Review
BibTex RIS Cite

Kanser Tedavisinde Bakteri Destekli İlaç Taşıyıcı Sistemler

Year 2024, , 75 - 91, 01.03.2024
https://doi.org/10.52794/hujpharm.1392635

Abstract

Kanser tedavisine yönelik terapötiklerin ve tedavi yaklaşımlarının geliştirilmesine rağmen hastalık dünya çapında önde gelen ölüm nedenlerinden biridir. Spesifite eksikliği, sitotoksisite ve çoklu ilaç direnci gibi sınırlamalar nedeniyle kemoterapi, radyasyon terapisi ve immünoterapi gibi kanser tedavileri ile henüz istenen düzeyde başarı elde edilememiştir. Bu nedenle yan etkilerin azaltılarak etkin bir tedavinin gerçekleştirilebilmesi için hedefe yönelik tedavilerin geliştirilmesi büyük önem taşımaktadır. Ancak kanser mikroçevresi, vaskülarizasyonu ve hipoksik bölgeleri ile hedeflendirme için birçok fizyolojik engele sahiptir. 1800’lü yıllardan günümüze kadar yapılan araştırmalar, bakterilerin bu fizyolojik engelleri aşarak kanser dokusuna seçici olduğunu göstermiştir. Bakterilerin doğal olarak tümör dokularını hedefleme ve dokuda birikme özelliklerine sahip olduğunun keşfedilmesiyle birlikte araştırmacılar, bakteri destekli ilaç taşıyıcı sistemler üzerine yoğunlaşmıştır. Bakterilerin hareketlilik, immün yanıt oluşturma ve kolay modifikasyon özelliğiyle konvansiyonel ilaç taşıyıcı sistemlerden daha üstün olduğu bildirilmiştir. Bu derlemede kanser tedavisine yönelik bakteri destekli ilaç taşıyıcı sistemler konusunda literatürde yer alan en güncel gelişmeler değerlendirilmiştir.

References

  • 1. Baran Deniz E. Kanser Epidemiyolojisi. Türkiye Sağlık Okuryazarlığı Dergisi. 2022;3(2): 102-111. https://doi.org10.54247/soyd.2022.49
  • 2. Arruebo M, Vilaboa N, Saez-Gutierrez B, Lambea J, Tres A, Valladares M, et al. Assessment of the evolution of cancer treatment therapies. Cancers (Basel). 2011;3(3):3279-330. https://doi.org10.3390/cancers3033279
  • 3. Sedighi M, Zahedi Bialvaei A, Hamblin MR, Ohadi E, Asadi A, Halajzadeh M, et al. Therapeutic bacteria to combat cancer; current advances, challenges, and opportunities. Cancer Med. 2019;8(6):3167-81. https://doi.org10.1002/cam4.2148
  • 4. Padma VV. An overview of targeted cancer therapy. Biomedicine (Taipei). 2015;5(4):19. https://doi.org10.7603/s40681-015-0019-4
  • 5. Forbes NS. Engineering the perfect (bacterial) cancer therapy. Nat Rev Cancer. 2010;10(11):785-94. https://doi.org10.1038/nrc2934
  • 6. Cronin M, Stanton RM, Francis KP, Tangney M. Bacterial vectors for imaging and cancer gene therapy: a review. Cancer Gene Ther. 2012;19(11):731-40. https://doi.org10.1038/cgt.2012.59
  • 7. Bidram E, Esmaeili Y, Ranji-Burachaloo H, Al-Zaubai N, Zarrabi A, Stewart A, et al. A concise review on cancer treatment methods and delivery systems. Journal of Drug Delivery Science and Technology. 2019;54:101350. https://doi.org10.1016/j.jddst.2019.101350
  • 8. Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM, et al. Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin. 2019;69(5):363-85. https://doi.org10.3322/caac.21565
  • 9. Dearnaley DP, Khoo VS, Norman AR, Meyer L, Nahum A, Tait D, et al. Comparison of radiation side-effects of conformal and conventional radiotherapy in prostate cancer: a randomised trial. Lancet. 1999;353(9149):267-72. https://doi.org10.1016/S0140-6736(98)05180-0
  • 10. Tredan O, Galmarini CM, Patel K, Tannock IF. Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst. 2007;99(19):1441-54. https://doi.org10.1093/jnci/djm135
  • 11. Minchinton AI, Tannock IF. Drug penetration in solid tumours. Nat Rev Cancer. 2006;6(8):583-92. https://doi.org10.1038/nrc1893
  • 12. Vitale M, Cantoni C, Pietra G, Mingari MC, Moretta L. Effect of tumor cells and tumor microenvironment on NK-cell function. Eur J Immunol. 2014;44(6):1582-92. https://doi.org10.1002/eji.201344272
  • 13. Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018;24(5):541-50. https://doi.org10.1038/s41591-018-0014-x
  • 14. Wang J, Lei K, Han F. Tumor microenvironment: recent advances in various cancer treatments. European review for medical and pharmacological sciences. 2018;22(12):3855-64. https://doi.org10.26355/eurrev_201806_15270
  • 15. Riley RS, June CH, Langer R, Mitchell MJ. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov. 2019;18(3):175-96. https://doi.org10.1038/s41573-018-0006-z
  • 16. Ventola CL. Cancer immunotherapy, part 3: challenges and future trends. Pharmacy and Therapeutics. 2017;42(8):514.
  • 17. Yu MK, Park J, Jon S. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics. 2012;2(1):3-44. https://doi.org10.7150/thno.3463
  • 18. Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. 2014;66:2-25. https://doi.org10.1016/j.addr.2013.11.009
  • 19. Erkoc P, Yasa IC, Ceylan H, Yasa O, Alapan Y, Sitti M. Mobile microrobots for active therapeutic delivery. Advanced Therapeutics. 2019;2(1):1800064. https://doi.org/10.1002/adtp.201800064
  • 20. Krischke M, Hempel G, Völler S, André N, D’Incalci M, Bisogno G, et al. Pharmacokinetic and pharmacodynamic study of doxorubicin in children with cancer: results of a “European Pediatric Oncology Off-patents Medicines Consortium” trial. Cancer chemotherapy and pharmacology. 2016;78:1175-84. https://doi.org10.1007/s00280-016-3174-8
  • 21. Pabla N, Dong Z. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney international. 2008;73(9):994-1007. https://doi.org/10.1038/sj.ki.5002786
  • 22. Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, et al. Analysis of nanoparticle delivery to tumours. Nature reviews materials. 2016;1(5):1-12. https://doi.org10.1038/natrevmats.2016.14
  • 23. Nallar SC, Xu DQ, Kalvakolanu DV. Bacteria and genetically modified bacteria as cancer therapeutics: Current advances and challenges. Cytokine. 2017;89:160-72. https://doi.org10.1016/j.cyto.2016.01.002
  • 24. Duong MT, Qin Y, You SH, Min JJ. Bacteria-cancer interactions: bacteria-based cancer therapy. Exp Mol Med. 2019;51(12):1-15. https://doi.org10.1038/s12276-019-0297-0
  • 25. St Jean AT, Zhang M, Forbes NS. Bacterial therapies: completing the cancer treatment toolbox. Curr Opin Biotechnol. 2008;19(5):511-7. https://doi.org10.1016/j.copbio.2008.08.004
  • 26. Kasinskas RW, Forbes NS. Salmonella typhimurium lacking ribose chemoreceptors localize in tumor quiescence and induce apoptosis. Cancer Res. 2007;67(7):3201-9. https://doi.org10.1158/0008-5472.CAN-06-2618
  • 27. Karmakar R. State of the art of bacterial chemotaxis. J Basic Microbiol. 2021;61(5):366-79. https://doi.org10.1002/ jobm.202000661
  • 28. Chen Y, Du M, Yu J, Rao L, Chen X, Chen Z. Nanobiohybrids: A Synergistic Integration of Bacteria and Nanomaterials in Cancer Therapy. BIO Integration. 2020;1(1):25-36. https://doi.org10.15212/bioi-2020-0008
  • 29. Felgner S, Kocijancic D, Frahm M, Weiss S. Bacteria in Cancer Therapy: Renaissance of an Old Concept. Int J Microbiol. 2016;2016:8451728. https://doi.org10.1155/2016/8451728
  • 30. McCarthy EF. The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. The Iowa orthopaedic journal. 2006;26:154. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1888599/
  • 31. Patyar S, Joshi R, Byrav D, Prakash A, Medhi B, Das B. Bacteria in cancer therapy: a novel experimental strategy. Journal of biomedical science. 2010;17(1):1-9. https://doi.org10.1186/1423-0127-17-21
  • 32. Kramer MG, Masner M, Ferreira FA, Hoffman RM. Bacterial Therapy of Cancer: Promises, Limitations, and Insights for Future Directions. Front Microbiol. 2018;9:16. https://doi.org10.3389/fmicb.2018.00016
  • 33. Uemura N, Okamoto S, Yamamoto S, Matsumura N, Yamaguchi S, Yamakido M, et al. Helicobacter pylori infection and the development of gastric cancer. New England journal of medicine. 2001;345(11):784-9. https://doi.org10.1056/NEJMoa001999
  • 34. Cummins J, Tangney M. Bacteria and tumours: causative agents or opportunistic inhabitants? Infectious agents and cancer. 2013;8(1):1-8. https://doi.org10.1186/1750-9378-8-11
  • 35. Liong M-T. Safety of probiotics: translocation and infection. Nutrition reviews. 2008;66(4):192-202. https://doi.org/10.1111/j.1753-4887.2008.00024.x
  • 36. Zhao M, Yang M, Ma H, Li X, Tan X, Li S, et al. Targeted therapy with a Salmonella typhimurium leucine-arginine auxotroph cures orthotopic human breast tumors in nude mice. Cancer Res. 2006;66(15):7647-52. https://doi.org10.1158/0008-5472.CAN-06-0716
  • 37. Suh S, Jo A, Traore MA, Zhan Y, Coutermarsh-Ott SL, Ringel-Scaia VM, et al. Nanoscale bacteria-enabled autonomous drug delivery system (NanoBEADS) enhances intratumoral transport of nanomedicine. Advanced Science. 2019;6(3):1801309. https://doi.org/10.1002/advs.201801309
  • 38. Jiang SN, Phan TX, Nam TK, Nguyen VH, Kim HS, Bom HS, et al. Inhibition of tumor growth and metastasis by a combination of Escherichia coli-mediated cytolytic therapy and radiotherapy. Mol Ther. 2010;18(3):635-42. https://doi.org10.1038/mt.2009.295
  • 39. Yang H, Jiang F, Ji X, Wang L, Wang Y, Zhang L, et al. Genetically Engineered Bacterial Protein Nanoparticles for Targeted Cancer Therapy. Int J Nanomedicine. 2021;16:105-17. https:// doi.org10.2147/IJN.S292432
  • 40. Stern C, Kasnitz N, Kocijancic D, Trittel S, Riese P, Guzman CA, et al. Induction of CD4(+) and CD8(+) anti-tumor effector T cell responses by bacteria mediated tumor therapy. Int J Cancer. 2015;137(8):2019-28. https://doi.org10.1002/ijc.29567
  • 41. Morrissey D, O’Sullivan GC, Tangney M. Tumour targeting with systemically administered bacteria. Current gene therapy. 2010;10(1):3-14. https://doi.org/10.2174/156652310790945575
  • 42. Ding L, Lu Z, Lu Q, Chen YH. The claudin family of proteins in human malignancy: a clinical perspective. Cancer Manag Res. 2013;5:367-75. https://doi.org10.2147/CMAR.S38294
  • 43. Luo Y, Xu D, Gao X, Xiong J, Jiang B, Zhang Y, et al. Nanoparticles conjugated with bacteria targeting tumors for precision imaging and therapy. Biochemical and biophysical research communications. 2019;514(4):1147-53. https://doi.org/10.1016/j.bbrc.2019.05.074
  • 44. Shahabi V, Maciag PC, Rivera S, Wallecha A. Live, attenuated strains of Listeria and Salmonella as vaccine vectors in cancer treatment. Bioeng Bugs. 2010;1(4):235-43. https://doi.org10.4161/bbug.1.4.11243
  • 45. Rong L, Lei Q, Zhang XZ. Engineering Living Bacteria for Cancer Therapy. ACS Appl Bio Mater. 2020;3(12):8136-45. https://doi.org10.1021/acsabm.0c01286
  • 46. Yin T, Diao Z, Blum NT, Qiu L, Ma A, Huang P. Engineering Bacteria and Bionic Bacterial Derivatives with Nanoparticles for Cancer Therapy. Small. 2022;18(12):e2104643. https://doi.org10.1002/smll.202104643
  • 47. Friedlos F, Lehouritis P, Ogilvie L, Hedley D, Davies L, Bermudes D, et al. Attenuated Salmonella targets prodrug activating enzyme carboxypeptidase G2 to mouse melanoma and human breast and colon carcinomas for effective suicide gene therapy. Clinical Cancer Research. 2008;14(13):4259-66. https://doi.org/10.1158/1078-0432.ccr-07-4800
  • 48. Cheng C, Lu Y, Chuang K, Hung W, Shiea J, Su Y, et al. Tumortargeting prodrug-activating bacteria for cancer therapy. Cancer gene therapy. 2008;15(6):393-401. https://doi.org/10.1038/cgt.2008.10
  • 49. Durrer KE, Allen MS, Hunt von Herbing I. Genetically engineered probiotic for the treatment of phenylketonuria (PKU); assessment of a novel treatment in vitro and in the PAHenu2 mouse model of PKU. PloS one. 2017;12(5):e0176286. https://doi.org/10.1371/journal.pone.0176286
  • 50. Steidler L, Hans W, Schotte L, Neirynck S, Obermeier F, Falk W, et al. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science. 2000;289(5483):1352-5. https://doi.org/10.1126/science.289.5483.1352
  • 51. Vågesjö E, Öhnstedt E, Mortier A, Lofton H, Huss F, Proost P, et al. Accelerated wound healing in mice by on-site production and delivery of CXCL12 by transformed lactic acid bacteria. Proceedings of the National Academy of Sciences. 2018;115(8):1895-900. https://doi.org/10.1073/pnas.1716580115
  • 52. Shen H, Aggarwal N, Wun KS, Lee YS, Hwang IY, Chang MW. Engineered microbial systems for advanced drug delivery. Adv Drug Deliv Rev. 2022;187:114364. https://doi.org10.1016/j.addr.2022.114364
  • 53. Borghaei H, Smith MR, Campbell KS. Immunotherapy of cancer. Eur J Pharmacol. 2009;625(1-3):41-54. https://doi.org10.1016/j.ejphar.2009.09.067
  • 54. Baumeister SH, Freeman GJ, Dranoff G, Sharpe AH. Coinhibitory pathways in immunotherapy for cancer. Annual review of immunology. 2016;34:539-73. https://doi.org/10.1146/annurev-immunol-032414-112049
  • 55. Felgner S, Kocijancic D, Frahm M, Heise U, Rohde M, Zimmermann K, et al. Engineered Salmonella enterica serovar Typhimurium overcomes limitations of anti-bacterial immunity in bacteria-mediated tumor therapy. Oncoimmunology. 2018;7(2):e1382791. https://doi.org/10.1080/2162402x.2017.1382791
  • 56. Hu Q, Wu M, Fang C, Cheng C, Zhao M, Fang W, et al. Engineering nanoparticle-coated bacteria as oral DNA vaccines for cancer immunotherapy. Nano Lett. 2015;15(4):2732-9. https://doi.org10.1021/acs.nanolett.5b00570
  • 57. Weerakkody LR, Witharana C. The role of bacterial toxins and spores in cancer therapy. Life Sci. 2019;235:116839. https://doi.org10.1016/j.lfs.2019.116839
  • 58. Barbe S, Van Mellaert L, Anne J. The use of clostridial spores for cancer treatment. J Appl Microbiol. 2006;101(3):571-8. https://doi.org10.1111/j.1365-2672.2006.02886.x
  • 59. Umer B, Good D, Anne J, Duan W, Wei MQ. Clostridial spores for cancer therapy: targeting solid tumour microenvironment. J Toxicol. 2012;2012:862764. https://doi.org10.1155/2012/862764
  • 60. Janku F, Zhang HH, Pezeshki A, Goel S, Murthy R, Wang-Gillam A, et al. Intratumoral Injection of Clostridium novyi-NT Spores in Patients with Treatment-refractory Advanced Solid Tumors. Clin Cancer Res. 2021;27(1):96-106. https://doi.org10.1158/1078-0432.CCR-20-2065
  • 61. Kaparakis-Liaskos M, Ferrero RL. Immune modulation by bacterial outer membrane vesicles. Nature Reviews Immunology. 2015;15(6):375-87. https://doi.org/10.1038/nri3837
  • 62. Li M, Zhou H, Yang C, Wu Y, Zhou X, Liu H, et al. Bacterial outer membrane vesicles as a platform for biomedical applications: An update. Journal of Controlled Release. 2020;323:253-68.
  • 63. Gujrati V, Kim S, Kim S-H, Min JJ, Choy HE, Kim SC, et al. Bioengineered bacterial outer membrane vesicles as cellspecific drug-delivery vehicles for cancer therapy. ACS nano. 2014;8(2):1525-37. https://doi.org/10.1021/nn405724x
  • 64. Qing S, Lyu C, Zhu L, Pan C, Wang S, Li F, et al. Biomineralized bacterial outer membrane vesicles potentiate safe and efficient tumor microenvironment reprogramming for anticancer therapy. Advanced Materials. 2020;32(47):2002085. https://doi.org/10.1002/adma.202002085
  • 65. Kim OY, Park HT, Dinh NTH, Choi SJ, Lee J, Kim JH, et al. Bacterial outer membrane vesicles suppress tumor by interferon-γ-mediated antitumor response. Nature communications. 2017;8(1):626. https://doi.org/10.1038/s41467-017-00729-8
  • 66. Lubran MM. Bacterial toxins. Annals of Clinical & Laboratory Science. 1988;18(1):58-71.
  • 67. Kreitman RJ, Wilson WH, White JD, Stetler-Stevenson M, Jaffe ES, Giardina S, et al. Phase I trial of recombinant immunotoxin anti-Tac (Fv)-PE38 (LMB-2) in patients with hematologic malignancies. Journal of Clinical Oncology. 2000;18(8):1622-36. https://doi.org/10.1200/jco.2000.18.8.1622
  • 68. Pahle J, Menzel L, Niesler N, Kobelt D, Aumann J, Rivera M, et al. Rapid eradication of colon carcinoma by Clostridium perfringens Enterotoxin suicidal gene therapy. BMC cancer. 2017;17:1-14.
  • 69. Sitti M, Ceylan H, Hu W, Giltinan J, Turan M, Yim S, et al. Biomedical Applications of Untethered Mobile Milli/Microrobots. Proc IEEE Inst Electr Electron Eng. 2015;103(2):205-24. https://doi.org10.1109/JPROC.2014.2385105
  • 70. Ceylan H, Giltinan J, Kozielski K, Sitti M. Mobile microrobots for bioengineering applications. Lab on a Chip. 2017;17(10):1705-24. https://doi.org/10.1039/c7lc00064b
  • 71. Erkoc P, Yasa IC, Ceylan H, Yasa O, Alapan Y, Sitti M. Mobile Microrobots for Active Therapeutic Delivery. Advanced Therapeutics. 2019;2(1). https://doi.org10.1002/adtp.201800064
  • 72. Mostaghaci B, Yasa O, Zhuang J, Sitti M. Bioadhesive bacterial microswimmers for targeted drug delivery in the urinary and gastrointestinal tracts. Advanced Science. 2017;4(6):1700058. https://doi.org/10.1002/advs.201700058
  • 73. Darnton N, Turner L, Breuer K, Berg HC. Moving fluid with bacterial carpets. Biophysical journal. 2004;86(3):1863-70. https://doi.org/10.1016%2FS0006-3495(04)74253-8
  • 74. Sanna V, Pala N, Sechi M. Targeted therapy using nanotechnology: focus on cancer. Int J Nanomedicine. 2014;9:467-83. https://doi.org10.2147/IJN.S36654
  • 75. Magennis EP, Fernandez-Trillo F, Sui C, Spain SG, Bradshaw DJ, Churchley D, et al. Bacteria-instructed synthesis of polymers for self-selective microbial binding and labelling. Nat Mater. 2014;13(7):748-55. https://doi.org10.1038/nmat3949
  • 76. Hosseinidoust Z, Mostaghaci B, Yasa O, Park BW, Singh AV, Sitti M. Bioengineered and biohybrid bacteria-based systems for drug delivery. Adv Drug Deliv Rev. 2016;106(Pt A):27-44. https://doi.org10.1016/j.addr.2016.09.007
  • 77. Cao Z, Liu J. Bacteria and bacterial derivatives as drug carriers for cancer therapy. J Control Release. 2020; 326:396-407. https://doi.org10.1016/j.jconrel.2020.07.009
  • 78. Zoaby N, Shainsky-Roitman J, Badarneh S, Abumanhal H, Leshansky A, Yaron S, et al. Autonomous bacterial nanoswimmers target cancer. J Control Release. 2017;257:68-75. https://doi.org10.1016/j.jconrel.2016.10.006
  • 79. Xie S, Chen M, Song X, Zhang Z, Zhang Z, Chen Z, et al. Bacterial microbots for acid-labile release of hybrid micelles to promote the synergistic antitumor efficacy. Acta Biomater. 2018;78:198-210. https://doi.org10.1016/j.actbio.2018.07.041
  • 80. Shi H, Chen L, Liu Y, Wen Q, Lin S, Wen Q, et al. Bacteria-Driven Tumor Microenvironment-Sensitive NanoparticlesTargeting Hypoxic Regions Enhances the Chemotherapy Outcome of Lung Cancer. Int J Nanomedicine. 2023;18:1299-315. https://doi.org10.2147/IJN.S396863
  • 81. Yan S, Zeng X, Wang Y, Liu BF. Biomineralization of Bacteria by a Metal-Organic Framework for Therapeutic Delivery. Adv Healthc Mater. 2020;9(12):e2000046. https://doi.org10.1002/adhm.202000046
  • 82. Park BW, Zhuang J, Yasa O, Sitti M. Multifunctional Bacteria-Driven Microswimmers for Targeted Active Drug Delivery. ACS Nano. 2017;11(9):8910-23. https://doi.org10.1021/acsnano.7b03207
  • 83. Nguyen VD, Han J-W, Choi YJ, Cho S, Zheng S, Ko SY, et al. Active tumor-therapeutic liposomal bacteriobot combining a drug (paclitaxel)-encapsulated liposome with targeting bacteria (Salmonella Typhimurium). Sensors and Actuators B: Chemical. 2016;224:217-24. https://doi.org10.1016/j.snb.2015.09.034
  • 84. Suh S, Jo A, Traore MA, Zhan Y, Coutermarsh-Ott SL, Ringel-Scaia VM, et al. Nanoscale Bacteria-Enabled Autonomous Drug Delivery System (NanoBEADS) Enhances Intratumoral Transport of Nanomedicine. Adv Sci (Weinh). 2019;6(3):1801309. https://doi.org10.1002/advs.201801309
  • 85. Wang JW, Chen QW, Luo GF, Han ZY, Song WF, Yang J, et al. A Self-Driven Bioreactor Based on Bacterium-Metal-Organic Framework Biohybrids for Boosting Chemotherapy via Cyclic Lactate Catabolism. ACS Nano. 2021;15(11):17870-84. https://doi.org10.1021/acsnano.1c06123
  • 86. Pandey M, Choudhury H, Vijayagomaran PA, Lian PNP, Ning TJ, Wai NZ, et al. Recent Update on Bacteria as a Delivery Carrier in Cancer Therapy: From Evil to Allies. Pharm Res. 2022;39(6):1115-34. https://doi.org10.1007/s11095-022-03240-y
  • 87. Paukner S, Kohl G, Lubitz W. Bacterial ghosts as novel advanced drug delivery systems: antiproliferative activity of loaded doxorubicin in human Caco-2 cells. Journal of Controlled Release. 2004;94(1):63-74. https://doi.org10.1016/j.jconrel.2003.09.010
  • 88. Shi H, Chen L, Liu Y, Wen Q, Lin S, Wen Q, et al. Bacteria-Driven Tumor Microenvironment-Sensitive Nanoparticles Targeting Hypoxic Regions Enhances the Chemotherapy Outcome of Lung Cancer. Int J Nanomedicine. 2023;18:1299-315. https://doi.org10.2147/IJN.S396863
  • 89. Yan S, Zeng X, Wang Y, Liu BF. Biomineralization of Bacteria by a Metal-Organic Framework for Therapeutic Delivery. Adv Healthc Mater. 2020;9(12):e2000046. https://doi.org10.1002/adhm.202000046
  • 90. Park BW, Zhuang J, Yasa O, Sitti M. Multifunctional Bacteria-Driven Microswimmers for Targeted Active Drug Delivery. ACS Nano. 2017;11(9):8910-23. https://doi.org10.1021/acsnano.7b03207
  • 91. Nguyen VD, Han J-W, Choi YJ, Cho S, Zheng S, Ko SY, et al. Active tumor-therapeutic liposomal bacteriobot combining a drug (paclitaxel)-encapsulated liposome with targeting bacteria (Salmonella Typhimurium). Sensors and Actuators B: Chemical. 2016;224:217-24. https://doi.org10.1016/j.snb.2015.09.034
  • 92. Yang M, Yang F, Chen W, Liu S, Qiu L, Chen J. Bacteria-mediated cancer therapies: opportunities and challenges. Biomaterials Science. 2021;9(17):5732-44.
  • 93. Maciag PC, Radulovic S, Rothman J. The first clinical use of a live-attenuated Listeria monocytogenes vaccine: a Phase I safety study of Lm-LLO-E7 in patients with advanced carcinoma of the cervix. Vaccine. 2009;27(30):3975-83. https://doi.org/10.1016/j.vaccine.2009.04.041
  • 94. Gardlik R, Behuliak M, Palffy R, Celec P, Li CJ. Gene therapy for cancer: bacteria-mediated anti-angiogenesis therapy. Gene Ther. 2011;18(5):425-31. https://doi.org10.1038/gt.2010.176
  • 95. Neubi GMN, Opoku-Damoah Y, Gu X, Han Y, Zhou J, Ding Y. Bio-inspired drug delivery systems: an emerging platform for targeted cancer therapy. Biomaterials science. 2018;6(5):958- 73. https://doi.org/10.1039/c8bm00175h
  • 96. Yang M, Yang F, Chen W, Liu S, Qiu L, Chen J. Bacteria-mediated cancer therapies: opportunities and challenges. Biomater Sci. 2021;9(17):5732-44. https://doi.org10.1039/d1bm00634g
  • 97. Hayashi K, Zhao M, Yamauchi K, Yamamoto N, Tsuchiya H, Tomita K, et al. Systemic targeting of primary bone tumor and lung metastasis of high-grade osteosarcoma in nude mice with a tumor-selective strain of Salmonella typhymurium. Cell Cycle. 2009;8(6):870-5. https://doi.org/10.4161/cc.8.6.7891
  • 98. Nagakura C, Hayashi K, Zhao M, Yamauchi K, Yamamoto N, Tsuchiya H, et al. Efficacy of a genetically-modified Salmonella typhimurium in an orthotopic human pancreatic cancer in nude mice. Anticancer research. 2009;29(6):1873-8.
  • 99. Zhao M, Yang M, Ma H, Li X, Tan X, Li S, et al. Targeted therapy with a Salmonella typhimurium leucine-arginine auxotroph cures orthotopic human breast tumors in nude mice. Cancer research. 2006;66(15):7647-52. https://doi.org/10.1158/0008-5472.can-06-0716
  • 100. Kramer MG, Masner M, Ferreira FA, Hoffman RM. Bacterial therapy of cancer: promises, limitations, and insights for future directions. Frontiers in microbiology. 2018;9:16. https://doi.org/10.3389/fmicb.2018.00016

Bacteria Mediated Drug Delivery System for Cancer Therapy

Year 2024, , 75 - 91, 01.03.2024
https://doi.org/10.52794/hujpharm.1392635

Abstract

Despite the development of therapeutics and treatment approaches for cancer treatment, the disease remains one of the leading causes of death worldwide. Due to limitations such as lack of specificity, cytotoxicity, and multidrug resistance, the desired level of success has not yet been achieved with cancer treatments such as chemotherapy, radiation therapy, and immunotherapy. Therefore, it is of great importance to develop targeted treatments to provide effective treatment by reducing side effects. However, the cancer microenvironment, with its vascularization and hypoxic regions, has many physiological obstacles to targeting. Research from the 1800s to the present has shown that bacteria are selective for cancer tissue by overcoming these physiological barriers. With the discovery that bacteria naturally can target and accumulate in tumor tissues, researchers have focused on bacteria mediated drug delivery systems. It has been reported that bacteria are superior to conventional drug carrier systems with their mobility, immune response, and easy modification properties. In this review, the most current developments in the literature on bacteria mediated drug delivery systems for cancer treatment are evaluated.

References

  • 1. Baran Deniz E. Kanser Epidemiyolojisi. Türkiye Sağlık Okuryazarlığı Dergisi. 2022;3(2): 102-111. https://doi.org10.54247/soyd.2022.49
  • 2. Arruebo M, Vilaboa N, Saez-Gutierrez B, Lambea J, Tres A, Valladares M, et al. Assessment of the evolution of cancer treatment therapies. Cancers (Basel). 2011;3(3):3279-330. https://doi.org10.3390/cancers3033279
  • 3. Sedighi M, Zahedi Bialvaei A, Hamblin MR, Ohadi E, Asadi A, Halajzadeh M, et al. Therapeutic bacteria to combat cancer; current advances, challenges, and opportunities. Cancer Med. 2019;8(6):3167-81. https://doi.org10.1002/cam4.2148
  • 4. Padma VV. An overview of targeted cancer therapy. Biomedicine (Taipei). 2015;5(4):19. https://doi.org10.7603/s40681-015-0019-4
  • 5. Forbes NS. Engineering the perfect (bacterial) cancer therapy. Nat Rev Cancer. 2010;10(11):785-94. https://doi.org10.1038/nrc2934
  • 6. Cronin M, Stanton RM, Francis KP, Tangney M. Bacterial vectors for imaging and cancer gene therapy: a review. Cancer Gene Ther. 2012;19(11):731-40. https://doi.org10.1038/cgt.2012.59
  • 7. Bidram E, Esmaeili Y, Ranji-Burachaloo H, Al-Zaubai N, Zarrabi A, Stewart A, et al. A concise review on cancer treatment methods and delivery systems. Journal of Drug Delivery Science and Technology. 2019;54:101350. https://doi.org10.1016/j.jddst.2019.101350
  • 8. Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM, et al. Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin. 2019;69(5):363-85. https://doi.org10.3322/caac.21565
  • 9. Dearnaley DP, Khoo VS, Norman AR, Meyer L, Nahum A, Tait D, et al. Comparison of radiation side-effects of conformal and conventional radiotherapy in prostate cancer: a randomised trial. Lancet. 1999;353(9149):267-72. https://doi.org10.1016/S0140-6736(98)05180-0
  • 10. Tredan O, Galmarini CM, Patel K, Tannock IF. Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst. 2007;99(19):1441-54. https://doi.org10.1093/jnci/djm135
  • 11. Minchinton AI, Tannock IF. Drug penetration in solid tumours. Nat Rev Cancer. 2006;6(8):583-92. https://doi.org10.1038/nrc1893
  • 12. Vitale M, Cantoni C, Pietra G, Mingari MC, Moretta L. Effect of tumor cells and tumor microenvironment on NK-cell function. Eur J Immunol. 2014;44(6):1582-92. https://doi.org10.1002/eji.201344272
  • 13. Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018;24(5):541-50. https://doi.org10.1038/s41591-018-0014-x
  • 14. Wang J, Lei K, Han F. Tumor microenvironment: recent advances in various cancer treatments. European review for medical and pharmacological sciences. 2018;22(12):3855-64. https://doi.org10.26355/eurrev_201806_15270
  • 15. Riley RS, June CH, Langer R, Mitchell MJ. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov. 2019;18(3):175-96. https://doi.org10.1038/s41573-018-0006-z
  • 16. Ventola CL. Cancer immunotherapy, part 3: challenges and future trends. Pharmacy and Therapeutics. 2017;42(8):514.
  • 17. Yu MK, Park J, Jon S. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics. 2012;2(1):3-44. https://doi.org10.7150/thno.3463
  • 18. Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. 2014;66:2-25. https://doi.org10.1016/j.addr.2013.11.009
  • 19. Erkoc P, Yasa IC, Ceylan H, Yasa O, Alapan Y, Sitti M. Mobile microrobots for active therapeutic delivery. Advanced Therapeutics. 2019;2(1):1800064. https://doi.org/10.1002/adtp.201800064
  • 20. Krischke M, Hempel G, Völler S, André N, D’Incalci M, Bisogno G, et al. Pharmacokinetic and pharmacodynamic study of doxorubicin in children with cancer: results of a “European Pediatric Oncology Off-patents Medicines Consortium” trial. Cancer chemotherapy and pharmacology. 2016;78:1175-84. https://doi.org10.1007/s00280-016-3174-8
  • 21. Pabla N, Dong Z. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney international. 2008;73(9):994-1007. https://doi.org/10.1038/sj.ki.5002786
  • 22. Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, et al. Analysis of nanoparticle delivery to tumours. Nature reviews materials. 2016;1(5):1-12. https://doi.org10.1038/natrevmats.2016.14
  • 23. Nallar SC, Xu DQ, Kalvakolanu DV. Bacteria and genetically modified bacteria as cancer therapeutics: Current advances and challenges. Cytokine. 2017;89:160-72. https://doi.org10.1016/j.cyto.2016.01.002
  • 24. Duong MT, Qin Y, You SH, Min JJ. Bacteria-cancer interactions: bacteria-based cancer therapy. Exp Mol Med. 2019;51(12):1-15. https://doi.org10.1038/s12276-019-0297-0
  • 25. St Jean AT, Zhang M, Forbes NS. Bacterial therapies: completing the cancer treatment toolbox. Curr Opin Biotechnol. 2008;19(5):511-7. https://doi.org10.1016/j.copbio.2008.08.004
  • 26. Kasinskas RW, Forbes NS. Salmonella typhimurium lacking ribose chemoreceptors localize in tumor quiescence and induce apoptosis. Cancer Res. 2007;67(7):3201-9. https://doi.org10.1158/0008-5472.CAN-06-2618
  • 27. Karmakar R. State of the art of bacterial chemotaxis. J Basic Microbiol. 2021;61(5):366-79. https://doi.org10.1002/ jobm.202000661
  • 28. Chen Y, Du M, Yu J, Rao L, Chen X, Chen Z. Nanobiohybrids: A Synergistic Integration of Bacteria and Nanomaterials in Cancer Therapy. BIO Integration. 2020;1(1):25-36. https://doi.org10.15212/bioi-2020-0008
  • 29. Felgner S, Kocijancic D, Frahm M, Weiss S. Bacteria in Cancer Therapy: Renaissance of an Old Concept. Int J Microbiol. 2016;2016:8451728. https://doi.org10.1155/2016/8451728
  • 30. McCarthy EF. The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. The Iowa orthopaedic journal. 2006;26:154. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1888599/
  • 31. Patyar S, Joshi R, Byrav D, Prakash A, Medhi B, Das B. Bacteria in cancer therapy: a novel experimental strategy. Journal of biomedical science. 2010;17(1):1-9. https://doi.org10.1186/1423-0127-17-21
  • 32. Kramer MG, Masner M, Ferreira FA, Hoffman RM. Bacterial Therapy of Cancer: Promises, Limitations, and Insights for Future Directions. Front Microbiol. 2018;9:16. https://doi.org10.3389/fmicb.2018.00016
  • 33. Uemura N, Okamoto S, Yamamoto S, Matsumura N, Yamaguchi S, Yamakido M, et al. Helicobacter pylori infection and the development of gastric cancer. New England journal of medicine. 2001;345(11):784-9. https://doi.org10.1056/NEJMoa001999
  • 34. Cummins J, Tangney M. Bacteria and tumours: causative agents or opportunistic inhabitants? Infectious agents and cancer. 2013;8(1):1-8. https://doi.org10.1186/1750-9378-8-11
  • 35. Liong M-T. Safety of probiotics: translocation and infection. Nutrition reviews. 2008;66(4):192-202. https://doi.org/10.1111/j.1753-4887.2008.00024.x
  • 36. Zhao M, Yang M, Ma H, Li X, Tan X, Li S, et al. Targeted therapy with a Salmonella typhimurium leucine-arginine auxotroph cures orthotopic human breast tumors in nude mice. Cancer Res. 2006;66(15):7647-52. https://doi.org10.1158/0008-5472.CAN-06-0716
  • 37. Suh S, Jo A, Traore MA, Zhan Y, Coutermarsh-Ott SL, Ringel-Scaia VM, et al. Nanoscale bacteria-enabled autonomous drug delivery system (NanoBEADS) enhances intratumoral transport of nanomedicine. Advanced Science. 2019;6(3):1801309. https://doi.org/10.1002/advs.201801309
  • 38. Jiang SN, Phan TX, Nam TK, Nguyen VH, Kim HS, Bom HS, et al. Inhibition of tumor growth and metastasis by a combination of Escherichia coli-mediated cytolytic therapy and radiotherapy. Mol Ther. 2010;18(3):635-42. https://doi.org10.1038/mt.2009.295
  • 39. Yang H, Jiang F, Ji X, Wang L, Wang Y, Zhang L, et al. Genetically Engineered Bacterial Protein Nanoparticles for Targeted Cancer Therapy. Int J Nanomedicine. 2021;16:105-17. https:// doi.org10.2147/IJN.S292432
  • 40. Stern C, Kasnitz N, Kocijancic D, Trittel S, Riese P, Guzman CA, et al. Induction of CD4(+) and CD8(+) anti-tumor effector T cell responses by bacteria mediated tumor therapy. Int J Cancer. 2015;137(8):2019-28. https://doi.org10.1002/ijc.29567
  • 41. Morrissey D, O’Sullivan GC, Tangney M. Tumour targeting with systemically administered bacteria. Current gene therapy. 2010;10(1):3-14. https://doi.org/10.2174/156652310790945575
  • 42. Ding L, Lu Z, Lu Q, Chen YH. The claudin family of proteins in human malignancy: a clinical perspective. Cancer Manag Res. 2013;5:367-75. https://doi.org10.2147/CMAR.S38294
  • 43. Luo Y, Xu D, Gao X, Xiong J, Jiang B, Zhang Y, et al. Nanoparticles conjugated with bacteria targeting tumors for precision imaging and therapy. Biochemical and biophysical research communications. 2019;514(4):1147-53. https://doi.org/10.1016/j.bbrc.2019.05.074
  • 44. Shahabi V, Maciag PC, Rivera S, Wallecha A. Live, attenuated strains of Listeria and Salmonella as vaccine vectors in cancer treatment. Bioeng Bugs. 2010;1(4):235-43. https://doi.org10.4161/bbug.1.4.11243
  • 45. Rong L, Lei Q, Zhang XZ. Engineering Living Bacteria for Cancer Therapy. ACS Appl Bio Mater. 2020;3(12):8136-45. https://doi.org10.1021/acsabm.0c01286
  • 46. Yin T, Diao Z, Blum NT, Qiu L, Ma A, Huang P. Engineering Bacteria and Bionic Bacterial Derivatives with Nanoparticles for Cancer Therapy. Small. 2022;18(12):e2104643. https://doi.org10.1002/smll.202104643
  • 47. Friedlos F, Lehouritis P, Ogilvie L, Hedley D, Davies L, Bermudes D, et al. Attenuated Salmonella targets prodrug activating enzyme carboxypeptidase G2 to mouse melanoma and human breast and colon carcinomas for effective suicide gene therapy. Clinical Cancer Research. 2008;14(13):4259-66. https://doi.org/10.1158/1078-0432.ccr-07-4800
  • 48. Cheng C, Lu Y, Chuang K, Hung W, Shiea J, Su Y, et al. Tumortargeting prodrug-activating bacteria for cancer therapy. Cancer gene therapy. 2008;15(6):393-401. https://doi.org/10.1038/cgt.2008.10
  • 49. Durrer KE, Allen MS, Hunt von Herbing I. Genetically engineered probiotic for the treatment of phenylketonuria (PKU); assessment of a novel treatment in vitro and in the PAHenu2 mouse model of PKU. PloS one. 2017;12(5):e0176286. https://doi.org/10.1371/journal.pone.0176286
  • 50. Steidler L, Hans W, Schotte L, Neirynck S, Obermeier F, Falk W, et al. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science. 2000;289(5483):1352-5. https://doi.org/10.1126/science.289.5483.1352
  • 51. Vågesjö E, Öhnstedt E, Mortier A, Lofton H, Huss F, Proost P, et al. Accelerated wound healing in mice by on-site production and delivery of CXCL12 by transformed lactic acid bacteria. Proceedings of the National Academy of Sciences. 2018;115(8):1895-900. https://doi.org/10.1073/pnas.1716580115
  • 52. Shen H, Aggarwal N, Wun KS, Lee YS, Hwang IY, Chang MW. Engineered microbial systems for advanced drug delivery. Adv Drug Deliv Rev. 2022;187:114364. https://doi.org10.1016/j.addr.2022.114364
  • 53. Borghaei H, Smith MR, Campbell KS. Immunotherapy of cancer. Eur J Pharmacol. 2009;625(1-3):41-54. https://doi.org10.1016/j.ejphar.2009.09.067
  • 54. Baumeister SH, Freeman GJ, Dranoff G, Sharpe AH. Coinhibitory pathways in immunotherapy for cancer. Annual review of immunology. 2016;34:539-73. https://doi.org/10.1146/annurev-immunol-032414-112049
  • 55. Felgner S, Kocijancic D, Frahm M, Heise U, Rohde M, Zimmermann K, et al. Engineered Salmonella enterica serovar Typhimurium overcomes limitations of anti-bacterial immunity in bacteria-mediated tumor therapy. Oncoimmunology. 2018;7(2):e1382791. https://doi.org/10.1080/2162402x.2017.1382791
  • 56. Hu Q, Wu M, Fang C, Cheng C, Zhao M, Fang W, et al. Engineering nanoparticle-coated bacteria as oral DNA vaccines for cancer immunotherapy. Nano Lett. 2015;15(4):2732-9. https://doi.org10.1021/acs.nanolett.5b00570
  • 57. Weerakkody LR, Witharana C. The role of bacterial toxins and spores in cancer therapy. Life Sci. 2019;235:116839. https://doi.org10.1016/j.lfs.2019.116839
  • 58. Barbe S, Van Mellaert L, Anne J. The use of clostridial spores for cancer treatment. J Appl Microbiol. 2006;101(3):571-8. https://doi.org10.1111/j.1365-2672.2006.02886.x
  • 59. Umer B, Good D, Anne J, Duan W, Wei MQ. Clostridial spores for cancer therapy: targeting solid tumour microenvironment. J Toxicol. 2012;2012:862764. https://doi.org10.1155/2012/862764
  • 60. Janku F, Zhang HH, Pezeshki A, Goel S, Murthy R, Wang-Gillam A, et al. Intratumoral Injection of Clostridium novyi-NT Spores in Patients with Treatment-refractory Advanced Solid Tumors. Clin Cancer Res. 2021;27(1):96-106. https://doi.org10.1158/1078-0432.CCR-20-2065
  • 61. Kaparakis-Liaskos M, Ferrero RL. Immune modulation by bacterial outer membrane vesicles. Nature Reviews Immunology. 2015;15(6):375-87. https://doi.org/10.1038/nri3837
  • 62. Li M, Zhou H, Yang C, Wu Y, Zhou X, Liu H, et al. Bacterial outer membrane vesicles as a platform for biomedical applications: An update. Journal of Controlled Release. 2020;323:253-68.
  • 63. Gujrati V, Kim S, Kim S-H, Min JJ, Choy HE, Kim SC, et al. Bioengineered bacterial outer membrane vesicles as cellspecific drug-delivery vehicles for cancer therapy. ACS nano. 2014;8(2):1525-37. https://doi.org/10.1021/nn405724x
  • 64. Qing S, Lyu C, Zhu L, Pan C, Wang S, Li F, et al. Biomineralized bacterial outer membrane vesicles potentiate safe and efficient tumor microenvironment reprogramming for anticancer therapy. Advanced Materials. 2020;32(47):2002085. https://doi.org/10.1002/adma.202002085
  • 65. Kim OY, Park HT, Dinh NTH, Choi SJ, Lee J, Kim JH, et al. Bacterial outer membrane vesicles suppress tumor by interferon-γ-mediated antitumor response. Nature communications. 2017;8(1):626. https://doi.org/10.1038/s41467-017-00729-8
  • 66. Lubran MM. Bacterial toxins. Annals of Clinical & Laboratory Science. 1988;18(1):58-71.
  • 67. Kreitman RJ, Wilson WH, White JD, Stetler-Stevenson M, Jaffe ES, Giardina S, et al. Phase I trial of recombinant immunotoxin anti-Tac (Fv)-PE38 (LMB-2) in patients with hematologic malignancies. Journal of Clinical Oncology. 2000;18(8):1622-36. https://doi.org/10.1200/jco.2000.18.8.1622
  • 68. Pahle J, Menzel L, Niesler N, Kobelt D, Aumann J, Rivera M, et al. Rapid eradication of colon carcinoma by Clostridium perfringens Enterotoxin suicidal gene therapy. BMC cancer. 2017;17:1-14.
  • 69. Sitti M, Ceylan H, Hu W, Giltinan J, Turan M, Yim S, et al. Biomedical Applications of Untethered Mobile Milli/Microrobots. Proc IEEE Inst Electr Electron Eng. 2015;103(2):205-24. https://doi.org10.1109/JPROC.2014.2385105
  • 70. Ceylan H, Giltinan J, Kozielski K, Sitti M. Mobile microrobots for bioengineering applications. Lab on a Chip. 2017;17(10):1705-24. https://doi.org/10.1039/c7lc00064b
  • 71. Erkoc P, Yasa IC, Ceylan H, Yasa O, Alapan Y, Sitti M. Mobile Microrobots for Active Therapeutic Delivery. Advanced Therapeutics. 2019;2(1). https://doi.org10.1002/adtp.201800064
  • 72. Mostaghaci B, Yasa O, Zhuang J, Sitti M. Bioadhesive bacterial microswimmers for targeted drug delivery in the urinary and gastrointestinal tracts. Advanced Science. 2017;4(6):1700058. https://doi.org/10.1002/advs.201700058
  • 73. Darnton N, Turner L, Breuer K, Berg HC. Moving fluid with bacterial carpets. Biophysical journal. 2004;86(3):1863-70. https://doi.org/10.1016%2FS0006-3495(04)74253-8
  • 74. Sanna V, Pala N, Sechi M. Targeted therapy using nanotechnology: focus on cancer. Int J Nanomedicine. 2014;9:467-83. https://doi.org10.2147/IJN.S36654
  • 75. Magennis EP, Fernandez-Trillo F, Sui C, Spain SG, Bradshaw DJ, Churchley D, et al. Bacteria-instructed synthesis of polymers for self-selective microbial binding and labelling. Nat Mater. 2014;13(7):748-55. https://doi.org10.1038/nmat3949
  • 76. Hosseinidoust Z, Mostaghaci B, Yasa O, Park BW, Singh AV, Sitti M. Bioengineered and biohybrid bacteria-based systems for drug delivery. Adv Drug Deliv Rev. 2016;106(Pt A):27-44. https://doi.org10.1016/j.addr.2016.09.007
  • 77. Cao Z, Liu J. Bacteria and bacterial derivatives as drug carriers for cancer therapy. J Control Release. 2020; 326:396-407. https://doi.org10.1016/j.jconrel.2020.07.009
  • 78. Zoaby N, Shainsky-Roitman J, Badarneh S, Abumanhal H, Leshansky A, Yaron S, et al. Autonomous bacterial nanoswimmers target cancer. J Control Release. 2017;257:68-75. https://doi.org10.1016/j.jconrel.2016.10.006
  • 79. Xie S, Chen M, Song X, Zhang Z, Zhang Z, Chen Z, et al. Bacterial microbots for acid-labile release of hybrid micelles to promote the synergistic antitumor efficacy. Acta Biomater. 2018;78:198-210. https://doi.org10.1016/j.actbio.2018.07.041
  • 80. Shi H, Chen L, Liu Y, Wen Q, Lin S, Wen Q, et al. Bacteria-Driven Tumor Microenvironment-Sensitive NanoparticlesTargeting Hypoxic Regions Enhances the Chemotherapy Outcome of Lung Cancer. Int J Nanomedicine. 2023;18:1299-315. https://doi.org10.2147/IJN.S396863
  • 81. Yan S, Zeng X, Wang Y, Liu BF. Biomineralization of Bacteria by a Metal-Organic Framework for Therapeutic Delivery. Adv Healthc Mater. 2020;9(12):e2000046. https://doi.org10.1002/adhm.202000046
  • 82. Park BW, Zhuang J, Yasa O, Sitti M. Multifunctional Bacteria-Driven Microswimmers for Targeted Active Drug Delivery. ACS Nano. 2017;11(9):8910-23. https://doi.org10.1021/acsnano.7b03207
  • 83. Nguyen VD, Han J-W, Choi YJ, Cho S, Zheng S, Ko SY, et al. Active tumor-therapeutic liposomal bacteriobot combining a drug (paclitaxel)-encapsulated liposome with targeting bacteria (Salmonella Typhimurium). Sensors and Actuators B: Chemical. 2016;224:217-24. https://doi.org10.1016/j.snb.2015.09.034
  • 84. Suh S, Jo A, Traore MA, Zhan Y, Coutermarsh-Ott SL, Ringel-Scaia VM, et al. Nanoscale Bacteria-Enabled Autonomous Drug Delivery System (NanoBEADS) Enhances Intratumoral Transport of Nanomedicine. Adv Sci (Weinh). 2019;6(3):1801309. https://doi.org10.1002/advs.201801309
  • 85. Wang JW, Chen QW, Luo GF, Han ZY, Song WF, Yang J, et al. A Self-Driven Bioreactor Based on Bacterium-Metal-Organic Framework Biohybrids for Boosting Chemotherapy via Cyclic Lactate Catabolism. ACS Nano. 2021;15(11):17870-84. https://doi.org10.1021/acsnano.1c06123
  • 86. Pandey M, Choudhury H, Vijayagomaran PA, Lian PNP, Ning TJ, Wai NZ, et al. Recent Update on Bacteria as a Delivery Carrier in Cancer Therapy: From Evil to Allies. Pharm Res. 2022;39(6):1115-34. https://doi.org10.1007/s11095-022-03240-y
  • 87. Paukner S, Kohl G, Lubitz W. Bacterial ghosts as novel advanced drug delivery systems: antiproliferative activity of loaded doxorubicin in human Caco-2 cells. Journal of Controlled Release. 2004;94(1):63-74. https://doi.org10.1016/j.jconrel.2003.09.010
  • 88. Shi H, Chen L, Liu Y, Wen Q, Lin S, Wen Q, et al. Bacteria-Driven Tumor Microenvironment-Sensitive Nanoparticles Targeting Hypoxic Regions Enhances the Chemotherapy Outcome of Lung Cancer. Int J Nanomedicine. 2023;18:1299-315. https://doi.org10.2147/IJN.S396863
  • 89. Yan S, Zeng X, Wang Y, Liu BF. Biomineralization of Bacteria by a Metal-Organic Framework for Therapeutic Delivery. Adv Healthc Mater. 2020;9(12):e2000046. https://doi.org10.1002/adhm.202000046
  • 90. Park BW, Zhuang J, Yasa O, Sitti M. Multifunctional Bacteria-Driven Microswimmers for Targeted Active Drug Delivery. ACS Nano. 2017;11(9):8910-23. https://doi.org10.1021/acsnano.7b03207
  • 91. Nguyen VD, Han J-W, Choi YJ, Cho S, Zheng S, Ko SY, et al. Active tumor-therapeutic liposomal bacteriobot combining a drug (paclitaxel)-encapsulated liposome with targeting bacteria (Salmonella Typhimurium). Sensors and Actuators B: Chemical. 2016;224:217-24. https://doi.org10.1016/j.snb.2015.09.034
  • 92. Yang M, Yang F, Chen W, Liu S, Qiu L, Chen J. Bacteria-mediated cancer therapies: opportunities and challenges. Biomaterials Science. 2021;9(17):5732-44.
  • 93. Maciag PC, Radulovic S, Rothman J. The first clinical use of a live-attenuated Listeria monocytogenes vaccine: a Phase I safety study of Lm-LLO-E7 in patients with advanced carcinoma of the cervix. Vaccine. 2009;27(30):3975-83. https://doi.org/10.1016/j.vaccine.2009.04.041
  • 94. Gardlik R, Behuliak M, Palffy R, Celec P, Li CJ. Gene therapy for cancer: bacteria-mediated anti-angiogenesis therapy. Gene Ther. 2011;18(5):425-31. https://doi.org10.1038/gt.2010.176
  • 95. Neubi GMN, Opoku-Damoah Y, Gu X, Han Y, Zhou J, Ding Y. Bio-inspired drug delivery systems: an emerging platform for targeted cancer therapy. Biomaterials science. 2018;6(5):958- 73. https://doi.org/10.1039/c8bm00175h
  • 96. Yang M, Yang F, Chen W, Liu S, Qiu L, Chen J. Bacteria-mediated cancer therapies: opportunities and challenges. Biomater Sci. 2021;9(17):5732-44. https://doi.org10.1039/d1bm00634g
  • 97. Hayashi K, Zhao M, Yamauchi K, Yamamoto N, Tsuchiya H, Tomita K, et al. Systemic targeting of primary bone tumor and lung metastasis of high-grade osteosarcoma in nude mice with a tumor-selective strain of Salmonella typhymurium. Cell Cycle. 2009;8(6):870-5. https://doi.org/10.4161/cc.8.6.7891
  • 98. Nagakura C, Hayashi K, Zhao M, Yamauchi K, Yamamoto N, Tsuchiya H, et al. Efficacy of a genetically-modified Salmonella typhimurium in an orthotopic human pancreatic cancer in nude mice. Anticancer research. 2009;29(6):1873-8.
  • 99. Zhao M, Yang M, Ma H, Li X, Tan X, Li S, et al. Targeted therapy with a Salmonella typhimurium leucine-arginine auxotroph cures orthotopic human breast tumors in nude mice. Cancer research. 2006;66(15):7647-52. https://doi.org/10.1158/0008-5472.can-06-0716
  • 100. Kramer MG, Masner M, Ferreira FA, Hoffman RM. Bacterial therapy of cancer: promises, limitations, and insights for future directions. Frontiers in microbiology. 2018;9:16. https://doi.org/10.3389/fmicb.2018.00016
There are 100 citations in total.

Details

Primary Language Turkish
Subjects Pharmaceutical Delivery Technologies
Journal Section Review Articles
Authors

Maide Öztürk 0000-0002-9967-8385

Sibel Bozdağ Pehlivan 0000-0001-5066-2772

Publication Date March 1, 2024
Submission Date November 18, 2023
Acceptance Date February 13, 2024
Published in Issue Year 2024

Cite

Vancouver Öztürk M, Bozdağ Pehlivan S. Kanser Tedavisinde Bakteri Destekli İlaç Taşıyıcı Sistemler. HUJPHARM. 2024;44(1):75-91.