Case Report
BibTex RIS Cite

Friedreich ataksisi olan bir adölesanda bireysel tedavi programı için optimal eksternal ağırlığın belirlenmesi: Bir Vaka Raporu

Year 2024, Volume: 2 Issue: 1, 29 - 34, 24.06.2024

Abstract

Amaç: Bu çalışma Friedreich Ataksi (FRDA)’li bir adölesanda postüral kontrol, yürüyüş ve denge parametrelerini optimize etmek için eksternal ağırlık miktarını araştırdı.
Yöntem: 16 yaşındaki bir FRDA’lı adölesan (boyu:1.57 m ve kilosu:60 kg) bu çalışmaya dahil edildi. Adölesanın postüral kontrol, yürüyüş ve dengesi gövdeye bağlanan farklı ağırlıklarla (ağırlıksız, vücut ağırlığının %5’i, %10’u, %15’i ve %20’si) değerlendirildi. The Bertec Balance Check Screener™, GAITRite ve Zamanlı Kalk Yürü (TUG) testleri sırasıyla postüral kontrolü, yürüyüşü ve dinamik dengeyi değerlendirmek için kullanıldı.
Bulgular: Stabilite limiti açısından FRDA’lı adölesan anterio-posterior yönlerde vücut ağırlığının %10’unda ve lateral yönde vücut ağırlığının %15’inde en iyi performansı gösterdi. Anterio-posterior yönlerde, normal yüzeyde postüral salınım aralığı ağırlıksızda ve köpük yüzeyde vücut ağırlığının %15’inde en düşük değerdeydi. Lateral yönlerde, normal ve köpük yüzeyde adölesan vücut ağırlığının %10’unda minimum postüral salınım aralığı gösterdi. Vücut ağırlığının %20’sinde daha yüksek döngü süresi, adım uzunluğu ve daha dar destek yüzeyine sahipti. TUG değeri vücut ağırlığının %20’sinde en düşüktü.
Sonuç: Bu bulgular, FRDA'da eksternal ağırlık uygulamalarında optimal miktarın bireysel olarak belirlenmesi ihtiyacını ortaya koyarak literatüre katkı sağlayabilir.

References

  • 1. Labuda M, Labuda D, Miranda C, Poirier J, Soong B-W, Barucha N, et al. Unique origin and specific ethnic distribution of the Friedreich ataxia GAA expansion. Neurology. 2000;54(12):2322-4.
  • 2. Vankan P. Prevalence gradients of Friedreich's Ataxia and R1b haplotype in Europe co‐localize, suggesting a common Palaeolithic origin in the Franco‐Cantabrian ice age refuge. J Neurochem. 2013;126:11-20.
  • 3. Campuzano V, Montermini L, Molto MD, Pianese L, Cossée M, Cavalcanti F, et al. Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science. 1996;271(5254):1423-7.
  • 4. Cossée M, Dürr A, Schmitt M, Dahl N, Trouillas P, Allinson P, et al. Friedreich's ataxia: point mutations and clinical presentation of compound heterozygotes. Ann Neurol. 1999;45(2):200-6.
  • 5. Dürr A, Cossee M, Agid Y, Campuzano V, Mignard C, Penet C, et al. Clinical and genetic abnormalities in patients with Friedreich's ataxia. N Engl J Med. 1996;335(16):1169-75.
  • 6. Pandolfo M. Friedreich ataxia: the clinical picture. J Neurol. 2009;256:3-8.
  • 7. Delatycki MB, Corben LA. Clinical features of Friedreich ataxia. J Child Neurol. 2012;27(9):1133-7.
  • 8. Tsou AY, Paulsen EK, Lagedrost SJ, Perlman SL, Mathews KD, Wilmot GR, et al. Mortality in Friedreich ataxia. J Neurol Sci. 2011;307(1-2):46-9.
  • 9. Cook A, Giunti P. Friedreich’s ataxia: clinical features, pathogenesis and management. Br Med Bull. 2017;124(1):19-30.
  • 10. Clopton N, Schultz D, Boren C, Porter J, Brillbart T. Effects of axial weight loading on gait for subjects with cerebellar ataxia: preliminary findings. J Neurol Phys Ther. 2003;27(1):15-21.
  • 11. Ritzmann R, Freyler K, Weltin E, Krause A, Gollhofer A. Load dependency of postural control-kinematic and neuromuscular changes in response to over and under load conditions. PloS One. 2015;10(6):e0128400.
  • 12. Widener GL, Conley N, Whiteford S, Gee J, Harrell A, Gibson‐Horn C, et al. Changes in standing stability with balance‐based torso‐weighting with cerebellar ataxia: A pilot study. Physiother Res Int. 2020;25(1):e1814.
  • 13. Gorgas AM, Widener GL, Gibson‐Horn C, Allen DD. Gait changes with balance‐based torso‐weighting in people with multiple sclerosis. Physiother Res Int.2015;20(1):45-53.
  • 14. Gibson-Horn C. Balance-based torso-weighting in a patient with ataxia and multiple sclerosis: a case report. J Neurol Phys Ther. 2008;32(3):139-46.
  • 15. Hong JS, Kim JH, Yong SY, Lee YH, Kim SH, Park JY, et al. Preliminary clinical trial of balance compensation system for improvement of balance in patients with spinocerebellar ataxia. Ann Rehabil Med. 2020;44(4):284-91.
  • 16. Widener GL, Allen DD, Gibson-Horn C. Balance-based torso-weighting may enhance balance in persons with multiple sclerosis: preliminary evidence. Arch Phys Med Rehabil. 2009;90(4):602-9.
  • 17. Widener GL, Allen DD, Gibson-Horn C. Randomized clinical trial of balance-based torso weighting for improving upright mobility in people with multiple sclerosis. Neurorehabil Neural Repair. 2009;23(8):784-91.
  • 18. Florence JM, Pandya S, King WM, Robison JD, Baty J, Miller JP, et al. Intrarater reliability of manual muscle test (Medical Research Council scale) grades in Duchenne's muscular dystrophy. Phys Ther. 1992;72(2):115-22.
  • 19. Aydın Yağcıoğlu G, Yılmaz Ö, Alemdaroğlu Gürbüz İ, Bulut N, Karaduman A, Özkal Ö, et al. Examination of the relationship between foot-body posture and balance and gait in Duchenne muscular dystrophy. Ir J Med Sci. 2023;192(4):1883-8.
  • 20. Dusing SC, Thorpe DE. A normative sample of temporal and spatial gait parameters in children using the GAITRite® electronic walkway. Gait Posture. 2007;25(1):135-9.
  • 21. Podsiadlo D, Richardson S. The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39(2):142-8.
  • 22. Harry JR, Eggleston JD, Lidstone DE, Dufek JS. Weighted vest use to improve movement control during walking in children with autism. Transl J Am Coll Sports Med. 2019;4(10):64-73.
  • 23. Olivas AN, Chavez EA, Eggleston JD. Weighted Vest Loads Do Not Elicit Changes in Spatial-Temporal Gait Parameters in Children and Adolescents With Autism.. J Appl Biomech. 2022;1(aop):1-7.
  • 24. Choi H-J, Kang H-J. Study of gait using weighted vests on balance with paraplegic patients. J Exerc Rehabil. 2017;13(3):348.
  • 25. Bidichandani SI, Delatycki MB. Friedreich Ataxia. GeneReviews®. Seattle (WA): University of Washington, Seattle; 1998.
  • 26. McKay MJ, Baldwin JN, Ferreira P, Simic M, Vanicek N, Wojciechowski E, et al. Spatiotemporal and plantar pressure patterns of 1000 healthy individuals aged 3–101 years. Gait Posture. 2017;58:78-87.
  • 27. Nicolini‐Panisson RDA, Donadio MV. Normative values for the T imed ‘U p and G o’test in children and adolescents and validation for individuals with Down syndrome. Dev Med Child Neurol. 2014;56(5):490-7.
  • 28. Morgan M. Ataxia and weights. Physiother. 1975;61(11):332-4.
  • 29. Lucy S, Hayes K. Postural sway profiles: normal subjects and subjects with cerebellar ataxia. Physiother Can. 1985;37(37):140-8.
  • 30. Crittendon A, O'Neill D, Widener GL, Allen DD. Standing data disproves biomechanical mechanism for balance-based torso-weighting. Arch Phys Med Rehabil. 2014;95(1):43-9.

Determining the optimal external weight for an individual treatment program in an adolescent with Friedreich ataxia: A Case Report

Year 2024, Volume: 2 Issue: 1, 29 - 34, 24.06.2024

Abstract

Purpose: This study investigated the amount of external weight to optimize postural control, gait, and balance parameters in an adolescent with Friedreich ataxia (FRDA).
Method: The study included a 16-year-old adolescent (height: 1.57 m and weight: 60 kg) with FRDA. The adolescent's postural control, gait, and balance were evaluated by attaching different weights (unweight, 5%, 10%, 15%, and 20% of the body weight (BW)) to the trunk. The Bertec Balance Check Screener™, GAITRite and Timed up and Go (TUG) were used to assess postural control (postural sway, limits of stability), gait, and dynamic balance, consecutively.
Results: Regarding limits of stability, the adolescent with FRDA performed best at 10% of BW in the anterio-posterior directions and at 15% of BW in the lateral directions. In the antero-posterior directions, the postural sway range on the normal surface was the lowest in unweighted and the lowest at 15% of BW on the perturbed surface. In the lateral directions, she performed the minimum postural sway range at 10% of BW on both the normal and perturbed surfaces. She had a higher cycle time, stride length and narrower support surface at 20% of BW. The value of TUG was the lowest at 20% of BW (10.44 sec).
Conclusion: These findings may contribute to the literature by revealing the need for individual determination of the optimal amount in external weighting applications in FRDA.

References

  • 1. Labuda M, Labuda D, Miranda C, Poirier J, Soong B-W, Barucha N, et al. Unique origin and specific ethnic distribution of the Friedreich ataxia GAA expansion. Neurology. 2000;54(12):2322-4.
  • 2. Vankan P. Prevalence gradients of Friedreich's Ataxia and R1b haplotype in Europe co‐localize, suggesting a common Palaeolithic origin in the Franco‐Cantabrian ice age refuge. J Neurochem. 2013;126:11-20.
  • 3. Campuzano V, Montermini L, Molto MD, Pianese L, Cossée M, Cavalcanti F, et al. Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science. 1996;271(5254):1423-7.
  • 4. Cossée M, Dürr A, Schmitt M, Dahl N, Trouillas P, Allinson P, et al. Friedreich's ataxia: point mutations and clinical presentation of compound heterozygotes. Ann Neurol. 1999;45(2):200-6.
  • 5. Dürr A, Cossee M, Agid Y, Campuzano V, Mignard C, Penet C, et al. Clinical and genetic abnormalities in patients with Friedreich's ataxia. N Engl J Med. 1996;335(16):1169-75.
  • 6. Pandolfo M. Friedreich ataxia: the clinical picture. J Neurol. 2009;256:3-8.
  • 7. Delatycki MB, Corben LA. Clinical features of Friedreich ataxia. J Child Neurol. 2012;27(9):1133-7.
  • 8. Tsou AY, Paulsen EK, Lagedrost SJ, Perlman SL, Mathews KD, Wilmot GR, et al. Mortality in Friedreich ataxia. J Neurol Sci. 2011;307(1-2):46-9.
  • 9. Cook A, Giunti P. Friedreich’s ataxia: clinical features, pathogenesis and management. Br Med Bull. 2017;124(1):19-30.
  • 10. Clopton N, Schultz D, Boren C, Porter J, Brillbart T. Effects of axial weight loading on gait for subjects with cerebellar ataxia: preliminary findings. J Neurol Phys Ther. 2003;27(1):15-21.
  • 11. Ritzmann R, Freyler K, Weltin E, Krause A, Gollhofer A. Load dependency of postural control-kinematic and neuromuscular changes in response to over and under load conditions. PloS One. 2015;10(6):e0128400.
  • 12. Widener GL, Conley N, Whiteford S, Gee J, Harrell A, Gibson‐Horn C, et al. Changes in standing stability with balance‐based torso‐weighting with cerebellar ataxia: A pilot study. Physiother Res Int. 2020;25(1):e1814.
  • 13. Gorgas AM, Widener GL, Gibson‐Horn C, Allen DD. Gait changes with balance‐based torso‐weighting in people with multiple sclerosis. Physiother Res Int.2015;20(1):45-53.
  • 14. Gibson-Horn C. Balance-based torso-weighting in a patient with ataxia and multiple sclerosis: a case report. J Neurol Phys Ther. 2008;32(3):139-46.
  • 15. Hong JS, Kim JH, Yong SY, Lee YH, Kim SH, Park JY, et al. Preliminary clinical trial of balance compensation system for improvement of balance in patients with spinocerebellar ataxia. Ann Rehabil Med. 2020;44(4):284-91.
  • 16. Widener GL, Allen DD, Gibson-Horn C. Balance-based torso-weighting may enhance balance in persons with multiple sclerosis: preliminary evidence. Arch Phys Med Rehabil. 2009;90(4):602-9.
  • 17. Widener GL, Allen DD, Gibson-Horn C. Randomized clinical trial of balance-based torso weighting for improving upright mobility in people with multiple sclerosis. Neurorehabil Neural Repair. 2009;23(8):784-91.
  • 18. Florence JM, Pandya S, King WM, Robison JD, Baty J, Miller JP, et al. Intrarater reliability of manual muscle test (Medical Research Council scale) grades in Duchenne's muscular dystrophy. Phys Ther. 1992;72(2):115-22.
  • 19. Aydın Yağcıoğlu G, Yılmaz Ö, Alemdaroğlu Gürbüz İ, Bulut N, Karaduman A, Özkal Ö, et al. Examination of the relationship between foot-body posture and balance and gait in Duchenne muscular dystrophy. Ir J Med Sci. 2023;192(4):1883-8.
  • 20. Dusing SC, Thorpe DE. A normative sample of temporal and spatial gait parameters in children using the GAITRite® electronic walkway. Gait Posture. 2007;25(1):135-9.
  • 21. Podsiadlo D, Richardson S. The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39(2):142-8.
  • 22. Harry JR, Eggleston JD, Lidstone DE, Dufek JS. Weighted vest use to improve movement control during walking in children with autism. Transl J Am Coll Sports Med. 2019;4(10):64-73.
  • 23. Olivas AN, Chavez EA, Eggleston JD. Weighted Vest Loads Do Not Elicit Changes in Spatial-Temporal Gait Parameters in Children and Adolescents With Autism.. J Appl Biomech. 2022;1(aop):1-7.
  • 24. Choi H-J, Kang H-J. Study of gait using weighted vests on balance with paraplegic patients. J Exerc Rehabil. 2017;13(3):348.
  • 25. Bidichandani SI, Delatycki MB. Friedreich Ataxia. GeneReviews®. Seattle (WA): University of Washington, Seattle; 1998.
  • 26. McKay MJ, Baldwin JN, Ferreira P, Simic M, Vanicek N, Wojciechowski E, et al. Spatiotemporal and plantar pressure patterns of 1000 healthy individuals aged 3–101 years. Gait Posture. 2017;58:78-87.
  • 27. Nicolini‐Panisson RDA, Donadio MV. Normative values for the T imed ‘U p and G o’test in children and adolescents and validation for individuals with Down syndrome. Dev Med Child Neurol. 2014;56(5):490-7.
  • 28. Morgan M. Ataxia and weights. Physiother. 1975;61(11):332-4.
  • 29. Lucy S, Hayes K. Postural sway profiles: normal subjects and subjects with cerebellar ataxia. Physiother Can. 1985;37(37):140-8.
  • 30. Crittendon A, O'Neill D, Widener GL, Allen DD. Standing data disproves biomechanical mechanism for balance-based torso-weighting. Arch Phys Med Rehabil. 2014;95(1):43-9.
There are 30 citations in total.

Details

Primary Language English
Subjects Physiotherapy
Journal Section Case Reports
Authors

İrem Akar 0009-0009-6673-4190

Beyzanur Şentürk 0009-0007-1361-9397

Ali İmran Yalçın 0000-0002-7361-4535

Semra Topuz 0000-0002-9090-3937

İpek Gürbüz 0000-0001-5556-6608

Öznur Tunca Yılmaz 0000-0002-0855-9541

Numan Bulut 0000-0001-5427-1103

Publication Date June 24, 2024
Submission Date March 29, 2024
Acceptance Date May 31, 2024
Published in Issue Year 2024 Volume: 2 Issue: 1

Cite

Vancouver Akar İ, Şentürk B, Yalçın Aİ, Topuz S, Gürbüz İ, Tunca Yılmaz Ö, Bulut N. Determining the optimal external weight for an individual treatment program in an adolescent with Friedreich ataxia: A Case Report. JHUPTR. 2024;2(1):29-34.