Research Article
BibTex RIS Cite

GC-MS Analysis, Antioxidant, Antidiabetic Activity, and ADMET Study of Diospyros mespiliformis Hochst. Ex A. DC. Ebenaceae Stembark

Year 2024, , 198 - 219, 01.09.2024
https://doi.org/10.52794/hujpharm.1356537

Abstract

The present study carried out GC-MS analysis, antioxidant, antidiabetic, and ADMET study of the crude ethanol extract (CRE), ethyl acetate (EAF), and aqueous (AQF) fractions of Diospyros mespiliformis (DM). Grandiflorenic and cis, cis-linoleic acids were the most abundant of the 59 and 40 compounds identified in the EAF and AQF, respectively. The EAF and CRE exhibited significantly (p< 0.05) higher total antioxidant capacity than the AQF. Furthermore, the EAF exhibited a significantly (p < 0.05) higher percentage inhibition via the ferric thiocyanate assay than the CRE and AQF. All the extracts showed significantly (p < 0.05) lower malondialdehyde concentrations than AA in the thiobarbituric acid assay. Diazoprogesterone identified in the EAF exhibited the lowest binding affinity and inhibition constant, interacting with myeloperoxidase (MPO), xanthine (XO), and 11-β-hydroxysteroid dehydrogenase (HSD1), and sirtuin 6 (SIRT6). The molecular dynamics simulations showed residue fluctuations of the diazoprogesterone docked complexes with the highest observed at Ser42, Cys1325, Ser281, and Leu78 for MPO, XO, HSD1, and SIRT6, respectively. Moreover, diazoprogesterone was predicted to possess good ADMET properties. Conclusively, DM possesses significant antioxidant and antidiabetic potential, containing compounds that might be a source of novel therapeutics against oxidative stress and diabetes.

Supporting Institution

Tertiary Education Trust Fund of Nigeria

References

  • 1. American Diabetes Association Professional Practice Committee. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2022. Diabetes Care. 2022;45(1):S17-S38. https://doi.org/10.2337/dc22-s002
  • 2. Bhatti JS, Sehrawat A, Mishra J, Sidhu IS, Navik U, Khullar N, et al. Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Free Radical Biol Med. 2022;184:114-34. https://doi.org/10.1016/j.freeradbiomed.2022.03.019
  • 3. Domingueti CP, Dusse LMSA, Carvalho MdG, de Sousa LP, Gomes KB, Fernandes AP. Diabetes mellitus: The linkage between oxidative stress, inflammation, hypercoagulability and vascular complications. J Diabetes Complications. 2016;30(4):738-45. https://doi.org/10.1016/j. jdiacomp.2015.12.018
  • 4. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circul Res. 2010;107(9):1058-70. https://doi. org/10.1161/circresaha.110.223545
  • 5. Pasupuleti VR, Arigela CS, Gan SH, Salam SKN, Krishnan KT, Rahman NA, et al. A Review on Oxidative Stress, Diabetic Complications, and the Roles of Honey Polyphenols. Oxid Med Cell Longev. 2020;2020:8878172. https://doi. org/10.1155/2020/8878172
  • 6. Adwas AA, Elsayed A, Azab AE, Quwaydir FA. Oxidative stress and antioxidant mechanisms in human body. J Appl Biotechnol Bioeng. 2019;6(1):43-7. https://doi.org/10.15406/ jabb.2019.06.00173
  • 7. Ali SS, Ahsan H, Zia MK, Siddiqui T, Khan FH. Understanding oxidants and antioxidants: Classical team with new players. J Food Biochem. 2020;44(3):e13145. https://doi.org/10.1111/ jfbc.13145
  • 8. Hayes JD, Dinkova-Kostova AT, Tew KD. Oxidative Stress in Cancer. Cancer Cell. 2020;38(2):167-97. https://doi. org/10.1016/j.ccell.2020.06.001
  • 9. Klaunig JE. Oxidative Stress and Cancer. Curr Pharm Des. 2018;24(40):4771-8. https://doi.org/10.2174/1381612825666 190215121712
  • 10. Abenavoli L, Milic N. Chapter 45 - Silymarin for Liver Disease. In: Muriel P, editor. Liver Pathophysiology. Boston: Academic Press; 2017. 631 p. https://doi.org/10.1016/B978-0- 12-804274-8.00045-X
  • 11. Naris S. Significant Role of Free Radicals in Diabetes Mellitus. Oxidants and Antioxidants in Medical Science. 2022;11(08):1- 2.
  • 12. Dahiru MM, Alfa MB, Abubakar MA, Abdulllahi AP. Assessment of in silico antioxidant, anti-inflammatory, and antidiabetic activites of Ximenia americana L. Olacaceae. Advances in Medical, Pharmaceutical and Dental Research. 2024;4(1):1-13. http://dx.doi.org/10.21622/ AMPDR.2024.04.1.735
  • 13. Dahiru MM, Musa N. Phytochemical Profiling, Antioxidant, Antidiabetic, and ADMET Study of Diospyros mespiliformis Leaf, Hochst Ex A. Dc Ebenaceae. J Fac Pharm Ankara/ Ankara Ecz Fak Derg. 2024;48(2):412-35. http://dx.doi. org/10.33483/jfpau.1354293
  • 14. Dahiru MM, Musa N, Abaka AM, Abubakar MA. Potential Antidiabetic Compounds from Anogeissus leiocarpus: Molecular Docking, Molecular Dynamic Simulation, and ADMET Studies. Borneo J Pharm. 2023;6(3):249-77. https:// doi.org/10.33084/bjop.v6i3.5027
  • 15. Heitaku S, Sasase T, Sotani T, Maki M, Katsumi S, Fukuda S, et al. An 11-beta hydroxysteroid dehydrogenase type 1 inhibitor, JTT-654 ameliorates insulin resistance and non-obese type 2 diabetes. Biol Pharm Bull. 2023;46(7):969-78. https://doi. org/10.1248/bpb.b23-00129
  • 16. Morgan SA, Gathercole LL, Hassan-Smith ZK, Tomlinson J, Stewart PM, Lavery GG. 11β-HSD1 contributes to age-related metabolic decline in male mice. J Endocrinol. 2022;255(3):117-29. https://doi.org/10.1530/joe-22-0169
  • 17. Wu K, Wang Y, Liu R, Rui T. The role of mammalian Sirtuin 6 in cardiovascular diseases and diabetes mellitus. Front Physiol. 2023;14:1207133. https://doi.org/10.3389/ fphys.2023.1207133
  • 18. Wang Y, Enrick M, Gadd J, Yin L. The regulatory role of Sirtuin 6 in coronary endothelial dysfunction in HFpEF. Physiology. 2023;38(S1):5733428. http://dx.doi.org/10.1152/ physiol.2023.38.S1.5733428
  • 19. Sociali G, Magnone M, Ravera S, Damonte P, Vigliarolo T, Von Holtey M, et al. Pharmacological Sirt6 inhibition improves glucose tolerance in a type 2 diabetes mouse model. The FASEB Journal. 2017;31(7):3138. https://doi.org/10.1096/ fj.201601294r
  • 20. Parenti MD, Grozio A, Bauer I, Galeno L, Damonte P, Millo E, et al. Discovery of novel and selective SIRT6 inhibitors. J Med Chem. 2014;57(11):4796-804. https://doi.org/10.1021/ jm500487d
  • 21. Yu G, Liang Y, Zheng S, Zhang H. Inhibition of myeloperoxidase by N-acetyl lysyltyrosylcysteine amide reduces oxidative stress–mediated inflammation, neuronal damage, and neural stem cell injury in a murine model of stroke. J Pharmacol Exp Ther. 2018;364(2):311-22. https://doi.org/10.1124/ jpet.117.245688
  • 22. Chen S, Chen H, Du Q, Shen J. Targeting myeloperoxidase (MPO) mediated oxidative stress and inflammation for reducing brain ischemia injury: Potential application of natural compounds. Front Physiol. 2020;11:433. https://doi. org/10.3389/fphys.2020.00433
  • 23. Romagnoli M, Gomez-Cabrera M-C, Perrelli M-G, Biasi F, Pallardó FV, Sastre J, et al. Xanthine oxidase-induced oxidative stress causes activation of NF-κB and inflammation in the liver of type I diabetic rats. Free Radical Biol Med. 2010;49(2):171- 7. https://doi.org/10.1016/j.freeradbiomed.2010.03.024
  • 24. Dahiru MM, Nadro SM. A review of the Mechanisms of Action and Side Effects of Anti-diabetic Agents. Trends in Pharmaceutical Sciences. 2022;8(3):195-210. http://dx.doi. org/10.30476/TIPS.2022.95931.1153
  • 25. Dahiru MM. Recent advances in the therapeutic potential phytochemicals in managing diabetes. Journal of Clinical and Basic Research. 2023;7(1):13-20. https://jcbr.goums.ac.ir/ article-1-385-en.html
  • 26. Cao S-Y, Li B-Y, Gan R-Y, Mao Q-Q, Wang Y-F, Shang A, et al. The in vivo antioxidant and hepatoprotective actions of selected Chinese teas. Foods. 2020;9(3):262. https://doi. org/10.3390%2Ffoods9030262
  • 27. Dahiru MM, Nadro MS. Phytochemical Composition and Antioxidant Potential of Hyphaene thebaica Fruit. Borneo J Pharm. 2022;5(4):325-33. https://doi.org/10.33084/bjop. v5i4.3632
  • 28. Dahiru MM, Ahmadi H, Faruk MU, Aminu H, Hamman, Abreme GC. Phytochemical Analysis and Antioxidant Potential of Ethylacetate Extract of Tamarindus Indica (Tamarind) Leaves by Frap Assay. Journal of Fundamental and Applied Pharmaceutical Science. 2023;3(2):45-53. https:// doi.org/10.18196/jfaps.v3i2.16708
  • 29. Musa N, Dahiru MM, Badgal EB. Characterization, In Silico Antimalarial, Antiinflammatory, Antioxidant, and ADMET Assessment of Neonauclea excelsa Merr. Sciences of Pharmacy. 2024;3(2):92-107. https://doi.org/10.58920/ sciphar0302232
  • 30. Uduwana S, Abeynayake N, Wickramasinghe I. Synergistic, antagonistic, and additive effects on the resultant antioxidant activity in infusions of green tea with bee honey and Citrus limonum extract as additives. J Agric Food Res. 2023;12:100571. https://doi.org/10.1016/j.jafr.2023.100571
  • 31. Dahiru MM, Umar AS, Muhammad M, Fari II, Musa ZY. Phytoconstituents, Fourier-Transform Infrared Characterization, and Antioxidant Potential of Ethyl Acetate Extract of Corchorus olitorius (Malvaceae). Sciences of Phytochemistry. 2024;3(1):1-10. https://doi.org/10.58920/ sciphy0301208
  • 32. Dahiru MM, Nadro MS. Anti-diabetic potential of Hyphaene thebaica fruit in streptozotocin-induced diabetic rats. J Expl and Molec Biol. 2022;23(1):29-36. https://doi.org/10.47743/ jemb-2022-63
  • 33. Samuel NA, Koura K, Ganglo CJ. Ethnobotanical assessment of Diospyros mespiliformis Hochst. ex A. DC (Ebenaceae) in the classified forest of Wari-Maro (Sudano-guinean area of Benin, West Africa). Ethnobot Res Appl. 2021;22:1-12. http:// dx.doi.org/10.32859/era.22.45.1-12
  • 34. Ebbo AA, Sani D, Suleiman MM, Ahmad A, Hassan AZ. Assessment of antioxidant and wound healing activity of the crude methanolic extract of Diospyros mespiliformis Hochst ex a. Dc (Ebenaceae) and its fractions in Wistar rats. S Afr J Bot. 2022;150:305-12. https://doi.org/10.1016/j.sajb.2022.07.034
  • 35. Muhammad NB, Wasagu RSU, Sani B. Effect of Methanolic Extract of African Ebony (Diospyros mespiliformis) Stem Bark on Liver and Kidney Function Biomarkers in Alloxan Induced Diabetic Albino Rats. Asian J Biochem Genet Mol Biol. 2020;6(3):51-5. https://doi.org/10.9734/ajbgmb/2020/ v6i330156
  • 36. Evans WC. Trease and Evans’ pharmacognosy: Elsevier Health Sciences; 2009. 608 p.
  • 37. Indumathi C, Durgadevi G, Nithyavani S, Gayathri P. Estimation of terpenoid content and its antimicrobial property in Enicostemma litorrale. Int J ChemTech Res. 2014;6(9):4264-7.
  • 38. Dahiru MM, Badgal EB, Musa N. Phytochemistry, GS-MS analysis, and heavy metals composition of aqueous and ethanol stem bark extracts of Ximenia americana. GSC Biol Pharm Sci. 2022;21(3):145-56. http://dx.doi.org/10.30574/ gscbps.2022.21.3.0462
  • 39. Oyaizu M. Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese journal of nutrition and dietetics. 1986;44(6):307-15. http://dx.doi.org/10.5264/ eiyogakuzashi.44.307
  • 40. Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem. 1999;269(2):337- 41. https://doi.org/10.1006/abio.1999.4019
  • 41. Kikuzaki H, Nakatani N. Antioxidant effects of some ginger constituents. J Food Sci. 1993;58(6):1407-10. https://www. doi.org/10.1111/J.1365-2621.1993.TB06194.X
  • 42. Kwon TW, Watts B. Determination of Malonaldehyde by Ultraviolet Spectrophotometry. J Food Sci. 2006;28:627-30. https://doi.org/10.1111/j.1365-2621.1963.tb01666.x
  • 43. Zhang XY. Principles of chemical analysis. Beijing: China Science Press. 2000. 276 p.
  • 44. Sanner MF. Python: a programming language for software integration and development. J Mol Graph Model. 1999;17(1):57-61.
  • 45. Jendele L, Krivák R, Škoda P, Novotný M, Hoksza D. PrankWeb: a web server for ligand binding site prediction and visualization. Nucleic Acids Res. 2019;47:345-9. https://doi. org/10.1093/nar/gkz424
  • 46. Laskowski RA, Swindells MB. LigPlot+: Multiple Ligand– Protein Interaction Diagrams for Drug Discovery. J Chem Inf Model. 2011;51(10):2778-86. https://doi.org/10.1021/ ci200227u
  • 47. Adasme MF, Linnemann KL, Bolz SN, Kaiser F, Salentin S, Haupt VJ, et al. PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Res. 2021;49(W1):W530-W4. https://doi.org/10.1093/ nar/gkab294
  • 48. Ortiz CLD, Completo GC, Nacario RC, Nellas RB. Potential Inhibitors of Galactofuranosyltransferase 2 (GlfT2): Molecular Docking, 3D-QSAR, and In Silico ADMETox Studies. Sci Rep. 2019;9(1):17096. https://doi.org/10.1038/ s41598-019-52764-8
  • 49. Tiwari SP, Fuglebakk E, Hollup SM, Skjærven L, Cragnolini T, Grindhaug SH, et al. WEBnm@ v2.0: Web server and services for comparing protein flexibility. BMC Bioinformatics. 2014;15(1):1-12. https://doi.org/10.1186/s12859-014-0427-6
  • 50. Kurcinski M, Oleniecki T, Ciemny MP, Kuriata A, Kolinski A, Kmiecik S. CABS-flex standalone: a simulation environment for fast modeling of protein flexibility. Bioinformatics. 2019;35(4):694-5. https://doi.org/10.1093/bioinformatics/ bty685
  • 51. Pires DEV, Blundell TL, Ascher DB. pkCSM: Predicting Small- Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J Med Chem. 2015;58(9):4066-72. https://doi.org/10.1021/acs.jmedchem.5b00104
  • 52. Chóez-Guaranda I, Viteri-Espinoza R, Barragán-Lucas A, Quijano-Avilés M, Manzano P. Effect of solvent-solvent partition on antioxidant activity and GC-MS profile of Ilex guayusa Loes. leaves extract and fractions. Nat Prod Res. 2022;36(6):1570-4. https://doi.org/10.1080/14786419.2021.1 882455
  • 53. Ebbo AA, Sani D, Suleiman MM, Ahmed A, Hassan AZ. Phytochemical Composition, Proximate Analysis and Antimicrobial Screening of the Methanolic Extract of Diospyros mespiliformis Hochst Ex a. Dc (Ebenaceae). Pharmacognosy Journal. 2019;11(2):362-8. http://dx.doi. org/10.5530/pj.2019.11.55
  • 54. Adamu HM, Yushaus YA. Phyto chemical screening and antioxidant activity of the stem bark extracts of Diospyros mespiliformis: a medicinal plant in Bauchi. International Journal of Pharmacy Research & Technology (IJPRT). 2023;10(1):37-43. https://doi.org/10.31838/ijprt/10.01.08
  • 55. Hajiabdolah N, Parsa A, Anaraki-Ardakani H, Jalali- Jahromi H. Iron (III) reduction as a measure of “antioxidant power” using homo and copolymer of pyrrole and aniline electrosynthesized. Rev Roum Chim. 2020;65(3):247-54. http://dx.doi.org/10.33224/rrch.2020.65.3.04
  • 56. Ladaniya M. Chapter 6 - Fruit biochemistry. In: Ladaniya M, editor. Citrus Fruit (Second Edition): Academic Press; 2023. 247 p. https://doi.org/10.1016/B978-0-323-99306-7.00021-9
  • 57. Gęgotek A, Skrzydlewska E. Chapter Nine - Ascorbic acid as antioxidant. In: Litwack G, editor. Vitam Horm. 121: Academic Press; 2023. 270 p. https://doi.org/10.1016/ bs.vh.2022.10.008
  • 58. Zheng Y, Li X, Wei C, Gao Y, Han G, Zhao J, et al. Longlived phosphorescent carbon dots as photosensitizers for total antioxidant capacity assay. Anal Chem. 2023;95(23):8914-21. https://doi.org/10.1021/acs.analchem.3c00657
  • 59. Shafekh ES, Khalili MAR, Catherine CCW, Syakiroh SZA, Habibah UA, Norhayati AH, et al. Total phenolic content and in vitro antioxidant activity of Vigna sinensis. Int Food Res J. 2012;19(4):1393. http://dx.doi.org/10.3923/pjn.2013.416.422
  • 60. Stankevych L, Khmelnytska Y, Ephanova V. The effect of antioxidants on lipid peroxidation in modern pentathlon athletes. Scientific Journal of National Pedagogical Dragomanov University Series 15 Scientific and pedagogical problems of physical culture (physical culture and sports). 2023;3(162):379-85. https://doi.org/10.31392/npu-nc. series15.2023.3k(162).79
  • 61. Marín R, Abad C, Rojas D, Chiarello DI, Alejandro T-G. Chapter Four - Biomarkers of oxidative stress and reproductive complications. In: Makowski GS, editor. Adv Clin Chem. 113: Elsevier; 2023. 233 p. https://doi.org/10.1016/ bs.acc.2022.11.004
  • 62. Chen S, Chen H, Du Q, Shen J. Targeting Myeloperoxidase (MPO) Mediated Oxidative Stress and Inflammation for Reducing Brain Ischemia Injury: Potential Application of Natural Compounds. Front Physiol. 2020;11: 433. https://doi. org/10.3389/fphys.2020.00433
  • 63. Battistuzzi G, Stampler J, Bellei M, Vlasits J, Soudi M, Furtmüller PG, et al. Influence of the covalent heme– protein bonds on the redox thermodynamics of human myeloperoxidase. Biochemistry. 2011;50(37):7987-94. https:// doi.org/10.1021/bi2008432
  • 64. Battelli MG, Polito L, Bortolotti M, Bolognesi A. Xanthine Oxidoreductase-Derived Reactive Species: Physiological and Pathological Effects. Oxid Med Cell Longev. 2016;2016:3527579. https://doi.org/10.1155/2016/3527579
  • 65. Metz S, Thiel W. QM/MM studies of xanthine oxidase: variations of cofactor, substrate, and active-site Glu802. J Phys Chem B. 2010;114(3):1506-17. https://doi.org/10.1021/ jp909999s
  • 66. Almeida C, Monteiro C, Silvestre S. Inhibitors of 11β-Hydroxysteroid Dehydrogenase Type 1 as Potential Drugs for Type 2 Diabetes Mellitus—A Systematic Review of Clinical and In Vivo Preclinical Studies. Sci Pharm [Internet]. 2021;89(1). https://doi.org/10.3390/scipharm89010005
  • 67. Liu H, Li L, Zhang C, Li H, Liu J, Tang C, et al. 11β-Hydroxysteroid dehydrogenase type 1 inhibitor development by Lentiviral screening based on computational modeling. Pharmacology. 2018;102(3-4):169-79. https://doi. org/10.1159/000491397
  • 68. Bae EJ. Sirtuin 6, a possible therapeutic target for type 2 diabetes. Arch Pharmacal Res. 2017;40(12):1380-9. https:// doi.org/10.1007/s12272-017-0989-8
  • 69. Zhao S, Zhu Y-Y, Wang X-Y, Liu Y-S, Sun Y-X, Zhao Q-J, et al. Structural insight into the interactions between structurally similar inhibitors and SIRT6. Int J Mol Sci. 2020;21(7):2601.

GC-MS Analizi, Antioksidan, Antidiyabetik Aktivite ve Diospyros mespiliformis Hochst'un ADMET Çalışması. Eski A. DC. Ebenaceae Sap Kabuğu

Year 2024, , 198 - 219, 01.09.2024
https://doi.org/10.52794/hujpharm.1356537

Abstract

The present study carried out GC-MS analysis, antioxidant, antidiabetic, and ADMET study of the crude ethanol extract (CRE), ethyl acetate (EAF), and aqueous (AQF) fractions of Diospyros mespiliformis (DM). Grandiflorenic (25.36%) and cis, cis-linoleic (27.13%) acids were the most abundant of the 59 and 40 compounds identified in the EAF and AQF, respectively. The EAF and CRE exhibited total antioxidant capacity of 77.78 ±0.01 ascorbic acid equivalent (mg AAE/g extract) and 60.20 ±0.01 mg AAE/g extract, respectively, significantly (p < 0.05) than the AQF (29.63 ±0.01 mg AAE/g extract). Furthermore, the EAF (38.27% ±2.44) exhibited a significantly (p < 0.05) higher percentage inhibition via the ferric thiocyanate assay than the CRE (17.45% ±2.18) and AQF (15.91% ±2.11). All the extracts showed significantly (p < 0.05) lower malondialdehyde concentrations than AA in the thiobarbituric acid assay. Additionally, the AQF exhibited a significantly higher percentage of H2O2 scavenging than the AA and EAF at 100 µg/ml. Diazoprogesterone (compound III) identified in the EAF exhibited the lowest respective binding affinity and inhibition constant, interacting with myeloperoxidase (-9 kcal/mol and 0.25 µM), xanthine oxidase (-9.9 kcal/mol and 0.05 µM), 11-β-hydroxysteroid dehydrogenase (-10 kcal/mol and 0.05µM), and sirtuin 6 (-10 kcal/mol and 0.05 µM). The molecular dynamics simulations showed residue fluctuations of the diazoprogesterone-docked complexes with the highest observed at Ser42 (5.14 Å), Cys1325 (8.96 Å), Ser281 (7.71 Å), and Leu78 (3.91 Å) for myeloperoxidase, xanthine oxidase, 11-β-hydroxysteroid dehydrogenase, and sirtuin 6, respectively compared to the undocked targets. Moreover, diazoprogesterone was predicted to possess good ADMET properties. Conclusively, DM possesses significant antioxidant and antidiabetic potential, containing compounds that might be a source of novel therapeutics against oxidative stress and diabetes.

References

  • 1. American Diabetes Association Professional Practice Committee. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2022. Diabetes Care. 2022;45(1):S17-S38. https://doi.org/10.2337/dc22-s002
  • 2. Bhatti JS, Sehrawat A, Mishra J, Sidhu IS, Navik U, Khullar N, et al. Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Free Radical Biol Med. 2022;184:114-34. https://doi.org/10.1016/j.freeradbiomed.2022.03.019
  • 3. Domingueti CP, Dusse LMSA, Carvalho MdG, de Sousa LP, Gomes KB, Fernandes AP. Diabetes mellitus: The linkage between oxidative stress, inflammation, hypercoagulability and vascular complications. J Diabetes Complications. 2016;30(4):738-45. https://doi.org/10.1016/j. jdiacomp.2015.12.018
  • 4. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circul Res. 2010;107(9):1058-70. https://doi. org/10.1161/circresaha.110.223545
  • 5. Pasupuleti VR, Arigela CS, Gan SH, Salam SKN, Krishnan KT, Rahman NA, et al. A Review on Oxidative Stress, Diabetic Complications, and the Roles of Honey Polyphenols. Oxid Med Cell Longev. 2020;2020:8878172. https://doi. org/10.1155/2020/8878172
  • 6. Adwas AA, Elsayed A, Azab AE, Quwaydir FA. Oxidative stress and antioxidant mechanisms in human body. J Appl Biotechnol Bioeng. 2019;6(1):43-7. https://doi.org/10.15406/ jabb.2019.06.00173
  • 7. Ali SS, Ahsan H, Zia MK, Siddiqui T, Khan FH. Understanding oxidants and antioxidants: Classical team with new players. J Food Biochem. 2020;44(3):e13145. https://doi.org/10.1111/ jfbc.13145
  • 8. Hayes JD, Dinkova-Kostova AT, Tew KD. Oxidative Stress in Cancer. Cancer Cell. 2020;38(2):167-97. https://doi. org/10.1016/j.ccell.2020.06.001
  • 9. Klaunig JE. Oxidative Stress and Cancer. Curr Pharm Des. 2018;24(40):4771-8. https://doi.org/10.2174/1381612825666 190215121712
  • 10. Abenavoli L, Milic N. Chapter 45 - Silymarin for Liver Disease. In: Muriel P, editor. Liver Pathophysiology. Boston: Academic Press; 2017. 631 p. https://doi.org/10.1016/B978-0- 12-804274-8.00045-X
  • 11. Naris S. Significant Role of Free Radicals in Diabetes Mellitus. Oxidants and Antioxidants in Medical Science. 2022;11(08):1- 2.
  • 12. Dahiru MM, Alfa MB, Abubakar MA, Abdulllahi AP. Assessment of in silico antioxidant, anti-inflammatory, and antidiabetic activites of Ximenia americana L. Olacaceae. Advances in Medical, Pharmaceutical and Dental Research. 2024;4(1):1-13. http://dx.doi.org/10.21622/ AMPDR.2024.04.1.735
  • 13. Dahiru MM, Musa N. Phytochemical Profiling, Antioxidant, Antidiabetic, and ADMET Study of Diospyros mespiliformis Leaf, Hochst Ex A. Dc Ebenaceae. J Fac Pharm Ankara/ Ankara Ecz Fak Derg. 2024;48(2):412-35. http://dx.doi. org/10.33483/jfpau.1354293
  • 14. Dahiru MM, Musa N, Abaka AM, Abubakar MA. Potential Antidiabetic Compounds from Anogeissus leiocarpus: Molecular Docking, Molecular Dynamic Simulation, and ADMET Studies. Borneo J Pharm. 2023;6(3):249-77. https:// doi.org/10.33084/bjop.v6i3.5027
  • 15. Heitaku S, Sasase T, Sotani T, Maki M, Katsumi S, Fukuda S, et al. An 11-beta hydroxysteroid dehydrogenase type 1 inhibitor, JTT-654 ameliorates insulin resistance and non-obese type 2 diabetes. Biol Pharm Bull. 2023;46(7):969-78. https://doi. org/10.1248/bpb.b23-00129
  • 16. Morgan SA, Gathercole LL, Hassan-Smith ZK, Tomlinson J, Stewart PM, Lavery GG. 11β-HSD1 contributes to age-related metabolic decline in male mice. J Endocrinol. 2022;255(3):117-29. https://doi.org/10.1530/joe-22-0169
  • 17. Wu K, Wang Y, Liu R, Rui T. The role of mammalian Sirtuin 6 in cardiovascular diseases and diabetes mellitus. Front Physiol. 2023;14:1207133. https://doi.org/10.3389/ fphys.2023.1207133
  • 18. Wang Y, Enrick M, Gadd J, Yin L. The regulatory role of Sirtuin 6 in coronary endothelial dysfunction in HFpEF. Physiology. 2023;38(S1):5733428. http://dx.doi.org/10.1152/ physiol.2023.38.S1.5733428
  • 19. Sociali G, Magnone M, Ravera S, Damonte P, Vigliarolo T, Von Holtey M, et al. Pharmacological Sirt6 inhibition improves glucose tolerance in a type 2 diabetes mouse model. The FASEB Journal. 2017;31(7):3138. https://doi.org/10.1096/ fj.201601294r
  • 20. Parenti MD, Grozio A, Bauer I, Galeno L, Damonte P, Millo E, et al. Discovery of novel and selective SIRT6 inhibitors. J Med Chem. 2014;57(11):4796-804. https://doi.org/10.1021/ jm500487d
  • 21. Yu G, Liang Y, Zheng S, Zhang H. Inhibition of myeloperoxidase by N-acetyl lysyltyrosylcysteine amide reduces oxidative stress–mediated inflammation, neuronal damage, and neural stem cell injury in a murine model of stroke. J Pharmacol Exp Ther. 2018;364(2):311-22. https://doi.org/10.1124/ jpet.117.245688
  • 22. Chen S, Chen H, Du Q, Shen J. Targeting myeloperoxidase (MPO) mediated oxidative stress and inflammation for reducing brain ischemia injury: Potential application of natural compounds. Front Physiol. 2020;11:433. https://doi. org/10.3389/fphys.2020.00433
  • 23. Romagnoli M, Gomez-Cabrera M-C, Perrelli M-G, Biasi F, Pallardó FV, Sastre J, et al. Xanthine oxidase-induced oxidative stress causes activation of NF-κB and inflammation in the liver of type I diabetic rats. Free Radical Biol Med. 2010;49(2):171- 7. https://doi.org/10.1016/j.freeradbiomed.2010.03.024
  • 24. Dahiru MM, Nadro SM. A review of the Mechanisms of Action and Side Effects of Anti-diabetic Agents. Trends in Pharmaceutical Sciences. 2022;8(3):195-210. http://dx.doi. org/10.30476/TIPS.2022.95931.1153
  • 25. Dahiru MM. Recent advances in the therapeutic potential phytochemicals in managing diabetes. Journal of Clinical and Basic Research. 2023;7(1):13-20. https://jcbr.goums.ac.ir/ article-1-385-en.html
  • 26. Cao S-Y, Li B-Y, Gan R-Y, Mao Q-Q, Wang Y-F, Shang A, et al. The in vivo antioxidant and hepatoprotective actions of selected Chinese teas. Foods. 2020;9(3):262. https://doi. org/10.3390%2Ffoods9030262
  • 27. Dahiru MM, Nadro MS. Phytochemical Composition and Antioxidant Potential of Hyphaene thebaica Fruit. Borneo J Pharm. 2022;5(4):325-33. https://doi.org/10.33084/bjop. v5i4.3632
  • 28. Dahiru MM, Ahmadi H, Faruk MU, Aminu H, Hamman, Abreme GC. Phytochemical Analysis and Antioxidant Potential of Ethylacetate Extract of Tamarindus Indica (Tamarind) Leaves by Frap Assay. Journal of Fundamental and Applied Pharmaceutical Science. 2023;3(2):45-53. https:// doi.org/10.18196/jfaps.v3i2.16708
  • 29. Musa N, Dahiru MM, Badgal EB. Characterization, In Silico Antimalarial, Antiinflammatory, Antioxidant, and ADMET Assessment of Neonauclea excelsa Merr. Sciences of Pharmacy. 2024;3(2):92-107. https://doi.org/10.58920/ sciphar0302232
  • 30. Uduwana S, Abeynayake N, Wickramasinghe I. Synergistic, antagonistic, and additive effects on the resultant antioxidant activity in infusions of green tea with bee honey and Citrus limonum extract as additives. J Agric Food Res. 2023;12:100571. https://doi.org/10.1016/j.jafr.2023.100571
  • 31. Dahiru MM, Umar AS, Muhammad M, Fari II, Musa ZY. Phytoconstituents, Fourier-Transform Infrared Characterization, and Antioxidant Potential of Ethyl Acetate Extract of Corchorus olitorius (Malvaceae). Sciences of Phytochemistry. 2024;3(1):1-10. https://doi.org/10.58920/ sciphy0301208
  • 32. Dahiru MM, Nadro MS. Anti-diabetic potential of Hyphaene thebaica fruit in streptozotocin-induced diabetic rats. J Expl and Molec Biol. 2022;23(1):29-36. https://doi.org/10.47743/ jemb-2022-63
  • 33. Samuel NA, Koura K, Ganglo CJ. Ethnobotanical assessment of Diospyros mespiliformis Hochst. ex A. DC (Ebenaceae) in the classified forest of Wari-Maro (Sudano-guinean area of Benin, West Africa). Ethnobot Res Appl. 2021;22:1-12. http:// dx.doi.org/10.32859/era.22.45.1-12
  • 34. Ebbo AA, Sani D, Suleiman MM, Ahmad A, Hassan AZ. Assessment of antioxidant and wound healing activity of the crude methanolic extract of Diospyros mespiliformis Hochst ex a. Dc (Ebenaceae) and its fractions in Wistar rats. S Afr J Bot. 2022;150:305-12. https://doi.org/10.1016/j.sajb.2022.07.034
  • 35. Muhammad NB, Wasagu RSU, Sani B. Effect of Methanolic Extract of African Ebony (Diospyros mespiliformis) Stem Bark on Liver and Kidney Function Biomarkers in Alloxan Induced Diabetic Albino Rats. Asian J Biochem Genet Mol Biol. 2020;6(3):51-5. https://doi.org/10.9734/ajbgmb/2020/ v6i330156
  • 36. Evans WC. Trease and Evans’ pharmacognosy: Elsevier Health Sciences; 2009. 608 p.
  • 37. Indumathi C, Durgadevi G, Nithyavani S, Gayathri P. Estimation of terpenoid content and its antimicrobial property in Enicostemma litorrale. Int J ChemTech Res. 2014;6(9):4264-7.
  • 38. Dahiru MM, Badgal EB, Musa N. Phytochemistry, GS-MS analysis, and heavy metals composition of aqueous and ethanol stem bark extracts of Ximenia americana. GSC Biol Pharm Sci. 2022;21(3):145-56. http://dx.doi.org/10.30574/ gscbps.2022.21.3.0462
  • 39. Oyaizu M. Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese journal of nutrition and dietetics. 1986;44(6):307-15. http://dx.doi.org/10.5264/ eiyogakuzashi.44.307
  • 40. Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem. 1999;269(2):337- 41. https://doi.org/10.1006/abio.1999.4019
  • 41. Kikuzaki H, Nakatani N. Antioxidant effects of some ginger constituents. J Food Sci. 1993;58(6):1407-10. https://www. doi.org/10.1111/J.1365-2621.1993.TB06194.X
  • 42. Kwon TW, Watts B. Determination of Malonaldehyde by Ultraviolet Spectrophotometry. J Food Sci. 2006;28:627-30. https://doi.org/10.1111/j.1365-2621.1963.tb01666.x
  • 43. Zhang XY. Principles of chemical analysis. Beijing: China Science Press. 2000. 276 p.
  • 44. Sanner MF. Python: a programming language for software integration and development. J Mol Graph Model. 1999;17(1):57-61.
  • 45. Jendele L, Krivák R, Škoda P, Novotný M, Hoksza D. PrankWeb: a web server for ligand binding site prediction and visualization. Nucleic Acids Res. 2019;47:345-9. https://doi. org/10.1093/nar/gkz424
  • 46. Laskowski RA, Swindells MB. LigPlot+: Multiple Ligand– Protein Interaction Diagrams for Drug Discovery. J Chem Inf Model. 2011;51(10):2778-86. https://doi.org/10.1021/ ci200227u
  • 47. Adasme MF, Linnemann KL, Bolz SN, Kaiser F, Salentin S, Haupt VJ, et al. PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Res. 2021;49(W1):W530-W4. https://doi.org/10.1093/ nar/gkab294
  • 48. Ortiz CLD, Completo GC, Nacario RC, Nellas RB. Potential Inhibitors of Galactofuranosyltransferase 2 (GlfT2): Molecular Docking, 3D-QSAR, and In Silico ADMETox Studies. Sci Rep. 2019;9(1):17096. https://doi.org/10.1038/ s41598-019-52764-8
  • 49. Tiwari SP, Fuglebakk E, Hollup SM, Skjærven L, Cragnolini T, Grindhaug SH, et al. WEBnm@ v2.0: Web server and services for comparing protein flexibility. BMC Bioinformatics. 2014;15(1):1-12. https://doi.org/10.1186/s12859-014-0427-6
  • 50. Kurcinski M, Oleniecki T, Ciemny MP, Kuriata A, Kolinski A, Kmiecik S. CABS-flex standalone: a simulation environment for fast modeling of protein flexibility. Bioinformatics. 2019;35(4):694-5. https://doi.org/10.1093/bioinformatics/ bty685
  • 51. Pires DEV, Blundell TL, Ascher DB. pkCSM: Predicting Small- Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J Med Chem. 2015;58(9):4066-72. https://doi.org/10.1021/acs.jmedchem.5b00104
  • 52. Chóez-Guaranda I, Viteri-Espinoza R, Barragán-Lucas A, Quijano-Avilés M, Manzano P. Effect of solvent-solvent partition on antioxidant activity and GC-MS profile of Ilex guayusa Loes. leaves extract and fractions. Nat Prod Res. 2022;36(6):1570-4. https://doi.org/10.1080/14786419.2021.1 882455
  • 53. Ebbo AA, Sani D, Suleiman MM, Ahmed A, Hassan AZ. Phytochemical Composition, Proximate Analysis and Antimicrobial Screening of the Methanolic Extract of Diospyros mespiliformis Hochst Ex a. Dc (Ebenaceae). Pharmacognosy Journal. 2019;11(2):362-8. http://dx.doi. org/10.5530/pj.2019.11.55
  • 54. Adamu HM, Yushaus YA. Phyto chemical screening and antioxidant activity of the stem bark extracts of Diospyros mespiliformis: a medicinal plant in Bauchi. International Journal of Pharmacy Research & Technology (IJPRT). 2023;10(1):37-43. https://doi.org/10.31838/ijprt/10.01.08
  • 55. Hajiabdolah N, Parsa A, Anaraki-Ardakani H, Jalali- Jahromi H. Iron (III) reduction as a measure of “antioxidant power” using homo and copolymer of pyrrole and aniline electrosynthesized. Rev Roum Chim. 2020;65(3):247-54. http://dx.doi.org/10.33224/rrch.2020.65.3.04
  • 56. Ladaniya M. Chapter 6 - Fruit biochemistry. In: Ladaniya M, editor. Citrus Fruit (Second Edition): Academic Press; 2023. 247 p. https://doi.org/10.1016/B978-0-323-99306-7.00021-9
  • 57. Gęgotek A, Skrzydlewska E. Chapter Nine - Ascorbic acid as antioxidant. In: Litwack G, editor. Vitam Horm. 121: Academic Press; 2023. 270 p. https://doi.org/10.1016/ bs.vh.2022.10.008
  • 58. Zheng Y, Li X, Wei C, Gao Y, Han G, Zhao J, et al. Longlived phosphorescent carbon dots as photosensitizers for total antioxidant capacity assay. Anal Chem. 2023;95(23):8914-21. https://doi.org/10.1021/acs.analchem.3c00657
  • 59. Shafekh ES, Khalili MAR, Catherine CCW, Syakiroh SZA, Habibah UA, Norhayati AH, et al. Total phenolic content and in vitro antioxidant activity of Vigna sinensis. Int Food Res J. 2012;19(4):1393. http://dx.doi.org/10.3923/pjn.2013.416.422
  • 60. Stankevych L, Khmelnytska Y, Ephanova V. The effect of antioxidants on lipid peroxidation in modern pentathlon athletes. Scientific Journal of National Pedagogical Dragomanov University Series 15 Scientific and pedagogical problems of physical culture (physical culture and sports). 2023;3(162):379-85. https://doi.org/10.31392/npu-nc. series15.2023.3k(162).79
  • 61. Marín R, Abad C, Rojas D, Chiarello DI, Alejandro T-G. Chapter Four - Biomarkers of oxidative stress and reproductive complications. In: Makowski GS, editor. Adv Clin Chem. 113: Elsevier; 2023. 233 p. https://doi.org/10.1016/ bs.acc.2022.11.004
  • 62. Chen S, Chen H, Du Q, Shen J. Targeting Myeloperoxidase (MPO) Mediated Oxidative Stress and Inflammation for Reducing Brain Ischemia Injury: Potential Application of Natural Compounds. Front Physiol. 2020;11: 433. https://doi. org/10.3389/fphys.2020.00433
  • 63. Battistuzzi G, Stampler J, Bellei M, Vlasits J, Soudi M, Furtmüller PG, et al. Influence of the covalent heme– protein bonds on the redox thermodynamics of human myeloperoxidase. Biochemistry. 2011;50(37):7987-94. https:// doi.org/10.1021/bi2008432
  • 64. Battelli MG, Polito L, Bortolotti M, Bolognesi A. Xanthine Oxidoreductase-Derived Reactive Species: Physiological and Pathological Effects. Oxid Med Cell Longev. 2016;2016:3527579. https://doi.org/10.1155/2016/3527579
  • 65. Metz S, Thiel W. QM/MM studies of xanthine oxidase: variations of cofactor, substrate, and active-site Glu802. J Phys Chem B. 2010;114(3):1506-17. https://doi.org/10.1021/ jp909999s
  • 66. Almeida C, Monteiro C, Silvestre S. Inhibitors of 11β-Hydroxysteroid Dehydrogenase Type 1 as Potential Drugs for Type 2 Diabetes Mellitus—A Systematic Review of Clinical and In Vivo Preclinical Studies. Sci Pharm [Internet]. 2021;89(1). https://doi.org/10.3390/scipharm89010005
  • 67. Liu H, Li L, Zhang C, Li H, Liu J, Tang C, et al. 11β-Hydroxysteroid dehydrogenase type 1 inhibitor development by Lentiviral screening based on computational modeling. Pharmacology. 2018;102(3-4):169-79. https://doi. org/10.1159/000491397
  • 68. Bae EJ. Sirtuin 6, a possible therapeutic target for type 2 diabetes. Arch Pharmacal Res. 2017;40(12):1380-9. https:// doi.org/10.1007/s12272-017-0989-8
  • 69. Zhao S, Zhu Y-Y, Wang X-Y, Liu Y-S, Sun Y-X, Zhao Q-J, et al. Structural insight into the interactions between structurally similar inhibitors and SIRT6. Int J Mol Sci. 2020;21(7):2601.
There are 69 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Biochemistry, Pharmaceutical Chemistry
Journal Section Research Articles
Authors

Muhammad Mubarak Dahıru 0000-0002-1252-3699

Neksumi Musa 0000-0003-1389-021X

Publication Date September 1, 2024
Acceptance Date July 8, 2024
Published in Issue Year 2024

Cite

Vancouver Dahıru MM, Musa N. GC-MS Analysis, Antioxidant, Antidiabetic Activity, and ADMET Study of Diospyros mespiliformis Hochst. Ex A. DC. Ebenaceae Stembark. HUJPHARM. 2024;44(3):198-219.