Review
BibTex RIS Cite

Pet microbiota and its relationship with obesity

Year 2024, Volume: 8 Issue: 2, 131 - 139, 31.08.2024
https://doi.org/10.30704/http-www-jivs-net.1478463

Abstract

The incidence of obesity in pets appears to be increasing in line with the increasing incidence of obesity in humans, and leads to decreased life expectancy. Obesity, which is considered a multifactorial disease caused by excessive adiposity, leads to a decrease in quality of life and serious health problems. It is known that there is an increase in the incidence of respiratory disorders, cardiological disorders, metabolic and endocrine problems, orthopedic diseases and some types of cancer in obese cats and dogs. There are many factors in the formation of obesity. One of these factors is the balance of the microbiota in gut. Many studies have shown that the microbiota affects critical steps in the formation of obesity and there are strong relationships between dietary content, microbiota, and obesity. In particular, high-fat diets are known to increase microbiome composition in terms of gram-negative bacterial strains and trigger dysbiosis. Again, in cases where dysbiosis occurs, the levels of volatile fatty acids also vary and lead to undesirable results through hormonal mechanisms. This condition, which causes hyperphagia, hypertriglyceridemia and insulin resistance, increases the incidence of obesity and diabetes mellitus. The ratio of Firmicutes and Bacteroidetes, which are among the largest phylae of the microbiota, shows serious differences when compared in underweight and obese animals. In this article, these relationships between microbiota and obesity are reviewed.

References

  • Ahima, R. S., Prabakaran, D., Mantzoros, C., Qu, D., Lowell, B., Maratos-Flier, E., & Flier, J. S. (1996). Role of leptin in the neuroendocrine response to fasting. Nature, 382(6588), 250–252.
  • Amabebe, E., Robert, F. O., Agbalalah, T., & Orubu, E. S. F. (2020a). Microbial dysbiosis-induced obesity: role of gut microbiota in homoeostasis of energy metabolism. British Journal of Nutrition, 123(10), 1127–1137.
  • Amabebe, E., Robert, F. O., Agbalalah, T., & Orubu, E. S. F. (2020b). Microbial dysbiosis-induced obesity: role of gut microbiota in homoeostasis of energy metabolism. British Journal of Nutrition, 123(10), 1127–1137.
  • Anonymous. (2022). Association for Pet Obesity Prevention the Global Pet Obesity Initiative Position Statement. Https://Www.Petobesityprevention.Org/2022.
  • Barry, K. A., Middelbos, I. S., Vester Boler, B. M., Dowd, S. E., Suchodolski, J. S., Henrissat, B., Coutinho, P. M., White, B. A., Fahey, G. C., & Swanson, K. S. (2012). Effects of dietary fiber on the feline gastrointestinal metagenome. Journal of Proteome Research, 11(12), 5924–5933.
  • Brinkworth, G. D., Noakes, M., Clifton, P. M., & Bird, A. R. (2009). Comparative effects of very low-carbohydrate, high-fat and high-carbohydrate, low-fat weight-loss diets on bowel habit and faecal short-chain fatty acids and bacterial populations. British Journal of Nutrition, 101(10), 1493.
  • Cani, P. D., Amar, J., Iglesias, M. A., Poggi, M., Knauf, C., Bastelica, D., Neyrinck, A. M., Fava, F., Tuohy, K. M., Chabo, C., Waget, A., Delmée, E., Cousin, B., Sulpice, T., Chamontin, B., Ferrières, J., Tanti, J.-F., Gibson, G. R., Casteilla, L., … Burcelin, R. (2007). Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 56(7), 1761–1772.
  • Carding, S., Verbeke, K., Vipond, D. T., Corfe, B. M., & Owen, L. J. (2015). Dysbiosis of the gut microbiota in disease. Microbial Ecology in Health & Disease, 26(0). 26191.
  • Cherrington, C. A., Hinton, M., Pearson, G. R., & Chopra, I. (1991). Short‐chain organic acids at pH 5.0 kill Escherichia coli and Salmonella spp. without causing membrane perturbation. Journal of Applied Bacteriology, 70(2), 161–165.
  • Choi, S.-H., Lee, M.-Y., Jhon, D.-Y., Choi, Y.-I., & Lee, J.-J. (2013). Antiobesity and Cholesterol-Lowering Effects of Bifidobacteria animalis DY-64 in Rats Fed a High-Fat/High-Cholesterol Diet. Korean Journal for Food Science of Animal Resources, 33(6), 701–707.
  • Chun, J. L., Ji, S. Y., Lee, S. D., Lee, Y. K., Kim, B., & Kim, K. H. (2020). Difference of gut microbiota composition based on the body condition scores in dogs. Journal of Animal Science and Technology, 62(2), 239–246. de Vos, W. M., Tilg, H., Van Hul, M., & Cani, P. D. (2022). Gut microbiome and health: mechanistic insights. Gut, 71(5), 1020–1032.
  • de Aguiar Vallim, T. Q., Tarling, E. J., & Edwards, P. A. (2013). Pleiotropic roles of bile acids in metabolism. Cell Metabolism, 17(5), 657–669.
  • Deng, P., & Swanson, K. S. (2015). Gut microbiota of humans, dogs and cats: current knowledge and future opportunities and challenges. British Journal of Nutrition, 113(S1), S6–S17.
  • Dreyer, J. L., & Liebl, A. L. (2018). Early colonization of the gut microbiome and its relationship with obesity. Human Microbiome Journal, 10, 1–5.
  • Duncan, S. H., Lobley, G. E., Holtrop, G., Ince, J., Johnstone, A. M., Louis, P., & Flint, H. J. (2008). Human colonic microbiota associated with diet, obesity and weight loss. International Journal of Obesity, 32(11), 1720–1724.
  • Fischer, M. M., Kessler, A. M., Kieffer, D. A., Knotts, T. A., Kim, K., Wei, A., Ramsey, J. J., & Fascetti, A. J. (2017). Effects of obesity, energy restriction and neutering on the faecal microbiota of cats. British Journal of Nutrition, 118(7), 513–524.
  • Frost, G., Sleeth, M. L., Sahuri-Arisoylu, M., Lizarbe, B., Cerdan, S., Brody, L., Anastasovska, J., Ghourab, S., Hankir, M., Zhang, S., Carling, D., Swann, J. R., Gibson, G., Viardot, A., Morrison, D., Louise Thomas, E., & Bell, J. D. (2014). The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nature Communications, 5(1), 3611.
  • Graham, C., Mullen, A., & Whelan, K. (2015). Obesity and the gastrointestinal microbiota: a review of associations and mechanisms. Nutrition Reviews, 73(6), 376–385.
  • Hand, D., Wallis, C., Colyer, A., & Penn, C. W. (2013). Pyrosequencing the canine faecal microbiota: Breadth and depth of biodiversity. PLoS ONE, 8(1), e53115.
  • Handl, S., Dowd, S. E., Garcia-Mazcorro, J. F., Steiner, J. M., & Suchodolski, J. S. (2011). Massive parallel 16S rRNA gene pyrosequencing reveals highly diverse fecal bacterial and fungal communities in healthy dogs and cats. FEMS Microbiology Ecology, 76(2), 301–310.
  • Handl, S., German, A. J., Holden, S. L., Dowd, S. E., Steiner, J. M., Heilmann, R. M., Grant, R. W., Swanson, K. S., & Suchodolski, J. S. (2013). Faecal microbiota in lean and obese dogs. FEMS Microbiology Ecology, 84(2), 332–343.
  • Harris, K., Kassis, A., Major, G., & Chou, C. J. (2012). Is the Gut Microbiota a new factor Contributing to obesity and its metabolic disorders? Journal of Obesity, 2012, 1–14.
  • Hartstra, A. V., Bouter, K. E. C., Bäckhed, F., & Nieuwdorp, M. (2015). Insights into the role of the microbiome in obesity and type 2 diabetes. Diabetes Care, 38(1), 159–165.
  • Hildebrandt, M. A., Hoffmann, C., Sherrill–Mix, S. A., Keilbaugh, S. A., Hamady, M., Chen, Y., Knight, R., Ahima, R. S., Bushman, F., & Wu, G. D. (2009). High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology, 137(5), 1716-1724.e2.
  • Hooda, S., Vester Boler, B. M., Kerr, K. R., Dowd, S. E., & Swanson, K. S. (2013). The gut microbiome of kittens is affected by dietary protein:carbohydrate ratio and associated with blood metabolite and hormone concentrations. British Journal of Nutrition, 109(9), 1637–1646.
  • Ismail, N. A., Ragab, S. H., ElBaky, A. A., Shoeib, A. R. S., Alhosary, Y., & Fekry, D. (2011). Frequency of Firmicutes and Bacteroidetes in gut microbiota in obese and normal weight Egyptian children and adults. Archives of Medical Science, 3, 501–507.
  • Johnston, K. L., Swift, N. C., Forster-van Hijfte, M., Rutgers, H. C., Lamport, A., Ballàvre, O., & Batt, R. M. (2001). Comparison of the bacterial flora of the duodenum in healthy cats and cats with signs of gastrointestinal tract disease. Journal of the American Veterinary Medical Association, 218(1), 48–51.
  • Kealy, R. D., Lawler, D. F., Ballam, J. M., Mantz, S. L., Biery, D. N., Greeley, E. H., Lust, G., Segre, M., Smith, G. K., & Stowe, H. D. (2002). Effects of diet restriction on life span and age-related changes in dogs. Journal of the American Veterinary Medical Association, 220(9), 1315–1320.
  • Kieler, I. N., Mølbak, L., Hansen, L. L., Hermann‐Bank, M. L., & Bjornvad, C. R. (2016). Overweight and the feline gut microbiome – a pilot study. Journal of Animal Physiology and Animal Nutrition, 100(3), 478–484.
  • Kim, S.-W., Park, K.-Y., Kim, B., Kim, E., & Hyun, C.-K. (2013). Lactobacillus rhamnosus GG improves insulin sensitivity and reduces adiposity in high-fat diet-fed mice through enhancement of adiponectin production. Biochemical and Biophysical Research Communications, 431(2), 258–263.
  • Koh, A., De Vadder, F., Kovatcheva-Datchary, P., & Bäckhed, F. (2016). From dietary fiber to host physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell, 165(6), 1332–1345.
  • Kopelman, P. G. (2000). Obesity as a medical problem. Nature, 404(6778), 635–643. Lavelle, A., & Sokol, H. (2020). Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nature Reviews Gastroenterology & Hepatology, 17(4), 223–237.
  • Ley, R. E., Hamady, M., Lozupone, C., Turnbaugh, P. J., Ramey, R. R., Bircher, J. S., Schlegel, M. L., Tucker, T. A., Schrenzel, M. D., Knight, R., & Gordon, J. I. (2008). Evolution of mammals and their gut microbes. Science, 320(5883), 1647–1651.
  • Li, Q., & Pan, Y. (2020). Differential Responses to Dietary Protein and Carbohydrate Ratio on Gut Microbiome in Obese vs. Lean Cats. Frontiers in Microbiology, 11.
  • Lin, H. V., Frassetto, A., Kowalik Jr, E. J., Nawrocki, A. R., Lu, M. M., Kosinski, J. R., Hubert, J. A., Szeto, D., Yao, X., Forrest, G., & Marsh, D. J. (2012b). Butyrate and propionate protect against diet-Induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS ONE, 7(4), e35240.
  • Lubbs, D. C., Vester, B. M., Fastinger, N. D., & Swanson, K. S. (2009). Dietary protein concentration affects intestinal microbiota of adult cats: a study using DGGE and qPCR to evaluate differences in microbial populations in the feline gastrointestinal tract. Journal of Animal Physiology and Animal Nutrition, 93(1), 113–121.
  • Ma, X., Brinker, E., Graff, E. C., Cao, W., Gross, A. L., Johnson, A. K., Zhang, C., Martin, D. R., & Wang, X. (2022). Whole-genome shotgun metagenomic sequencing reveals distinct gut microbiome signatures of obese cats. Microbiology Spectrum, 10(3).  e00837-22.
  • Marshall-Jones, Z. V., Baillon, M.-L. A., Croft, J. M., & Butterwick, R. F. (2006). Effects of Lactobacillus acidophilus DSM13241 as a probiotic in healthy adult cats. American Journal of Veterinary Research, 67(6), 1005–1012.
  • Martínez-Cuesta, M. C., del Campo, R., Garriga-García, M., Peláez, C., & Requena, T. (2021). Taxonomic characterization and short-chain fatty acids production of the obese microbiota. Frontiers in Cellular and Infection Microbiology, 11. 598093.
  • Mischke, M., Arora, T., Tims, S., Engels, E., Sommer, N., van Limpt, K., Baars, A., Oozeer, R., Oosting, A., Bäckhed, F., & Knol, J. (2018). Specific synbiotics in early life protect against diet‐induced obesity in adult mice. Diabetes, Obesity and Metabolism, 20(6), 1408–1418.
  • Moinard, A., Payen, C., Ouguerram, K., André, A., Hernandez, J., Drut, A., Biourge, V. C., Suchodolski, J. S., Flanagan, J., Nguyen, P., & Leray, V. (2020). Effects of high-fat diet at two energetic levels on fecal microbiota, colonic barrier, and metabolic parameters in dogs. Frontiers in Veterinary Science, 7. 566282.
  • Muñoz-Prieto, A., Nielsen, L. R., Dąbrowski, R., Bjørnvad, C. R., Söder, J., Lamy, E., Monkeviciene, I., Ljubić, B. B., Vasiu, I., Savic, S., Busato, F., Yilmaz, Z., Bravo-Cantero, A. F., Öhlund, M., Lucena, S., Zelvyte, R., Aladrović, J., Lopez-Jornet, P., Caldin, M., … Tvarijonaviciute, A. (2018). European dog owner perceptions of obesity and factors associated with human and canine obesity. Scientific Reports, 8(1), 13353.
  • Okada, Y., Kobayashi, M., Sawamura, M., & Arai, T. (2017). Comparison of visceral fat accumulation and metabolome markers among cats of varying BCS and novel classification of feline obesity and metabolic syndrome. Frontiers in Veterinary Science, 4. 17.
  • O’Neill, D. G., James, H., Brodbelt, D. C., Church, D. B., & Pegram, C. (2021). Prevalence of commonly diagnosed disorders in UK dogs under primary veterinary care: results and applications. BMC Veterinary Research, 17(1), 69.
  • Opetz, D. L., Oba, P. M., Kostiuk, D., Kelly, J., & Swanson, K. S. (2023). Effects of weight loss and feeding specially formulated diets on the body composition, blood metabolite profiles, voluntary physical activity, and fecal metabolites and microbiota of overweight cats. Journal of Animal Science, 101. skad332.
  • Pallotto, M. R., de Godoy, M. R. C., Holscher, H. D., Buff, P. R., & Swanson, K. S. (2018). Effects of weight loss with a moderate-protein, high-fiber diet on body composition, voluntary physical activity, and fecal microbiota of obese cats. American Journal of Veterinary Research, 79(2), 181–190.
  • Pegram, C., Raffan, E., White, E., Ashworth, A. H., Brodbelt, D. C., Church, D. B., & O’Neill, D. G. (2021). Frequency, breed predisposition and demographic risk factors for overweight status in dogs in the UK.  Journal of Small Animal Practice, 62(7), 521–530.
  • Perry, R. J., Peng, L., Barry, N. A., Cline, G. W., Zhang, D., Cardone, R. L., Petersen, K. F., Kibbey, R. G., Goodman, A. L., & Shulman, G. I. (2016). Acetate mediates a microbiome–brain–β-cell axis to promote metabolic syndrome. Nature, 534(7606), 213–217.
  • Petrich, B. G., Eloff, B. C., Lerner, D. L., Kovacs, A., Saffitz, J. E., Rosenbaum, D. S., & Wang, Y. (2004). Targeted Activation of c-Jun N-terminal Kinase in Vivo Induces Restrictive Cardiomyopathy and Conduction Defects. Journal of Biological Chemistry, 279(15), 15330–15338.
  • Pilla, R., & Suchodolski, J. S. (2021a). The Gut Microbiome of Dogs and Cats, and the Influence of Diet. Veterinary Clinics of North America: Small Animal Practice, 51(3), 605–621.
  • Pilla, R., & Suchodolski, J. S. (2021b). The Gut Microbiome of Dogs and Cats, and the Influence of Diet. Veterinary Clinics of North America: Small Animal Practice, 51(3), 605–621.
  • Poltorak, A., He, X., Smirnova, I., Liu, M.-Y., Huffel, C. Van, Du, X., Birdwell, D., Alejos, E., Silva, M., Galanos, C., Freudenberg, M., Ricciardi-Castagnoli, P., Layton, B., & Beutler, B. (1998). Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: Mutations in Tlr4 Gene. Science, 282(5396), 2085–2088.
  • Ridaura, V. K., Faith, J. J., Rey, F. E., Cheng, J., Duncan, A. E., Kau, A. L., Griffin, N. W., Lombard, V., Henrissat, B., Bain, J. R., Muehlbauer, M. J., Ilkayeva, O., Semenkovich, C. F., Funai, K., Hayashi, D. K., Lyle, B. J., Martini, M. C., Ursell, L. K., Clemente, J. C., … Gordon, J. I. (2013). Gut Microbiota from Twins Discordant for Obesity Modulate Metabolism in Mice. Science, 341(6150).
  • Rojo, D., Méndez-García, C., Raczkowska, B. A., Bargiela, R., Moya, A., Ferrer, M., & Barbas, C. (2017). Exploring the human microbiome from multiple perspectives: factors altering its composition and function. FEMS Microbiology Reviews, 41(4), 453–478.
  • Roudebush, P., Schoenherr, W. D., & Delaney, S. J. (2008a). An evidence-based review of the use of therapeutic foods, owner education, exercise, and drugs for the management of obese and overweight pets. Journal of the American Veterinary Medical Association, 233(5), 717–725.
  • Roudebush, P., Schoenherr, W. D., & Delaney, S. J. (2008b). An evidence-based review of the use of therapeutic foods, owner education, exercise, and drugs for the management of obese and overweight pets. Journal of the American Veterinary Medical Association, 233(5), 717–725.
  • Rowland, I., Gibson, G., Heinken, A., Scott, K., Swann, J., Thiele, I., & Tuohy, K. (2018). Gut microbiota functions: metabolism of nutrients and other food components. European Journal of Nutrition, 57(1), 1–24.
  • Scarlett, J. M., & Donoghue, S. (1998). Associations between body condition and disease in cats. Journal of the American Veterinary Medical Association, 212(11), 1725–1731.
  • Sender, R., Fuchs, S., & Milo, R. (2016). Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLOS Biology, 14(8), e1002533.
  • Thomson, P., Santibáñez, R., Rodríguez-Salas, C., Flores-Yañez, C., & Garrido, D. (2022). Differences in the composition and predicted functions of the intestinal microbiome of obese and normal weight adult dogs. PeerJ, 10, e12695.
  • Trayhurn, P. (2005). Adipose Tissue in Obesity—An Inflammatory Issue. Endocrinology, 146(3), 1003–1005. Tremaroli, V., & Bäckhed, F. (2012). Functional interactions between the gut microbiota and host metabolism. Nature, 489(7415), 242–249.
  • Tun, H. M., Brar, M. S., Khin, N., Jun, L., Hui, R. K.-H., Dowd, S. E., & Leung, F. C.-C. (2012). Gene-centric metagenomics analysis of feline intestinal microbiome using 454 junior pyrosequencing. Journal of Microbiological Methods, 88(3), 369–376.
  • Turnbaugh, P. J., Bäckhed, F., Fulton, L., & Gordon, J. I. (2008). Diet-Induced Obesity Is Linked to Marked but Reversible Alterations in the Mouse Distal Gut Microbiome. Cell Host & Microbe, 3(4), 213–223.
  • Vecchiato, C. G., Golinelli, S., Pinna, C., Pilla, R., Suchodolski, J. S., Tvarijonaviciute, A., Rubio, C. P., Dorato, E., Delsante, C., Stefanelli, C., Pagani, E., Fracassi, F., & Biagi, G. (2023). Fecal microbiota and inflammatory and antioxidant status of obese and lean dogs, and the effect of caloric restriction. Frontiers in Microbiology, 13.
  • Zentek, J., Marquart, B., Pietrzak, T., Ballèvre, O., & Rochat, F. (2003). Dietary effects on bifidobacteria and Clostridium perfringens in the canine intestinal tract. Journal of Animal Physiology and Animal Nutrition, 87(11–12), 397–407.
  • Ridaura, V. K., Faith, J. J., Rey, F. E., Cheng, J., Duncan, A. E., Kau, A. L., Griffin, N. W., Lombard, V., Henrissat, B., Bain, J. R., Muehlbauer, M. J., Ilkayeva, O., Semenkovich, C. F., Funai, K., Hayashi, D. K., Lyle, B. J., Martini, M. C., Ursell, L. K., Clemente, J. C., … Gordon, J. I. (2013). Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science, 341(6150).
  • Rojo, D., Méndez-García, C., Raczkowska, B. A., Bargiela, R., Moya, A., Ferrer, M., & Barbas, C. (2017). Exploring the human microbiome from multiple perspectives: factors altering its composition and function. FEMS Microbiology Reviews, 41(4), 453–478.
  • Roudebush, P., Schoenherr, W. D., & Delaney, S. J. (2008a). An evidence-based review of the use of therapeutic foods, owner education, exercise, and drugs for the management of obese and overweight pets. Journal of the American Veterinary Medical Association, 233(5), 717–725.
  • Roudebush, P., Schoenherr, W. D., & Delaney, S. J. (2008b). An evidence-based review of the use of therapeutic foods, owner education, exercise, and drugs for the management of obese and overweight pets. Journal of the American Veterinary Medical Association, 233(5), 717–725.
  • Rowland, I., Gibson, G., Heinken, A., Scott, K., Swann, J., Thiele, I., & Tuohy, K. (2018). Gut microbiota functions: metabolism of nutrients and other food components. European Journal of Nutrition, 57(1), 1–24.
  • Scarlett, J. M., & Donoghue, S. (1998). Associations between body condition and disease in cats. Journal of the American Veterinary Medical Association, 212(11), 1725–1731.
  • Sender, R., Fuchs, S., & Milo, R. (2016). Revised estimates for the number of human and bacteria cells in the body. PLOS Biology, 14(8), e1002533.
  • Thomson, P., Santibáñez, R., Rodríguez-Salas, C., Flores-Yañez, C., & Garrido, D. (2022). Differences in the composition and predicted functions of the intestinal microbiome of obese and normal weight adult dogs. Peer J, 10, e12695.
  • Trayhurn, P. (2005). Adipose Tissue in Obesity—An Inflammatory Issue. Endocrinology, 146(3), 1003–1005. Tremaroli, V., & Bäckhed, F. (2012). Functional interactions between the gut microbiota and host metabolism. Nature, 489(7415), 242–249.
  • Tun, H. M., Brar, M. S., Khin, N., Jun, L., Hui, R. K.-H., Dowd, S. E., & Leung, F. C.-C. (2012). Gene-centric metagenomics analysis of feline intestinal microbiome using 454 junior pyrosequencing. Journal of Microbiological Methods, 88(3), 369–376.
  • Turnbaugh, P. J., Bäckhed, F., Fulton, L., & Gordon, J. I. (2008). Diet-Induced Obesity Is Linked to Marked but Reversible Alterations in the Mouse Distal Gut Microbiome. Cell Host & Microbe, 3(4), 213–223.
  • Vecchiato, C. G., Golinelli, S., Pinna, C., Pilla, R., Suchodolski, J. S., Tvarijonaviciute, A., Rubio, C. P., Dorato, E., Delsante, C., Stefanelli, C., Pagani, E., Fracassi, F., & Biagi, G. (2023). Fecal microbiota and inflammatory and antioxidant status of obese and lean dogs, and the effect of caloric restriction. Frontiers in Microbiology, 13. 1050474.
  • Zentek, J., Marquart, B., Pietrzak, T., Ballèvre, O., & Rochat, F. (2003). Dietary effects on bifidobacteria and Clostridium perfringens in the canine intestinal tract. Journal of Animal Physiology and Animal Nutrition, 87(11–12), 397–407.
Year 2024, Volume: 8 Issue: 2, 131 - 139, 31.08.2024
https://doi.org/10.30704/http-www-jivs-net.1478463

Abstract

References

  • Ahima, R. S., Prabakaran, D., Mantzoros, C., Qu, D., Lowell, B., Maratos-Flier, E., & Flier, J. S. (1996). Role of leptin in the neuroendocrine response to fasting. Nature, 382(6588), 250–252.
  • Amabebe, E., Robert, F. O., Agbalalah, T., & Orubu, E. S. F. (2020a). Microbial dysbiosis-induced obesity: role of gut microbiota in homoeostasis of energy metabolism. British Journal of Nutrition, 123(10), 1127–1137.
  • Amabebe, E., Robert, F. O., Agbalalah, T., & Orubu, E. S. F. (2020b). Microbial dysbiosis-induced obesity: role of gut microbiota in homoeostasis of energy metabolism. British Journal of Nutrition, 123(10), 1127–1137.
  • Anonymous. (2022). Association for Pet Obesity Prevention the Global Pet Obesity Initiative Position Statement. Https://Www.Petobesityprevention.Org/2022.
  • Barry, K. A., Middelbos, I. S., Vester Boler, B. M., Dowd, S. E., Suchodolski, J. S., Henrissat, B., Coutinho, P. M., White, B. A., Fahey, G. C., & Swanson, K. S. (2012). Effects of dietary fiber on the feline gastrointestinal metagenome. Journal of Proteome Research, 11(12), 5924–5933.
  • Brinkworth, G. D., Noakes, M., Clifton, P. M., & Bird, A. R. (2009). Comparative effects of very low-carbohydrate, high-fat and high-carbohydrate, low-fat weight-loss diets on bowel habit and faecal short-chain fatty acids and bacterial populations. British Journal of Nutrition, 101(10), 1493.
  • Cani, P. D., Amar, J., Iglesias, M. A., Poggi, M., Knauf, C., Bastelica, D., Neyrinck, A. M., Fava, F., Tuohy, K. M., Chabo, C., Waget, A., Delmée, E., Cousin, B., Sulpice, T., Chamontin, B., Ferrières, J., Tanti, J.-F., Gibson, G. R., Casteilla, L., … Burcelin, R. (2007). Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 56(7), 1761–1772.
  • Carding, S., Verbeke, K., Vipond, D. T., Corfe, B. M., & Owen, L. J. (2015). Dysbiosis of the gut microbiota in disease. Microbial Ecology in Health & Disease, 26(0). 26191.
  • Cherrington, C. A., Hinton, M., Pearson, G. R., & Chopra, I. (1991). Short‐chain organic acids at pH 5.0 kill Escherichia coli and Salmonella spp. without causing membrane perturbation. Journal of Applied Bacteriology, 70(2), 161–165.
  • Choi, S.-H., Lee, M.-Y., Jhon, D.-Y., Choi, Y.-I., & Lee, J.-J. (2013). Antiobesity and Cholesterol-Lowering Effects of Bifidobacteria animalis DY-64 in Rats Fed a High-Fat/High-Cholesterol Diet. Korean Journal for Food Science of Animal Resources, 33(6), 701–707.
  • Chun, J. L., Ji, S. Y., Lee, S. D., Lee, Y. K., Kim, B., & Kim, K. H. (2020). Difference of gut microbiota composition based on the body condition scores in dogs. Journal of Animal Science and Technology, 62(2), 239–246. de Vos, W. M., Tilg, H., Van Hul, M., & Cani, P. D. (2022). Gut microbiome and health: mechanistic insights. Gut, 71(5), 1020–1032.
  • de Aguiar Vallim, T. Q., Tarling, E. J., & Edwards, P. A. (2013). Pleiotropic roles of bile acids in metabolism. Cell Metabolism, 17(5), 657–669.
  • Deng, P., & Swanson, K. S. (2015). Gut microbiota of humans, dogs and cats: current knowledge and future opportunities and challenges. British Journal of Nutrition, 113(S1), S6–S17.
  • Dreyer, J. L., & Liebl, A. L. (2018). Early colonization of the gut microbiome and its relationship with obesity. Human Microbiome Journal, 10, 1–5.
  • Duncan, S. H., Lobley, G. E., Holtrop, G., Ince, J., Johnstone, A. M., Louis, P., & Flint, H. J. (2008). Human colonic microbiota associated with diet, obesity and weight loss. International Journal of Obesity, 32(11), 1720–1724.
  • Fischer, M. M., Kessler, A. M., Kieffer, D. A., Knotts, T. A., Kim, K., Wei, A., Ramsey, J. J., & Fascetti, A. J. (2017). Effects of obesity, energy restriction and neutering on the faecal microbiota of cats. British Journal of Nutrition, 118(7), 513–524.
  • Frost, G., Sleeth, M. L., Sahuri-Arisoylu, M., Lizarbe, B., Cerdan, S., Brody, L., Anastasovska, J., Ghourab, S., Hankir, M., Zhang, S., Carling, D., Swann, J. R., Gibson, G., Viardot, A., Morrison, D., Louise Thomas, E., & Bell, J. D. (2014). The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nature Communications, 5(1), 3611.
  • Graham, C., Mullen, A., & Whelan, K. (2015). Obesity and the gastrointestinal microbiota: a review of associations and mechanisms. Nutrition Reviews, 73(6), 376–385.
  • Hand, D., Wallis, C., Colyer, A., & Penn, C. W. (2013). Pyrosequencing the canine faecal microbiota: Breadth and depth of biodiversity. PLoS ONE, 8(1), e53115.
  • Handl, S., Dowd, S. E., Garcia-Mazcorro, J. F., Steiner, J. M., & Suchodolski, J. S. (2011). Massive parallel 16S rRNA gene pyrosequencing reveals highly diverse fecal bacterial and fungal communities in healthy dogs and cats. FEMS Microbiology Ecology, 76(2), 301–310.
  • Handl, S., German, A. J., Holden, S. L., Dowd, S. E., Steiner, J. M., Heilmann, R. M., Grant, R. W., Swanson, K. S., & Suchodolski, J. S. (2013). Faecal microbiota in lean and obese dogs. FEMS Microbiology Ecology, 84(2), 332–343.
  • Harris, K., Kassis, A., Major, G., & Chou, C. J. (2012). Is the Gut Microbiota a new factor Contributing to obesity and its metabolic disorders? Journal of Obesity, 2012, 1–14.
  • Hartstra, A. V., Bouter, K. E. C., Bäckhed, F., & Nieuwdorp, M. (2015). Insights into the role of the microbiome in obesity and type 2 diabetes. Diabetes Care, 38(1), 159–165.
  • Hildebrandt, M. A., Hoffmann, C., Sherrill–Mix, S. A., Keilbaugh, S. A., Hamady, M., Chen, Y., Knight, R., Ahima, R. S., Bushman, F., & Wu, G. D. (2009). High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology, 137(5), 1716-1724.e2.
  • Hooda, S., Vester Boler, B. M., Kerr, K. R., Dowd, S. E., & Swanson, K. S. (2013). The gut microbiome of kittens is affected by dietary protein:carbohydrate ratio and associated with blood metabolite and hormone concentrations. British Journal of Nutrition, 109(9), 1637–1646.
  • Ismail, N. A., Ragab, S. H., ElBaky, A. A., Shoeib, A. R. S., Alhosary, Y., & Fekry, D. (2011). Frequency of Firmicutes and Bacteroidetes in gut microbiota in obese and normal weight Egyptian children and adults. Archives of Medical Science, 3, 501–507.
  • Johnston, K. L., Swift, N. C., Forster-van Hijfte, M., Rutgers, H. C., Lamport, A., Ballàvre, O., & Batt, R. M. (2001). Comparison of the bacterial flora of the duodenum in healthy cats and cats with signs of gastrointestinal tract disease. Journal of the American Veterinary Medical Association, 218(1), 48–51.
  • Kealy, R. D., Lawler, D. F., Ballam, J. M., Mantz, S. L., Biery, D. N., Greeley, E. H., Lust, G., Segre, M., Smith, G. K., & Stowe, H. D. (2002). Effects of diet restriction on life span and age-related changes in dogs. Journal of the American Veterinary Medical Association, 220(9), 1315–1320.
  • Kieler, I. N., Mølbak, L., Hansen, L. L., Hermann‐Bank, M. L., & Bjornvad, C. R. (2016). Overweight and the feline gut microbiome – a pilot study. Journal of Animal Physiology and Animal Nutrition, 100(3), 478–484.
  • Kim, S.-W., Park, K.-Y., Kim, B., Kim, E., & Hyun, C.-K. (2013). Lactobacillus rhamnosus GG improves insulin sensitivity and reduces adiposity in high-fat diet-fed mice through enhancement of adiponectin production. Biochemical and Biophysical Research Communications, 431(2), 258–263.
  • Koh, A., De Vadder, F., Kovatcheva-Datchary, P., & Bäckhed, F. (2016). From dietary fiber to host physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell, 165(6), 1332–1345.
  • Kopelman, P. G. (2000). Obesity as a medical problem. Nature, 404(6778), 635–643. Lavelle, A., & Sokol, H. (2020). Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nature Reviews Gastroenterology & Hepatology, 17(4), 223–237.
  • Ley, R. E., Hamady, M., Lozupone, C., Turnbaugh, P. J., Ramey, R. R., Bircher, J. S., Schlegel, M. L., Tucker, T. A., Schrenzel, M. D., Knight, R., & Gordon, J. I. (2008). Evolution of mammals and their gut microbes. Science, 320(5883), 1647–1651.
  • Li, Q., & Pan, Y. (2020). Differential Responses to Dietary Protein and Carbohydrate Ratio on Gut Microbiome in Obese vs. Lean Cats. Frontiers in Microbiology, 11.
  • Lin, H. V., Frassetto, A., Kowalik Jr, E. J., Nawrocki, A. R., Lu, M. M., Kosinski, J. R., Hubert, J. A., Szeto, D., Yao, X., Forrest, G., & Marsh, D. J. (2012b). Butyrate and propionate protect against diet-Induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS ONE, 7(4), e35240.
  • Lubbs, D. C., Vester, B. M., Fastinger, N. D., & Swanson, K. S. (2009). Dietary protein concentration affects intestinal microbiota of adult cats: a study using DGGE and qPCR to evaluate differences in microbial populations in the feline gastrointestinal tract. Journal of Animal Physiology and Animal Nutrition, 93(1), 113–121.
  • Ma, X., Brinker, E., Graff, E. C., Cao, W., Gross, A. L., Johnson, A. K., Zhang, C., Martin, D. R., & Wang, X. (2022). Whole-genome shotgun metagenomic sequencing reveals distinct gut microbiome signatures of obese cats. Microbiology Spectrum, 10(3).  e00837-22.
  • Marshall-Jones, Z. V., Baillon, M.-L. A., Croft, J. M., & Butterwick, R. F. (2006). Effects of Lactobacillus acidophilus DSM13241 as a probiotic in healthy adult cats. American Journal of Veterinary Research, 67(6), 1005–1012.
  • Martínez-Cuesta, M. C., del Campo, R., Garriga-García, M., Peláez, C., & Requena, T. (2021). Taxonomic characterization and short-chain fatty acids production of the obese microbiota. Frontiers in Cellular and Infection Microbiology, 11. 598093.
  • Mischke, M., Arora, T., Tims, S., Engels, E., Sommer, N., van Limpt, K., Baars, A., Oozeer, R., Oosting, A., Bäckhed, F., & Knol, J. (2018). Specific synbiotics in early life protect against diet‐induced obesity in adult mice. Diabetes, Obesity and Metabolism, 20(6), 1408–1418.
  • Moinard, A., Payen, C., Ouguerram, K., André, A., Hernandez, J., Drut, A., Biourge, V. C., Suchodolski, J. S., Flanagan, J., Nguyen, P., & Leray, V. (2020). Effects of high-fat diet at two energetic levels on fecal microbiota, colonic barrier, and metabolic parameters in dogs. Frontiers in Veterinary Science, 7. 566282.
  • Muñoz-Prieto, A., Nielsen, L. R., Dąbrowski, R., Bjørnvad, C. R., Söder, J., Lamy, E., Monkeviciene, I., Ljubić, B. B., Vasiu, I., Savic, S., Busato, F., Yilmaz, Z., Bravo-Cantero, A. F., Öhlund, M., Lucena, S., Zelvyte, R., Aladrović, J., Lopez-Jornet, P., Caldin, M., … Tvarijonaviciute, A. (2018). European dog owner perceptions of obesity and factors associated with human and canine obesity. Scientific Reports, 8(1), 13353.
  • Okada, Y., Kobayashi, M., Sawamura, M., & Arai, T. (2017). Comparison of visceral fat accumulation and metabolome markers among cats of varying BCS and novel classification of feline obesity and metabolic syndrome. Frontiers in Veterinary Science, 4. 17.
  • O’Neill, D. G., James, H., Brodbelt, D. C., Church, D. B., & Pegram, C. (2021). Prevalence of commonly diagnosed disorders in UK dogs under primary veterinary care: results and applications. BMC Veterinary Research, 17(1), 69.
  • Opetz, D. L., Oba, P. M., Kostiuk, D., Kelly, J., & Swanson, K. S. (2023). Effects of weight loss and feeding specially formulated diets on the body composition, blood metabolite profiles, voluntary physical activity, and fecal metabolites and microbiota of overweight cats. Journal of Animal Science, 101. skad332.
  • Pallotto, M. R., de Godoy, M. R. C., Holscher, H. D., Buff, P. R., & Swanson, K. S. (2018). Effects of weight loss with a moderate-protein, high-fiber diet on body composition, voluntary physical activity, and fecal microbiota of obese cats. American Journal of Veterinary Research, 79(2), 181–190.
  • Pegram, C., Raffan, E., White, E., Ashworth, A. H., Brodbelt, D. C., Church, D. B., & O’Neill, D. G. (2021). Frequency, breed predisposition and demographic risk factors for overweight status in dogs in the UK.  Journal of Small Animal Practice, 62(7), 521–530.
  • Perry, R. J., Peng, L., Barry, N. A., Cline, G. W., Zhang, D., Cardone, R. L., Petersen, K. F., Kibbey, R. G., Goodman, A. L., & Shulman, G. I. (2016). Acetate mediates a microbiome–brain–β-cell axis to promote metabolic syndrome. Nature, 534(7606), 213–217.
  • Petrich, B. G., Eloff, B. C., Lerner, D. L., Kovacs, A., Saffitz, J. E., Rosenbaum, D. S., & Wang, Y. (2004). Targeted Activation of c-Jun N-terminal Kinase in Vivo Induces Restrictive Cardiomyopathy and Conduction Defects. Journal of Biological Chemistry, 279(15), 15330–15338.
  • Pilla, R., & Suchodolski, J. S. (2021a). The Gut Microbiome of Dogs and Cats, and the Influence of Diet. Veterinary Clinics of North America: Small Animal Practice, 51(3), 605–621.
  • Pilla, R., & Suchodolski, J. S. (2021b). The Gut Microbiome of Dogs and Cats, and the Influence of Diet. Veterinary Clinics of North America: Small Animal Practice, 51(3), 605–621.
  • Poltorak, A., He, X., Smirnova, I., Liu, M.-Y., Huffel, C. Van, Du, X., Birdwell, D., Alejos, E., Silva, M., Galanos, C., Freudenberg, M., Ricciardi-Castagnoli, P., Layton, B., & Beutler, B. (1998). Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: Mutations in Tlr4 Gene. Science, 282(5396), 2085–2088.
  • Ridaura, V. K., Faith, J. J., Rey, F. E., Cheng, J., Duncan, A. E., Kau, A. L., Griffin, N. W., Lombard, V., Henrissat, B., Bain, J. R., Muehlbauer, M. J., Ilkayeva, O., Semenkovich, C. F., Funai, K., Hayashi, D. K., Lyle, B. J., Martini, M. C., Ursell, L. K., Clemente, J. C., … Gordon, J. I. (2013). Gut Microbiota from Twins Discordant for Obesity Modulate Metabolism in Mice. Science, 341(6150).
  • Rojo, D., Méndez-García, C., Raczkowska, B. A., Bargiela, R., Moya, A., Ferrer, M., & Barbas, C. (2017). Exploring the human microbiome from multiple perspectives: factors altering its composition and function. FEMS Microbiology Reviews, 41(4), 453–478.
  • Roudebush, P., Schoenherr, W. D., & Delaney, S. J. (2008a). An evidence-based review of the use of therapeutic foods, owner education, exercise, and drugs for the management of obese and overweight pets. Journal of the American Veterinary Medical Association, 233(5), 717–725.
  • Roudebush, P., Schoenherr, W. D., & Delaney, S. J. (2008b). An evidence-based review of the use of therapeutic foods, owner education, exercise, and drugs for the management of obese and overweight pets. Journal of the American Veterinary Medical Association, 233(5), 717–725.
  • Rowland, I., Gibson, G., Heinken, A., Scott, K., Swann, J., Thiele, I., & Tuohy, K. (2018). Gut microbiota functions: metabolism of nutrients and other food components. European Journal of Nutrition, 57(1), 1–24.
  • Scarlett, J. M., & Donoghue, S. (1998). Associations between body condition and disease in cats. Journal of the American Veterinary Medical Association, 212(11), 1725–1731.
  • Sender, R., Fuchs, S., & Milo, R. (2016). Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLOS Biology, 14(8), e1002533.
  • Thomson, P., Santibáñez, R., Rodríguez-Salas, C., Flores-Yañez, C., & Garrido, D. (2022). Differences in the composition and predicted functions of the intestinal microbiome of obese and normal weight adult dogs. PeerJ, 10, e12695.
  • Trayhurn, P. (2005). Adipose Tissue in Obesity—An Inflammatory Issue. Endocrinology, 146(3), 1003–1005. Tremaroli, V., & Bäckhed, F. (2012). Functional interactions between the gut microbiota and host metabolism. Nature, 489(7415), 242–249.
  • Tun, H. M., Brar, M. S., Khin, N., Jun, L., Hui, R. K.-H., Dowd, S. E., & Leung, F. C.-C. (2012). Gene-centric metagenomics analysis of feline intestinal microbiome using 454 junior pyrosequencing. Journal of Microbiological Methods, 88(3), 369–376.
  • Turnbaugh, P. J., Bäckhed, F., Fulton, L., & Gordon, J. I. (2008). Diet-Induced Obesity Is Linked to Marked but Reversible Alterations in the Mouse Distal Gut Microbiome. Cell Host & Microbe, 3(4), 213–223.
  • Vecchiato, C. G., Golinelli, S., Pinna, C., Pilla, R., Suchodolski, J. S., Tvarijonaviciute, A., Rubio, C. P., Dorato, E., Delsante, C., Stefanelli, C., Pagani, E., Fracassi, F., & Biagi, G. (2023). Fecal microbiota and inflammatory and antioxidant status of obese and lean dogs, and the effect of caloric restriction. Frontiers in Microbiology, 13.
  • Zentek, J., Marquart, B., Pietrzak, T., Ballèvre, O., & Rochat, F. (2003). Dietary effects on bifidobacteria and Clostridium perfringens in the canine intestinal tract. Journal of Animal Physiology and Animal Nutrition, 87(11–12), 397–407.
  • Ridaura, V. K., Faith, J. J., Rey, F. E., Cheng, J., Duncan, A. E., Kau, A. L., Griffin, N. W., Lombard, V., Henrissat, B., Bain, J. R., Muehlbauer, M. J., Ilkayeva, O., Semenkovich, C. F., Funai, K., Hayashi, D. K., Lyle, B. J., Martini, M. C., Ursell, L. K., Clemente, J. C., … Gordon, J. I. (2013). Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science, 341(6150).
  • Rojo, D., Méndez-García, C., Raczkowska, B. A., Bargiela, R., Moya, A., Ferrer, M., & Barbas, C. (2017). Exploring the human microbiome from multiple perspectives: factors altering its composition and function. FEMS Microbiology Reviews, 41(4), 453–478.
  • Roudebush, P., Schoenherr, W. D., & Delaney, S. J. (2008a). An evidence-based review of the use of therapeutic foods, owner education, exercise, and drugs for the management of obese and overweight pets. Journal of the American Veterinary Medical Association, 233(5), 717–725.
  • Roudebush, P., Schoenherr, W. D., & Delaney, S. J. (2008b). An evidence-based review of the use of therapeutic foods, owner education, exercise, and drugs for the management of obese and overweight pets. Journal of the American Veterinary Medical Association, 233(5), 717–725.
  • Rowland, I., Gibson, G., Heinken, A., Scott, K., Swann, J., Thiele, I., & Tuohy, K. (2018). Gut microbiota functions: metabolism of nutrients and other food components. European Journal of Nutrition, 57(1), 1–24.
  • Scarlett, J. M., & Donoghue, S. (1998). Associations between body condition and disease in cats. Journal of the American Veterinary Medical Association, 212(11), 1725–1731.
  • Sender, R., Fuchs, S., & Milo, R. (2016). Revised estimates for the number of human and bacteria cells in the body. PLOS Biology, 14(8), e1002533.
  • Thomson, P., Santibáñez, R., Rodríguez-Salas, C., Flores-Yañez, C., & Garrido, D. (2022). Differences in the composition and predicted functions of the intestinal microbiome of obese and normal weight adult dogs. Peer J, 10, e12695.
  • Trayhurn, P. (2005). Adipose Tissue in Obesity—An Inflammatory Issue. Endocrinology, 146(3), 1003–1005. Tremaroli, V., & Bäckhed, F. (2012). Functional interactions between the gut microbiota and host metabolism. Nature, 489(7415), 242–249.
  • Tun, H. M., Brar, M. S., Khin, N., Jun, L., Hui, R. K.-H., Dowd, S. E., & Leung, F. C.-C. (2012). Gene-centric metagenomics analysis of feline intestinal microbiome using 454 junior pyrosequencing. Journal of Microbiological Methods, 88(3), 369–376.
  • Turnbaugh, P. J., Bäckhed, F., Fulton, L., & Gordon, J. I. (2008). Diet-Induced Obesity Is Linked to Marked but Reversible Alterations in the Mouse Distal Gut Microbiome. Cell Host & Microbe, 3(4), 213–223.
  • Vecchiato, C. G., Golinelli, S., Pinna, C., Pilla, R., Suchodolski, J. S., Tvarijonaviciute, A., Rubio, C. P., Dorato, E., Delsante, C., Stefanelli, C., Pagani, E., Fracassi, F., & Biagi, G. (2023). Fecal microbiota and inflammatory and antioxidant status of obese and lean dogs, and the effect of caloric restriction. Frontiers in Microbiology, 13. 1050474.
  • Zentek, J., Marquart, B., Pietrzak, T., Ballèvre, O., & Rochat, F. (2003). Dietary effects on bifidobacteria and Clostridium perfringens in the canine intestinal tract. Journal of Animal Physiology and Animal Nutrition, 87(11–12), 397–407.
There are 78 citations in total.

Details

Primary Language English
Subjects Veterinary Sciences (Other)
Journal Section Review Articles
Authors

Mehmet Kukirik 0009-0008-2778-7401

Gülcan Demirel 0000-0002-6864-5134

Publication Date August 31, 2024
Submission Date May 4, 2024
Acceptance Date June 4, 2024
Published in Issue Year 2024 Volume: 8 Issue: 2

Cite

APA Kukirik, M., & Demirel, G. (2024). Pet microbiota and its relationship with obesity. Journal of Istanbul Veterinary Sciences, 8(2), 131-139. https://doi.org/10.30704/http-www-jivs-net.1478463

CC-BY
This journal is presented to the reader under  Creative Commons attribution 4.0 international  (CC-BY 4.0)