Research Article
BibTex RIS Cite

GSK-3β inhibitörleri için in siliko ilaç yeniden konumlandırma

Year 2024, , 11 - 16, 01.07.2024
https://doi.org/10.52794/hujpharm.1361472

Abstract

Mikrotübüllerle ilişkili bir protein olan Tau, merkezi sinir sistemi boyunca yaygın olarak dağılır ve mikrotübüllerin polimerizasyonunu, birleşmesini ve stabilitesini destekler. Tau proteinlerinin hiperfosforilasyonu, çok sayıda nörodejeneratif hastalığın patolojik işareti olan ve toplu olarak "tauopatiler" olarak adlandırılan hücre içi nörofibriler yumaklara yol açar. Tau fosforilasyonunda tanımlanan en dikkate değer kinaz, glikojen sentaz kinaz 3'tür (GSK3). GSK-3 izoformları arasında GSK-3β, nörodejeneratif hastalıkların patofizyolojisi ile ilişkilendirilmiştir. GSK-3β'nın farmakolojik inhibisyonunun bu hastalıklar için potansiyel bir terapötik hedef olduğu öne sürülmüştür. Bu çalışmada GSK-3β'ya karşı potansiyel inhibitör ilaçlar için literatür ve veri tabanları araştırıldı ve 58 ilaç bulundu. İlaçlar, ücretsiz web araçları olan SwissADME, pkCSM ve ProTox-II aracılığıyla fizikokimyasal-farmakolojik özelliklere ve toksisite profillerine göre filtrelendi. Ön filtrelemeden sonra geri kalan yedi ilaçla (Nabumeton, Loxoprofen, Ketoprofen, Oksitetrasiklin, Benzoil Peroksit, Naproksen ve Epinefrin Hidroklorür) GSK-3β'ye karşı moleküler yerleştirme gerçekleştirildi. Sonuçlara göre nabumeton, yedi ilaç arasında GSK-3β'ye karşı en iyi bağlanma enerjisine (-7,39 kcal/mol) ve en düşük konsantrasyonda (3,8 µM) inhibisyon yeteneğine sahipti [PF-04802367 ile karşılaştırıldığında oldukça seçici bir beyin nüfuz edici madde kinaz inhibitörü]. Sonuçlarımız nabumetonun potansiyel bir GSK-3β inhibitörü olabileceğini düşündürmektedir.

References

  • 1. Sexton C, Snyder H, Beher D, Boxer AL, Brannelly P, Brion JP, et al. Current directions in tau research: Highlights from Tau 2020. Alzheimers Dement. 2022;18:988-1007. https://doi. org/10.1002/alz.12452
  • 2. Liu M, Dexheimer T, Sui D, Hovde S, Deng X, Kwok R, Bochar DA, et al. Hyperphosphorylated tau aggregation and cytotoxicity modulators screen identified prescription drugs linked to Alzheimer’s disease and cognitive functions. Sci Rep. 2020;10:16551. https://doi.org/10.1038/s41598-020- 73680-2
  • 3. Moore KBE, Hung TJ, Fortin JS. Hyperphosphorylated tau (ptau) and drug discovery in the context of Alzheimer’s disease and related tauopathies. Drug Discov Today. 2023;28(3):103487. https://doi.org/10.1016/j.drudis.2023.103487
  • 4. Arciniegas RSM, Eldar-Finkelman H. Glycogen Synthase Kinase-3 Inhibitors: Preclinical and Clinical Focus on CNS A Decade Onward. Front Mol Neurosci. 2022;14:792364. https://doi.org/10.3389/fnmol.2021.792364
  • 5. Lauretti E, Dincer O, Praticò D. Glycogen synthase kinase- 3 signaling in Alzheimer’s disease. Biochimica et biophysica acta. Mol Cell. 2020;1867(5):118664. https://doi. org/10.1016/j.bbamcr.2020.118664
  • 6. Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019;18(1):41–58. https:// doi.org/10.1038/nrd.2018.168
  • 7. Yan D, Zheng G, Wang C, Chen Z, Mao T, Gao J, et al. HIT 2.0: an enhanced platform for Herbal Ingredients’ Targets. Nucleic Acids Res. 2022;50(1):1238–43. https://doi.org/10.1093/ nar/gkab1011
  • 8. Mendez D, Gaulton A, Bento AP, Chambers J, De-Veij M, Félix E, et al. ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res. 2019;47(1),930–40. https://doi. org/10.1093/nar/gky1075
  • 9. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717. https://doi.org/10.1038/srep42717
  • 10. Pires DE, Blundell TL, Ascher DB. pkCSM: Predicting Small- Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J Med Chem. 2015;58(9):4066-72. https://doi.org/10.1021/acs.jmedchem.5b00104
  • 11. Banerjee P, Eckert AO, Schrey AK, Preissner R. (2018). ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018;46(1):257–63. https://doi. org/10.1093/nar/gky318
  • 12. Kuzu B, Karakuş F. Natural Compounds Targeting VEGFRs in Kidney Cancer: An In-silico Prediction. J Inst Sci and Tech. 2022;12(3):1711-22. https://doi.org/10.21597/jist.1108551
  • 13. Karakuş F, Kuzu B. Possible Cardioprotective Mechanism of Action of Dexrazoxane, And Probable Human Topoisomerase IIβ Inhibitors: An In Silico Analysis. J Fac Pharm Ankara. 2022;46(2):474-86. https://doi.org/10.33483/jfpau.1085504
  • 14. Liang SH, Chen JM, Normandin MD, Chang JS, Chang GC, Taylor CK, et al. Discovery of a Highly Selective Glycogen Synthase Kinase-3 Inhibitor (PF-04802367) That Modulates Tau Phosphorylation in the Brain: Translation for PET Neuroimaging. Angewandte Chemie (International ed. in English), 2016;55(33):9601–05. https://doi.org/10.1002/ anie.201603797

In Silico Drug Repurposing As Inhibitors Against GSK-3β

Year 2024, , 11 - 16, 01.07.2024
https://doi.org/10.52794/hujpharm.1361472

Abstract

Tau, a protein associated with microtubules, is widely distributed throughout the
central nervous system and promotes the polymerization, assembly, and stability
of microtubules. Hyperphosphorylation of tau proteins leads to intracellular
neurofibrillary tangles, which are the pathological hallmark of numerous neurodegenerative
diseases and are collectively referred to as “tauopathies”. The most
notable kinase identified in tau phosphorylation is glycogen synthase kinase 3
(GSK-3). Among the GSK-3 isoforms, GSK-3β has been linked to the pathophysiology
of neurodegenerative diseases. Pharmacological inhibition of GSK-3β has
been suggested as a potential therapeutic target for these diseases. In this study,
the literature and databases were searched for potential inhibitory drugs against
GSK-3β and 58 drugs were found. The drugs were filtered according to physicochemical-
pharmacological properties and toxicity profiles via SwissADME,
pkCSM, and ProTox-II, free web tools. After pre-filtration, molecular docking
was performed against GSK-3β with the remaining seven drugs (Nabumeton,
Loxoprofen, Ketoprofen, Oxytetracycline, Benzoyl Peroxide, Naproxen, and
Epinephrine Hydrochloride). According to the results, nabumetone had the best
binding energy (-7.39 kcal/mol) and inhibition ability at the lowest concentration
(3.8 μM) against GSK-3β among the seven drugs [compared to PF-04802367, a
highly selective brain-penetrant kinase inhibitor]. Our results suggest that nabumetone
may be a potential inhibitor of GSK-3β.

Ethical Statement

It is declared that ethics committee approval is not required for this study.

Thanks

The authors also thank Van Yüzüncü Yıl University, Faculty of Pharmacy, for the opportunity required for this study.

References

  • 1. Sexton C, Snyder H, Beher D, Boxer AL, Brannelly P, Brion JP, et al. Current directions in tau research: Highlights from Tau 2020. Alzheimers Dement. 2022;18:988-1007. https://doi. org/10.1002/alz.12452
  • 2. Liu M, Dexheimer T, Sui D, Hovde S, Deng X, Kwok R, Bochar DA, et al. Hyperphosphorylated tau aggregation and cytotoxicity modulators screen identified prescription drugs linked to Alzheimer’s disease and cognitive functions. Sci Rep. 2020;10:16551. https://doi.org/10.1038/s41598-020- 73680-2
  • 3. Moore KBE, Hung TJ, Fortin JS. Hyperphosphorylated tau (ptau) and drug discovery in the context of Alzheimer’s disease and related tauopathies. Drug Discov Today. 2023;28(3):103487. https://doi.org/10.1016/j.drudis.2023.103487
  • 4. Arciniegas RSM, Eldar-Finkelman H. Glycogen Synthase Kinase-3 Inhibitors: Preclinical and Clinical Focus on CNS A Decade Onward. Front Mol Neurosci. 2022;14:792364. https://doi.org/10.3389/fnmol.2021.792364
  • 5. Lauretti E, Dincer O, Praticò D. Glycogen synthase kinase- 3 signaling in Alzheimer’s disease. Biochimica et biophysica acta. Mol Cell. 2020;1867(5):118664. https://doi. org/10.1016/j.bbamcr.2020.118664
  • 6. Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019;18(1):41–58. https:// doi.org/10.1038/nrd.2018.168
  • 7. Yan D, Zheng G, Wang C, Chen Z, Mao T, Gao J, et al. HIT 2.0: an enhanced platform for Herbal Ingredients’ Targets. Nucleic Acids Res. 2022;50(1):1238–43. https://doi.org/10.1093/ nar/gkab1011
  • 8. Mendez D, Gaulton A, Bento AP, Chambers J, De-Veij M, Félix E, et al. ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res. 2019;47(1),930–40. https://doi. org/10.1093/nar/gky1075
  • 9. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717. https://doi.org/10.1038/srep42717
  • 10. Pires DE, Blundell TL, Ascher DB. pkCSM: Predicting Small- Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J Med Chem. 2015;58(9):4066-72. https://doi.org/10.1021/acs.jmedchem.5b00104
  • 11. Banerjee P, Eckert AO, Schrey AK, Preissner R. (2018). ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018;46(1):257–63. https://doi. org/10.1093/nar/gky318
  • 12. Kuzu B, Karakuş F. Natural Compounds Targeting VEGFRs in Kidney Cancer: An In-silico Prediction. J Inst Sci and Tech. 2022;12(3):1711-22. https://doi.org/10.21597/jist.1108551
  • 13. Karakuş F, Kuzu B. Possible Cardioprotective Mechanism of Action of Dexrazoxane, And Probable Human Topoisomerase IIβ Inhibitors: An In Silico Analysis. J Fac Pharm Ankara. 2022;46(2):474-86. https://doi.org/10.33483/jfpau.1085504
  • 14. Liang SH, Chen JM, Normandin MD, Chang JS, Chang GC, Taylor CK, et al. Discovery of a Highly Selective Glycogen Synthase Kinase-3 Inhibitor (PF-04802367) That Modulates Tau Phosphorylation in the Brain: Translation for PET Neuroimaging. Angewandte Chemie (International ed. in English), 2016;55(33):9601–05. https://doi.org/10.1002/ anie.201603797
There are 14 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Chemistry, Basic Pharmacology, Toxicology
Journal Section Research Articles
Authors

Elif Deniz 0000-0003-1276-0245

Fuat Karakuş 0000-0002-5260-3650

Burak Kuzu 0000-0002-7305-7177

Publication Date July 1, 2024
Acceptance Date November 1, 2023
Published in Issue Year 2024

Cite

Vancouver Deniz E, Karakuş F, Kuzu B. In Silico Drug Repurposing As Inhibitors Against GSK-3β. HUJPHARM. 2024(Special Issue / International Multidisciplinary Symposium on Drug Research and Development, DRD-2023):11-6.