expert opinion on drug delivery, 7(2), 145-158.
  • Wagner I., Geh K. J., Hubert M., Winter G., Weber K., Classen J., Mueller R. S.( 2017). Preliminary evaluation of cytosine phosphate guanine oligodeoxynucleotides bound to gelatine nanoparticles as immunotherapy for canine atopic dermatitis. Veterinary Record, 181(5),
  • Wang L., Hu C., Shao L. (2017). The antimicrobial activity of nanoparticles: present situation and prospects for the future. International journal of nanomedicine, 12, 1227.
  • Weber D. M., Voss G. T., de Oliveira R. L., da Fonseca C. A., Paltian J., Rodrigues K. C., Wilhelm E. A. (2018). Topic application of meloxicam-loaded polymeric nanocapsules as a technological alternative for treatment of the atopic dermatitis in mice. Journal of Applied Biomedicine, 16(4), 337-343.
There are 41 citations in total.

Details

Primary Language English
Subjects Veterinary Surgery
Journal Section Review Articles
Authors

Gökçe İlhan 0000-0003-3636-516X

Banu Dokuzeylül 0000-0003-3086-4726

Abdullah Kayar 0000-0003-2786-6050

Erman Or 0000-0002-8764-1956

Publication Date April 30, 2023
Published in Issue Year 2023

Cite

APA İlhan, G., Dokuzeylül, B., Kayar, A., Or, E. (2023). Usage areas of nanoparticles in veterinary dermatology. Journal of Istanbul Veterinary Sciences, 7(1), 34-39. https://doi.org/10.30704/http-www-jivs-net.1263320

Bu dergi Creative Commons attribution 4.0 international  (CC-BY 4.0). lisansı ile lisanslanmıştır.