Antioxidants and Inflammation: Bridging Natural Remedies with Modern Technology for Healthier Living
Year 2025,
Volume: 45 Issue: 3, 268 - 285, 01.09.2025
Sanshita Sanshita
,
Olutayo Adeleye
,
Vaishali Thakur
,
Ayomide D. Mustapha
,
Navneet Kaur
,
Olufunke D. Akin-ajani
,
Oluwatoyin A. Odeku
,
Inderbir Singh
,
Kushagra Grag
Abstract
Inflammation is an abnormal process where the body responds to stimuli like poisonous compounds, infections, and injuries. “Injury” can be trauma, infection, or stress causing oxidative stress. These stimuli trigger the release of an immune response to heal damaged tissues and protect the body from the harmful effects of the stimuli. Antioxidants are substances that play a pivotal role in modulating inflammation by scavenging reactive oxygen species (ROS) and mitigating oxidative stress. They prevent the oxidation of an oxidizable substrate at low concentrations, and modulate inflammatory responses by the removal of oxygen, thereby preventing the development of ROS, which supplements the body’s natural defense. Antioxidants are classified into two categories: exogenous and endogenous. The endogenous can be enzymatic or non-enzymatic, while the exogenous are natural compounds such as vitamins and polyphenols or synthetic compounds such as metallic nanoparticles and phenolic compounds. The role of antioxidants in inflammation and inflammatory diseases is multifaceted. By counteracting oxidative stress and modulating inflammatory pathways, antioxidants act as protective agents against various inflammatory conditions. This review discusses the role(s) of antioxidants in inflammation and inflammatory diseases. The role of applications in providing personalised insights into nutrition to help optimise antioxidant intake has also been discussed.
Ethical Statement
Not applicable
Supporting Institution
Not applicable
References
-
1. Nash AA, Dalziel RG, Fitzgerald JR. Mims' Pathogenesis of Infectious Disease. 6th ed. Edinburgh, UK: Academic Press; 2015. 364 pages
-
2. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2017;9(6):7204–18. https://doi.org/10.18632/oncotarget.23208
-
3. Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019;25(12):1822–32. https://doi.org/10.1038/s41591-019-0675-0
-
4. Gargano LM, Hughes JM. Microbial origins of chronic diseases. Annual review of public health. 2014 Mar 18;35(1):65-82
https://doi.org/10.1146/annurev-publhealth-032013-182426
-
5. Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D, Bitto A. Oxidative stress: harms and benefits for human health. Oxidative medicine and cellular longevity. 2017;2017(1):8416763. https://doi.org/10.1155/2017/8416763
-
6. Rodrigues LC, Cerri DG, Marzocchi-Machado CM, Cummings RD, Stowell SR, Dias-Baruffi M. Detection of reactive oxygen species in human neutrophils under various conditions of exposure to galectin. Methods Mol Biol. 2022; 2442:549–64
https://doi.org/ 10.1007/978-1-0716-2055-7_29
-
7. Hamid A, Aiyelaagbe O, Usman L, Ameen O, Lawal A. Antioxidants: its medicinal and pharmacological applications. Afr J Pure Appl. 2010;4(8):142–51
-
8. Vezina FA, Cantin AM. Antioxidants and chronic obstructive pulmonary disease. Chronic Obstr Pulm Dis. 2018;5(4):277–88. https://doi.org/10.15326/jcopdf.5.4.2018.0133
-
9. Zhang Y, Igwe OJ. Exogenous oxidants activate nuclear factor kappa B through Toll-like receptor 4 stimulation to maintain inflammatory phenotype in macrophage. Biochemical Pharmacology. 2018; 147:104-18. https://doi.org/10.1016/j.bcp.2017.10.010
-
10. Fujii J, Homma T, Osaki T. Superoxide radicals in the execution of cell death. Antioxidants. 2022;11(3):501. https://doi.org/10.3390/antiox11030501
-
11. Neha K, Haider MR, Pathak A, Yar MS. Medicinal prospects of antioxidants: A review. European journal of medicinal chemistry. 2019; 178:687-704
https://doi.org/10.1016/j.ejmech.2019.06.010
-
12. Borisov VB, Siletsky SA, Nastasi MR, Forte E. ROS defense systems and terminal oxidases in bacteria. Antioxidants (Basel). 2021;10(6):839.
https://doi.org/10.3390/antiox10060839
-
13. Gutierrez A, Van Wagoner DR. Oxidant and inflammatory mechanisms and targeted therapy in AF: An update. J Cardiovasc Pharmacol. 2015;66(6): 523
https://doi.org/ 10.1097/FJC.0000000000000304
-
14. Albano GD, Gagliardo RP, Montalbano AM, Profita M. Overview of the mechanisms of oxidative stress: impact in inflammation of the airway diseases. Antioxidants. 2022 ;11(11):2237. https://doi.org/10.3390/antiox11112237
-
15. Brown OI, Bridge KI, Kearney MT. Nicotinamide adenine dinucleotide phosphate oxidases in glucose homeostasis and diabetes-related endothelial cell dysfunction. Cells. 2021 Sep 4;10(9):2315. https://doi.org/10.3390/cells10092315
-
16. Tang W, Li X, Lyu M, Huang Q. Cancer cell membrane biomimetic mesoporous nanozyme system with efficient ROS generation for antitumor chemoresistance. Oxidative Medicine and Cellular Longevity. 2022;2022(1):5089857. https://doi.org/10.1155/2022/5089857
-
17. Dunn JD, Alvarez LA, Zhang X, Soldati T. Reactive oxygen species and mitochondria: A nexus of cellular homeostasis. Redox biology. 2015; 6:472-85. https://doi.org/ 10.1016/j.redox.2015.09.005
-
18. Palma FR, He C, Danes JM, Paviani V, Coelho DR, Gantner BN, Bonini MG. Mitochondrial superoxide dismutase: what the established, the intriguing, and the novel reveal about a key cellular redox switch. Antioxidants & redox signaling. 2020;32(10):701-14. https://doi.org/10.1089/ars.2019.7890
-
19. Rahtes A, Geng S, Lee C, Li L. Cellular and molecular mechanisms involved in the resolution of innate leukocyte inflammation. Journal of leukocyte biology. 2018;104(3):535-41. https://doi.org/10.1002/JLB.4MR0118-021R
-
20. Arulselvan P, Fard MT, Tan WS, Gothai S, Fakurazi S, Norhaizan ME, Kumar SS. Role of antioxidants and natural products in inflammation. Oxidative medicine and cellular longevity. 2016;2016(1):5276130. https://doi.org/10.1155/2016/5276130
-
21. Markiewski MM, Lambris JD. The role of complement in inflammatory diseases from behind the scenes into the spotlight. The American journal of pathology. 2007 ;171(3):715-27. https://doi.org/10.2353/ajpath.2007.070166
-
22. Younger DS. Overview of the vasculitides. Neurologic Clinics. 2019 ;37(2):171-200. https://doi.org/10.1016/j.ncl.2019.01.001
-
23. Vestweber D. How leukocytes cross the vascular endothelium. Nature Reviews Immunology. 2015;15(11):692-704. https://doi.org/10.1038/nri3908
-
24. Shaheen ZR, Corbett JA. Macrophage expression of inflammatory genes in response to emcv infection. Biomolecules. 2015 ;5(3):1938-54. https://doi.org/10.3390/biom5031938
-
25. Shelton HM, Brewbaker JL. Leucaena leucocephala-the most widely used forage tree legume. Forage tree legumes in tropical agriculture. (Eds. RC Gutteridge and HM Shelton). CAB International. Wallingford, 1994; 12;15.
-
26. Zwarthoff SA, Berends ET, Mol S, Ruyken M, Aerts PC, Józsi M, De Haas CJ, Rooijakkers SH, Gorham Jr RD. Functional characterization of alternative and classical pathway C3/C5 convertase activity and inhibition using purified models. Frontiers in immunology. 2018; 9:1691. https://doi.org/10.3389/fimmu.2018.01691
-
27. Ahmed TJ, Kaneva MK, Pitzalis C, Cooper D, Perretti M. Resolution of inflammation: examples of peptidergic players and pathways. Drug discovery today. ;19(8):1166-71. https://doi.org/10.1016/j.drudis.2014.05.020
-
28. Fredman G, Spite M. Specialized pro-resolving mediators in cardiovascular diseases. Mol Aspects Med. 2017 Dec; 58:65-71. https://doi.org/10.1016/j.mam.2017.02.003
-
29. Martínez JA, Alonso-Bernáldez M, Martínez-Urbistondo D, Vargas-Nuñez JA, Ramírez de Molina A, Dávalos A, Ramos-Lopez O. Machine learning insights concerning inflammatory and liver-related risk comorbidities in non-communicable and viral diseases. World J Gastroenterol. 2022 Nov 28;28(44):6230-6248.
https://doi.org/10.3748/wjg. v28.i44.6230
-
30. Dongiovanni P, Valenti L. Genetics of nonalcoholic fatty liver disease. Metabolism. 2016 Aug;65(8):1026-1037. https://doi.org/10.1016/j.metabol.2015.10.031
-
31. Shi S, Verstegen MMA, Mezzanotte L, De Jonge J, Lowik C, Van Der Laan LJW. Necroptotic cell death in liver transplantation and underlying diseases: mechanisms and clinical perspective. Liver Transpl. 2019 Jul;25(7):1091-1104. https://doi.org/10.1002/lt.25464
-
32. Shi CX, Wang Y, Jiao FZ, Chen Q, Cao P, Pei MH, Zhang LY, Guo J, Deng W, Wang LW, Gong ZJ. Epigenetic regulation of hepatic stellate cell activation and macrophage in chronic liver inflammation. Front Physiol. 2021 Jul 1; 12:683526. https://doi.org/10.3389/fphys.2021.683526
-
33. Oh SH, Swiderska-Syn M, Jewell ML, Premont RT, Diehl AM. Liver regeneration requires Yap1-TGFβ-dependent epithelial-mesenchymal transition in hepatocytes. J Hepatol. 2018 Aug;69(2):359-367. https://doi.org/10.1016/j.jhep.2018.05.008
-
34. Ashok A, Andrabi SS, Mansoor S, Kuang Y, Kwon BK, Labhasetwar V. Antioxidant therapy in oxidative stress-induced neurodegenerative diseases: role of nanoparticle-based drug delivery systems in clinical translation. Antioxidants (Basel). 2022 Feb;11(2):408. https://doi.org/10.3390/antiox11020408
-
35. Liu Z, Ren Z, Zhang J, Chuang CC, Kandaswamy E, Zhou T, et al. Role of ROS and nutritional antioxidants in human diseases. Front Physiol. 2018 Apr 24; 9:477. https://doi.org/ 10.3389/fphys.2018.00477
-
36. Khayatan D, Razavi SM, Arab ZN, Hosseini Y, Niknejad A, Momtaz S, et al. Superoxide dismutase: a key target for the neuroprotective effects of curcumin. Mol Cell Biochem. 2024;479(3):693–705. https://doi.org/10.1007/s11010-023-04757-5
-
37. Rammohan A, Zyryanov GV, Bhagath YB, Manjula K. Antioxidants: Structure-activity of plant polyphenolics. Vitam Horm. 2023; 121:395-411.
https://doi.org/10.1016/bs.vh.2022.10.001
-
38. Diaz de Barboza G, Guizzardi S, Moine L, Tolosa de Talamoni N. Oxidative stress, antioxidants and intestinal calcium absorption. World J Gastroenterol. 2017 Apr 28;23(16):2841-2853. https://doi.org/10.3748/wjg. v23.i16.2841
-
39. Saito Y. Diverse cytoprotective actions of vitamin E isoforms—role as peroxyl radical scavengers and complementary functions with selenoproteins. Free Radic Biol Med. 2021 Nov 1; 175:121-129. https://doi.org/10.1016/j.freeradbiomed.2021.08.234
-
40. Pirhadi-Tavandashti N, Imani H, Ebrahimpour-Koujan S, Samavat S, Hakemi MS. The effect of vitamin E supplementation on biomarkers of endothelial function and inflammation among hemodialysis patients: A double-blinded randomized clinical trial. Complement Ther Med. 2020 Dec; 49:102357. https://doi.org/10.1016/j.ctim.2020.102357
-
41. Rizvi S, Raza ST, Ahmed F, Ahmad A, Abbas S, Mahdi F. The role of vitamin E in human health and some diseases. Sultan Qaboos Univ Med J. 2014 May;14(2):e157-65. https://doi.org/10.18295/squmj.2014.14.02.010
-
42. Abdollahzad H. Importance of antioxidants in rheumatoid arthritis. Austin Arthritis. 2016;1(1):1005.
-
43. Dailah HG. Therapeutic potential of small molecules targeting oxidative stress in the treatment of chronic obstructive pulmonary disease (COPD): A comprehensive review. Molecules. 2022;27(17):5542. https://doi.org/10.3390/molecules27175542
-
44. Stamouli EC, Politis AM. Pro-inflammatory cytokines in Alzheimer's disease. Psychiatriki. 2016;27(4):264-275.
-
45. Xie L, Liu Y, Zhang N, Li C, Sandhu AF, Williams III G, Shen Y, Li H, Wu Q, Yu S. Electroacupuncture improves M2 microglia polarization and glia anti-inflammation of hippocampus in Alzheimer's disease. Front Neurosci. 2021; 15:689629.
https://doi.org/ 10.3389/fnins.2021.689629
-
46. Huang Z, Zhou T, Sun X, Zheng Y, Cheng B, Li M, Liu X, He C. Necroptosis in microglia contributes to neuroinflammation and retinal degeneration through TLR4 activation. Cell Death Differ. 2018;25(1):180-189. https://doi.org/10.1038/s41418-017-0005-0
-
47. Sinyor B, Mineo J, Ochner C. Alzheimer's disease, inflammation, and the role of antioxidants. J Alzheimers Dis Rep. 2020;4(1):175-183.
https://doi.org/10.3233/ADR-200171.
-
48. Ali SS, Ahsan H, Zia MK, Siddiqui T, Khan FH. Understanding oxidants and antioxidants: Classical team with new players. J Food Biochem. 2020;44(3):e13145. https://doi.org/10.1111/jfbc.13145
-
49. Gęgotek A, Skrzydlewska E. Antioxidative and anti-inflammatory activity of ascorbic acid. Antioxidants (Basel). 2022;11(10):1993. https://doi.org/10.3390/antiox11101993
-
50. Mohd Zaffarin AS, Ng SF, Ng MH, Hassan H, Alias E. Pharmacology and pharmacokinetics of vitamin E: Nanoformulations to enhance bioavailability. Int J Nanomedicine. 2020; 15:9961-9974. https://doi.org/10.2147/IJN.S276355
-
51. Hegazy AM, El-Sayed EM, Ibrahim KS, Abdel-Azeem AS. Dietary antioxidant for disease prevention corroborated by the Nrf2 pathway. J Complement Integr Med. 2019;16(3). https://doi.org/ 10.1515/jcim-2018-0042
-
52. Abeyrathne EDNS, Nam K, Huang X, Ahn DU. Plant- and animal-based antioxidants' structure, efficacy, mechanisms, and applications: A review. Antioxidants (Basel). 202211(5):1025. https://doi.org/10.3390/antiox11051025
-
53. Edem DO. Vitamin A: a review. Asian J Clin Nutr. 2009;1(1):65-82. https://doi.org/10.3923/ajcn.2009.65.82
-
54. Taha EI, Ghorab DM, Zaghloul AA. Bioavailability assessment of vitamin A self-nanoemulsified drug delivery systems in rats: a comparative study. Med Princ Pract. 2007;16(5):355-359. https://doi.org/10.1159/000104808
-
55. Praça FG, Viegas JSR, Peh HY, Garbin TN, Medina WSG, Bentley MVLB. Microemulsion co-delivering vitamin A and vitamin E as a new platform for topical treatment of acute skin inflammation. Mater Sci Eng C Mater Biol Appl. 2020; 110:110639.
https://doi.org/ 10.1016/j.msec.2020.110639
-
56. Imdad A, Herzer K, Mayo-Wilson E, Yakoob MY, Bhutta ZA. Vitamin A supplementation for preventing morbidity and mortality in children from 6 months to 5 years of age. Cochrane Database Syst Rev. 2010;(12):CD008524.
https://doi.org/ 10.1002/14651858.CD008524.pub2
-
57. Jain P, Singh I, Surana SJ, Shirkhedkar AA. Tocopherols and tocotrienols: the essential vitamin E. In: Cazarin CBB, Bicas JL, Pastore GM, Marostica JM, editors. Bioactive Food Components Activity in Mechanistic Approach. Academic Press; 2022. p. 139-154. https://doi.org/ 10.1016/B978-0-12-823569-0.00009-6
-
58. Zhang Z, Tan S, Feng SS. Vitamin E TPGS as a molecular biomaterial for drug delivery. Biomaterials. 2012;33(19):4889-4906. https://doi.org/ 10.1016/j.biomaterials.2012.03.029
-
59. Chen X, Gu J, Sun L, Li W, Guo L, Gu Z, Wang L, Zhang Y, Zhang W, Han B, Chang J. Efficient drug delivery and anticancer effect of micelles based on vitamin E succinate and chitosan derivatives. Bioact Mater. 2021 Oct;6(10):3025-35.
https://doi.org/ 10.1016/j.bioactmat.2021.03.029
-
60. Vardi M, Levy NS, Levy AP. Vitamin E in the prevention of cardiovascular disease: the importance of proper patient selection. J Lipid Res. 2013 Sep;54(9):2307-14. https://doi.org/ 10.1194/jlr. R026641
-
61. Deledda A, Annunziata G, Tenore GC, Palmas V, Manzin A, Velluzzi F. Diet-derived antioxidants and their role in inflammation, obesity, and gut microbiota modulation. Antioxidants (Basel). 2021;10(5):708. https://doi.org/10.3390/antiox10050708
-
62. Ali MY, Sina AAI, Khandker SS, Neesa L, Tanvir EM, Kabir A, Khalil MI, Gan SH. Nutritional composition and bioactive compounds in tomatoes and their impact on human health and disease: A review. Foods. 2021;10(1):45.
https://doi.org/10.3390/foods10010045
-
63. Janabi AH, Kamboh AA, Saeed M, et al. Flavonoid-rich foods (FRF): A promising nutraceutical approach against lifespan-shortening diseases. Iran J Basic Med Sci. 2020;23(2):140–153. https://doi.org/10.22038/ijbms.2020.42307.10147
-
64. Choy KW, Murugan D, Leong XF, et al. Flavonoids as natural anti-inflammatory agents targeting nuclear factor-kappa B (NFκB) signaling in cardiovascular diseases: A mini review. Front Pharmacol. 2019; 10:1295. https://doi.org/10.3389/fphar.2019.01295
-
65. Li M, Liu Y, Weigmann B. Biodegradable Polymeric Nanoparticles Loaded with Flavonoids: A Promising Therapy for Inflammatory Bowel Disease. Int J Mol Sci. 2023;24(5):4454. https://doi.org/10.3390/ijms24054454
-
66. Tripathy S, Verma DK, Thakur M, Patel AR, Srivastav PP, Singh S, Gupta AK, Chavez-Gonzalez ML, Aguilar CN, Chakravorty N, Verma HK. Curcumin Extraction, Isolation, Quantification and Its Application in Functional Foods: A Review with a Focus on Immune Enhancement Activities and COVID-19. Front Nutr. 2021; 8:747956.
https://doi.org/ 10.3389/fnut.2021.747956.
-
67. Manojmouli C, Pasha TY, Nagaprashanth K, Ramesh B, Eain NU, Purushotham KN. Flavonoid derivatives as anticancer moiety and its effect on cancer cell lines: An updated review: Survey. J Serb Chem Soc. 2023;88(10):937-957.
https://doi.org/10.2298/JSC221228041M
-
68. He Y, Yue Y, Zheng X, Zhang K, Chen S, Du Z. Curcumin, inflammation, and chronic diseases: how are they linked? Molecules. 2015;20(5):9183-9213.
https://doi.org/ 10.3390/molecules20059183
-
69. Basnet P, Hussain H, Tho I, Skalko-Basnet N. Liposomal delivery system enhances anti-inflammatory properties of curcumin. J Pharm Sci. 2012;101(2):598-609.
https://doi.org/ 10.1002/jps.23052
-
70. Frei G, Haimhoffer Á, Csapó E, et al. In vitro and in vivo efficacy of topical dosage forms containing self-nanoemulsifying drug delivery system loaded with curcumin. Pharmaceutics. 2023;15(8):2054. https://doi.org/ 10.3390/pharmaceutics15082054
-
71. Mirończuk-Chodakowska I, Witkowska AM, Zujko ME. Endogenous non-enzymatic antioxidants in the human body. Adv Med Sci. 2018;63(1):68-78.
https://doi.org/ 10.1016/j.advms.2017.12.003
-
72. Hsu CH, Cheng AL. Clinical studies with curcumin. In: Aggarwal BB, Surh YJ, Shishodia S, editors. The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease. Advances in Experimental Medicine and Biology, vol 595. Boston: Springer; 2007.
-
73. Manojmouli C, Pasha TY, Nagaprashanth K, Ramesh B, Eain NU, Purushotham KN. Flavonoid derivatives as anticancer moiety and its effect on cancer cell lines: An updated review: Survey. J Serbian Chem Soc. 2023;88(10):937-57.
https://doi.org/ 10.2298/JSC220608129M
-
74. Tarocco A, Caroccia N, Morciano G, Wieckowski MR, Ancora G, Garani G, Pinton P. Melatonin as a master regulator of cell death and inflammation: molecular mechanisms and clinical implications for newborn care. Cell Death Dis. 2019;10(4):1-12. https://doi.org/ 10.1038/s41419-019-1444-x
-
75. Li L, Gang X, Wang J, Gong X. Role of melatonin in respiratory diseases. Exp Ther Med. 2022;23(4):271. https://doi.org/10.3892/etm.2022.11191
-
76. Zhang HM, Zhang Y. Melatonin: a well-documented antioxidant with conditional pro-oxidant actions. J Pineal Res. 2014;57(2):131-146. https://doi.org/10.1111/jpi.12162
-
77. Toczewska J, Zalewska A, Konopka T, Maciejczyk M. Enzymatic antioxidants activity in gingival crevicular fluid and saliva in advanced periodontitis. Oral Dis. 2023;29(8):3559-3570. https://doi.org/10.1111/odi.14287
-
78. Jain N, Ramawat KG. Nutraceuticals and antioxidants in prevention of diseases. In: Ramawat KG, Mérillon JM, editors. Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids and Other Nitrogen Compounds. Berlin, Heidelberg: Springer; 2013. p. 2559–80.
-
79. Xiong HH, Lin SY, Chen LL, Ouyang KH, Wang WJ. The interaction between flavonoids and intestinal microbes: a review. Foods. 2023; 12:320.
https://doi.org/10.3390/foods12020320
-
80. Arulselvan P, Fard MT, Tan WS, Gothai S, Fakurazi S, Norhaizan ME, Kumar SS. Role of antioxidants and natural products in inflammation. Oxid Med Cell Longev. 2016; 2016:5276130. https://doi.org/10.1155/2016/5276130
-
81. Olendzki BC, Silverstein TD, Persuitte GM, Ma Y, Baldwin KR, Cave D. An anti-inflammatory diet as treatment for inflammatory bowel disease: a case series report. Nutr J. 2014;13(1):1-7. https://doi.org/10.1186/1475-2891-13-14
-
82. Katsimbri P, Korakas E, Kountouri A, Ikonomidis I, Tsougos E, Vlachos D, Papadavid E, Raptis A, Lambadiari V. The effect of antioxidant and anti-inflammatory capacity of diet on psoriasis and psoriatic arthritis phenotype: nutrition as therapeutic tool? Antioxidants. 2021;10(2):157. https://doi.org/10.3390/antiox10020157
-
83. Schönenberger KA, Schüpfer AC, Gloy VL, Hasler P, Stanga Z, Kaegi-Braun N, Reber E. Effect of anti-inflammatory diets on pain in rheumatoid arthritis: a systematic review and meta-analysis. Nutrients. 2021;13(12):4221. https://doi.org/10.3390/nu13124221
-
84. Diluzio W, Nguyen PM, Varga CM, Palaniappan V, Brown J. Formulation for anti-α4β7 antibody. JP2020180163A. August 7, 2018.
-
85. Papas AM. Diet and antioxidant status. In: Papas AM, editor. Antioxidant status, diet, nutrition, and health. 2019. p. 89-106
-
86. Lü JM, Lin PH, Yao Q, Chen C. Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems. J Cell Mol Med. 2010;14(4):840-860. https://doi.org/ 10.1111/j.1582-4934.2010.01027.x
-
87. Iacobini C, Menini S, Ricci C, Scipioni A, Salvi L, Risuleo G, et al. Food-related carbonyl stress in cardiometabolic and cancer risk linked to unhealthy modern diet. Nutrients. 2022;14(5):1061. https://doi.org/10.3390/nu14051061
-
88. Losada-Barreiro S, Sanchez-Paz V, Bravo-Diaz C, Bastida S, Mourente G. Biochemistry of antioxidants: mechanisms and pharmaceutical applications. Biomedicines. 2022;10(12):3051. https://doi.org/10.3390/biomedicines10123051
-
89. Besora-Moreno M, Llauradó E, Tarro L, Solà R. Antioxidant-rich foods, antioxidant supplements, and sarcopenia in old-young adults ≥55 years old: A systematic review and meta-analysis of observational studies and randomized controlled trials. Clin Nutr. 2022;41(10):2308-2324. https://doi.org/10.1016/j.clnu.2022.06.002
-
90 . Luévano-Contreras C, Garay-Sevilla ME, Rojas A, Malacara JM. Dietary advanced glycation end products and cardiometabolic risk. Curr Diab Rep. 2017;17:1-11.
https://doi.org/ 10.1007/s11892-017-0904-2.
-
91. Ahire ED, Parmar KB, Choudhary VK. Role of omega-3 fatty acids in different neurodegenerative disorders. In: Kumar SS, editor. Applied Pharmaceutical Science and Microbiology. Apple Academic Press; 2020. p. 173-194.
-
92. Nani A, Murtaza B, Khan AS, Khan MK, Hichami A, Benammar C. Antioxidant and anti-inflammatory potential of polyphenols contained in Mediterranean diet in obesity: Molecular mechanisms. Molecules. 2021;26(4):985.
https://doi.org/10.3390/molecules26040985.
-
93. Boosalis MG. The role of selenium in chronic disease. Nutr Clin Pract. 2008;23(2):152-160. https://doi.org/10.1177/0884533608314532
-
94. Lyu YL, Gao Y, Wang S, Xu Y, Zhang M, Zhao J. Biological activities underlying the therapeutic effect of quercetin on inflammatory bowel disease. Mediators Inflamm. 2022;2022:5665778. https://doi.org/10.1155/2022/5665778
-
95. Francescangeli F, De Angelis ML, Zeuner A. Dietary factors in the control of gut homeostasis, intestinal stem cells, and colorectal cancer. Nutrients. 2019;11(12):2936. https://doi.org/10.3390/nu11122936
-
96. Buck R, Duska-McEwen GO, Schaller JP. Nutritional formulations including human milk oligosaccharides and antioxidants and uses thereof. US11464793B2. 2020.
-
97. Zielinski T, Russell M, Moon E, Allen EP. Antioxidant compositions for treatment of inflammation or oxidative damage. US10918613B2. 2016.
-
98. Myhill PR, Driscoll WJ. Compositions for alleviating inflammation and oxidative stress in a mammal. US8435574B2. 2012.
-
99. Xin J, Jiang J, Greiner JL, Lester M, Maravetz S, Szucs SS, et al. Antioxidant inflammation modulators: novel derivatives of oleanolic acid. US8338618B2. December 25, 2012
-
100. Bhagat U. Optimized nutritional formulations, methods for selection of tailored diets therefrom, and methods of use thereof. CA2814053C. 2020.
Year 2025,
Volume: 45 Issue: 3, 268 - 285, 01.09.2025
Sanshita Sanshita
,
Olutayo Adeleye
,
Vaishali Thakur
,
Ayomide D. Mustapha
,
Navneet Kaur
,
Olufunke D. Akin-ajani
,
Oluwatoyin A. Odeku
,
Inderbir Singh
,
Kushagra Grag
References
-
1. Nash AA, Dalziel RG, Fitzgerald JR. Mims' Pathogenesis of Infectious Disease. 6th ed. Edinburgh, UK: Academic Press; 2015. 364 pages
-
2. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2017;9(6):7204–18. https://doi.org/10.18632/oncotarget.23208
-
3. Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019;25(12):1822–32. https://doi.org/10.1038/s41591-019-0675-0
-
4. Gargano LM, Hughes JM. Microbial origins of chronic diseases. Annual review of public health. 2014 Mar 18;35(1):65-82
https://doi.org/10.1146/annurev-publhealth-032013-182426
-
5. Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D, Bitto A. Oxidative stress: harms and benefits for human health. Oxidative medicine and cellular longevity. 2017;2017(1):8416763. https://doi.org/10.1155/2017/8416763
-
6. Rodrigues LC, Cerri DG, Marzocchi-Machado CM, Cummings RD, Stowell SR, Dias-Baruffi M. Detection of reactive oxygen species in human neutrophils under various conditions of exposure to galectin. Methods Mol Biol. 2022; 2442:549–64
https://doi.org/ 10.1007/978-1-0716-2055-7_29
-
7. Hamid A, Aiyelaagbe O, Usman L, Ameen O, Lawal A. Antioxidants: its medicinal and pharmacological applications. Afr J Pure Appl. 2010;4(8):142–51
-
8. Vezina FA, Cantin AM. Antioxidants and chronic obstructive pulmonary disease. Chronic Obstr Pulm Dis. 2018;5(4):277–88. https://doi.org/10.15326/jcopdf.5.4.2018.0133
-
9. Zhang Y, Igwe OJ. Exogenous oxidants activate nuclear factor kappa B through Toll-like receptor 4 stimulation to maintain inflammatory phenotype in macrophage. Biochemical Pharmacology. 2018; 147:104-18. https://doi.org/10.1016/j.bcp.2017.10.010
-
10. Fujii J, Homma T, Osaki T. Superoxide radicals in the execution of cell death. Antioxidants. 2022;11(3):501. https://doi.org/10.3390/antiox11030501
-
11. Neha K, Haider MR, Pathak A, Yar MS. Medicinal prospects of antioxidants: A review. European journal of medicinal chemistry. 2019; 178:687-704
https://doi.org/10.1016/j.ejmech.2019.06.010
-
12. Borisov VB, Siletsky SA, Nastasi MR, Forte E. ROS defense systems and terminal oxidases in bacteria. Antioxidants (Basel). 2021;10(6):839.
https://doi.org/10.3390/antiox10060839
-
13. Gutierrez A, Van Wagoner DR. Oxidant and inflammatory mechanisms and targeted therapy in AF: An update. J Cardiovasc Pharmacol. 2015;66(6): 523
https://doi.org/ 10.1097/FJC.0000000000000304
-
14. Albano GD, Gagliardo RP, Montalbano AM, Profita M. Overview of the mechanisms of oxidative stress: impact in inflammation of the airway diseases. Antioxidants. 2022 ;11(11):2237. https://doi.org/10.3390/antiox11112237
-
15. Brown OI, Bridge KI, Kearney MT. Nicotinamide adenine dinucleotide phosphate oxidases in glucose homeostasis and diabetes-related endothelial cell dysfunction. Cells. 2021 Sep 4;10(9):2315. https://doi.org/10.3390/cells10092315
-
16. Tang W, Li X, Lyu M, Huang Q. Cancer cell membrane biomimetic mesoporous nanozyme system with efficient ROS generation for antitumor chemoresistance. Oxidative Medicine and Cellular Longevity. 2022;2022(1):5089857. https://doi.org/10.1155/2022/5089857
-
17. Dunn JD, Alvarez LA, Zhang X, Soldati T. Reactive oxygen species and mitochondria: A nexus of cellular homeostasis. Redox biology. 2015; 6:472-85. https://doi.org/ 10.1016/j.redox.2015.09.005
-
18. Palma FR, He C, Danes JM, Paviani V, Coelho DR, Gantner BN, Bonini MG. Mitochondrial superoxide dismutase: what the established, the intriguing, and the novel reveal about a key cellular redox switch. Antioxidants & redox signaling. 2020;32(10):701-14. https://doi.org/10.1089/ars.2019.7890
-
19. Rahtes A, Geng S, Lee C, Li L. Cellular and molecular mechanisms involved in the resolution of innate leukocyte inflammation. Journal of leukocyte biology. 2018;104(3):535-41. https://doi.org/10.1002/JLB.4MR0118-021R
-
20. Arulselvan P, Fard MT, Tan WS, Gothai S, Fakurazi S, Norhaizan ME, Kumar SS. Role of antioxidants and natural products in inflammation. Oxidative medicine and cellular longevity. 2016;2016(1):5276130. https://doi.org/10.1155/2016/5276130
-
21. Markiewski MM, Lambris JD. The role of complement in inflammatory diseases from behind the scenes into the spotlight. The American journal of pathology. 2007 ;171(3):715-27. https://doi.org/10.2353/ajpath.2007.070166
-
22. Younger DS. Overview of the vasculitides. Neurologic Clinics. 2019 ;37(2):171-200. https://doi.org/10.1016/j.ncl.2019.01.001
-
23. Vestweber D. How leukocytes cross the vascular endothelium. Nature Reviews Immunology. 2015;15(11):692-704. https://doi.org/10.1038/nri3908
-
24. Shaheen ZR, Corbett JA. Macrophage expression of inflammatory genes in response to emcv infection. Biomolecules. 2015 ;5(3):1938-54. https://doi.org/10.3390/biom5031938
-
25. Shelton HM, Brewbaker JL. Leucaena leucocephala-the most widely used forage tree legume. Forage tree legumes in tropical agriculture. (Eds. RC Gutteridge and HM Shelton). CAB International. Wallingford, 1994; 12;15.
-
26. Zwarthoff SA, Berends ET, Mol S, Ruyken M, Aerts PC, Józsi M, De Haas CJ, Rooijakkers SH, Gorham Jr RD. Functional characterization of alternative and classical pathway C3/C5 convertase activity and inhibition using purified models. Frontiers in immunology. 2018; 9:1691. https://doi.org/10.3389/fimmu.2018.01691
-
27. Ahmed TJ, Kaneva MK, Pitzalis C, Cooper D, Perretti M. Resolution of inflammation: examples of peptidergic players and pathways. Drug discovery today. ;19(8):1166-71. https://doi.org/10.1016/j.drudis.2014.05.020
-
28. Fredman G, Spite M. Specialized pro-resolving mediators in cardiovascular diseases. Mol Aspects Med. 2017 Dec; 58:65-71. https://doi.org/10.1016/j.mam.2017.02.003
-
29. Martínez JA, Alonso-Bernáldez M, Martínez-Urbistondo D, Vargas-Nuñez JA, Ramírez de Molina A, Dávalos A, Ramos-Lopez O. Machine learning insights concerning inflammatory and liver-related risk comorbidities in non-communicable and viral diseases. World J Gastroenterol. 2022 Nov 28;28(44):6230-6248.
https://doi.org/10.3748/wjg. v28.i44.6230
-
30. Dongiovanni P, Valenti L. Genetics of nonalcoholic fatty liver disease. Metabolism. 2016 Aug;65(8):1026-1037. https://doi.org/10.1016/j.metabol.2015.10.031
-
31. Shi S, Verstegen MMA, Mezzanotte L, De Jonge J, Lowik C, Van Der Laan LJW. Necroptotic cell death in liver transplantation and underlying diseases: mechanisms and clinical perspective. Liver Transpl. 2019 Jul;25(7):1091-1104. https://doi.org/10.1002/lt.25464
-
32. Shi CX, Wang Y, Jiao FZ, Chen Q, Cao P, Pei MH, Zhang LY, Guo J, Deng W, Wang LW, Gong ZJ. Epigenetic regulation of hepatic stellate cell activation and macrophage in chronic liver inflammation. Front Physiol. 2021 Jul 1; 12:683526. https://doi.org/10.3389/fphys.2021.683526
-
33. Oh SH, Swiderska-Syn M, Jewell ML, Premont RT, Diehl AM. Liver regeneration requires Yap1-TGFβ-dependent epithelial-mesenchymal transition in hepatocytes. J Hepatol. 2018 Aug;69(2):359-367. https://doi.org/10.1016/j.jhep.2018.05.008
-
34. Ashok A, Andrabi SS, Mansoor S, Kuang Y, Kwon BK, Labhasetwar V. Antioxidant therapy in oxidative stress-induced neurodegenerative diseases: role of nanoparticle-based drug delivery systems in clinical translation. Antioxidants (Basel). 2022 Feb;11(2):408. https://doi.org/10.3390/antiox11020408
-
35. Liu Z, Ren Z, Zhang J, Chuang CC, Kandaswamy E, Zhou T, et al. Role of ROS and nutritional antioxidants in human diseases. Front Physiol. 2018 Apr 24; 9:477. https://doi.org/ 10.3389/fphys.2018.00477
-
36. Khayatan D, Razavi SM, Arab ZN, Hosseini Y, Niknejad A, Momtaz S, et al. Superoxide dismutase: a key target for the neuroprotective effects of curcumin. Mol Cell Biochem. 2024;479(3):693–705. https://doi.org/10.1007/s11010-023-04757-5
-
37. Rammohan A, Zyryanov GV, Bhagath YB, Manjula K. Antioxidants: Structure-activity of plant polyphenolics. Vitam Horm. 2023; 121:395-411.
https://doi.org/10.1016/bs.vh.2022.10.001
-
38. Diaz de Barboza G, Guizzardi S, Moine L, Tolosa de Talamoni N. Oxidative stress, antioxidants and intestinal calcium absorption. World J Gastroenterol. 2017 Apr 28;23(16):2841-2853. https://doi.org/10.3748/wjg. v23.i16.2841
-
39. Saito Y. Diverse cytoprotective actions of vitamin E isoforms—role as peroxyl radical scavengers and complementary functions with selenoproteins. Free Radic Biol Med. 2021 Nov 1; 175:121-129. https://doi.org/10.1016/j.freeradbiomed.2021.08.234
-
40. Pirhadi-Tavandashti N, Imani H, Ebrahimpour-Koujan S, Samavat S, Hakemi MS. The effect of vitamin E supplementation on biomarkers of endothelial function and inflammation among hemodialysis patients: A double-blinded randomized clinical trial. Complement Ther Med. 2020 Dec; 49:102357. https://doi.org/10.1016/j.ctim.2020.102357
-
41. Rizvi S, Raza ST, Ahmed F, Ahmad A, Abbas S, Mahdi F. The role of vitamin E in human health and some diseases. Sultan Qaboos Univ Med J. 2014 May;14(2):e157-65. https://doi.org/10.18295/squmj.2014.14.02.010
-
42. Abdollahzad H. Importance of antioxidants in rheumatoid arthritis. Austin Arthritis. 2016;1(1):1005.
-
43. Dailah HG. Therapeutic potential of small molecules targeting oxidative stress in the treatment of chronic obstructive pulmonary disease (COPD): A comprehensive review. Molecules. 2022;27(17):5542. https://doi.org/10.3390/molecules27175542
-
44. Stamouli EC, Politis AM. Pro-inflammatory cytokines in Alzheimer's disease. Psychiatriki. 2016;27(4):264-275.
-
45. Xie L, Liu Y, Zhang N, Li C, Sandhu AF, Williams III G, Shen Y, Li H, Wu Q, Yu S. Electroacupuncture improves M2 microglia polarization and glia anti-inflammation of hippocampus in Alzheimer's disease. Front Neurosci. 2021; 15:689629.
https://doi.org/ 10.3389/fnins.2021.689629
-
46. Huang Z, Zhou T, Sun X, Zheng Y, Cheng B, Li M, Liu X, He C. Necroptosis in microglia contributes to neuroinflammation and retinal degeneration through TLR4 activation. Cell Death Differ. 2018;25(1):180-189. https://doi.org/10.1038/s41418-017-0005-0
-
47. Sinyor B, Mineo J, Ochner C. Alzheimer's disease, inflammation, and the role of antioxidants. J Alzheimers Dis Rep. 2020;4(1):175-183.
https://doi.org/10.3233/ADR-200171.
-
48. Ali SS, Ahsan H, Zia MK, Siddiqui T, Khan FH. Understanding oxidants and antioxidants: Classical team with new players. J Food Biochem. 2020;44(3):e13145. https://doi.org/10.1111/jfbc.13145
-
49. Gęgotek A, Skrzydlewska E. Antioxidative and anti-inflammatory activity of ascorbic acid. Antioxidants (Basel). 2022;11(10):1993. https://doi.org/10.3390/antiox11101993
-
50. Mohd Zaffarin AS, Ng SF, Ng MH, Hassan H, Alias E. Pharmacology and pharmacokinetics of vitamin E: Nanoformulations to enhance bioavailability. Int J Nanomedicine. 2020; 15:9961-9974. https://doi.org/10.2147/IJN.S276355
-
51. Hegazy AM, El-Sayed EM, Ibrahim KS, Abdel-Azeem AS. Dietary antioxidant for disease prevention corroborated by the Nrf2 pathway. J Complement Integr Med. 2019;16(3). https://doi.org/ 10.1515/jcim-2018-0042
-
52. Abeyrathne EDNS, Nam K, Huang X, Ahn DU. Plant- and animal-based antioxidants' structure, efficacy, mechanisms, and applications: A review. Antioxidants (Basel). 202211(5):1025. https://doi.org/10.3390/antiox11051025
-
53. Edem DO. Vitamin A: a review. Asian J Clin Nutr. 2009;1(1):65-82. https://doi.org/10.3923/ajcn.2009.65.82
-
54. Taha EI, Ghorab DM, Zaghloul AA. Bioavailability assessment of vitamin A self-nanoemulsified drug delivery systems in rats: a comparative study. Med Princ Pract. 2007;16(5):355-359. https://doi.org/10.1159/000104808
-
55. Praça FG, Viegas JSR, Peh HY, Garbin TN, Medina WSG, Bentley MVLB. Microemulsion co-delivering vitamin A and vitamin E as a new platform for topical treatment of acute skin inflammation. Mater Sci Eng C Mater Biol Appl. 2020; 110:110639.
https://doi.org/ 10.1016/j.msec.2020.110639
-
56. Imdad A, Herzer K, Mayo-Wilson E, Yakoob MY, Bhutta ZA. Vitamin A supplementation for preventing morbidity and mortality in children from 6 months to 5 years of age. Cochrane Database Syst Rev. 2010;(12):CD008524.
https://doi.org/ 10.1002/14651858.CD008524.pub2
-
57. Jain P, Singh I, Surana SJ, Shirkhedkar AA. Tocopherols and tocotrienols: the essential vitamin E. In: Cazarin CBB, Bicas JL, Pastore GM, Marostica JM, editors. Bioactive Food Components Activity in Mechanistic Approach. Academic Press; 2022. p. 139-154. https://doi.org/ 10.1016/B978-0-12-823569-0.00009-6
-
58. Zhang Z, Tan S, Feng SS. Vitamin E TPGS as a molecular biomaterial for drug delivery. Biomaterials. 2012;33(19):4889-4906. https://doi.org/ 10.1016/j.biomaterials.2012.03.029
-
59. Chen X, Gu J, Sun L, Li W, Guo L, Gu Z, Wang L, Zhang Y, Zhang W, Han B, Chang J. Efficient drug delivery and anticancer effect of micelles based on vitamin E succinate and chitosan derivatives. Bioact Mater. 2021 Oct;6(10):3025-35.
https://doi.org/ 10.1016/j.bioactmat.2021.03.029
-
60. Vardi M, Levy NS, Levy AP. Vitamin E in the prevention of cardiovascular disease: the importance of proper patient selection. J Lipid Res. 2013 Sep;54(9):2307-14. https://doi.org/ 10.1194/jlr. R026641
-
61. Deledda A, Annunziata G, Tenore GC, Palmas V, Manzin A, Velluzzi F. Diet-derived antioxidants and their role in inflammation, obesity, and gut microbiota modulation. Antioxidants (Basel). 2021;10(5):708. https://doi.org/10.3390/antiox10050708
-
62. Ali MY, Sina AAI, Khandker SS, Neesa L, Tanvir EM, Kabir A, Khalil MI, Gan SH. Nutritional composition and bioactive compounds in tomatoes and their impact on human health and disease: A review. Foods. 2021;10(1):45.
https://doi.org/10.3390/foods10010045
-
63. Janabi AH, Kamboh AA, Saeed M, et al. Flavonoid-rich foods (FRF): A promising nutraceutical approach against lifespan-shortening diseases. Iran J Basic Med Sci. 2020;23(2):140–153. https://doi.org/10.22038/ijbms.2020.42307.10147
-
64. Choy KW, Murugan D, Leong XF, et al. Flavonoids as natural anti-inflammatory agents targeting nuclear factor-kappa B (NFκB) signaling in cardiovascular diseases: A mini review. Front Pharmacol. 2019; 10:1295. https://doi.org/10.3389/fphar.2019.01295
-
65. Li M, Liu Y, Weigmann B. Biodegradable Polymeric Nanoparticles Loaded with Flavonoids: A Promising Therapy for Inflammatory Bowel Disease. Int J Mol Sci. 2023;24(5):4454. https://doi.org/10.3390/ijms24054454
-
66. Tripathy S, Verma DK, Thakur M, Patel AR, Srivastav PP, Singh S, Gupta AK, Chavez-Gonzalez ML, Aguilar CN, Chakravorty N, Verma HK. Curcumin Extraction, Isolation, Quantification and Its Application in Functional Foods: A Review with a Focus on Immune Enhancement Activities and COVID-19. Front Nutr. 2021; 8:747956.
https://doi.org/ 10.3389/fnut.2021.747956.
-
67. Manojmouli C, Pasha TY, Nagaprashanth K, Ramesh B, Eain NU, Purushotham KN. Flavonoid derivatives as anticancer moiety and its effect on cancer cell lines: An updated review: Survey. J Serb Chem Soc. 2023;88(10):937-957.
https://doi.org/10.2298/JSC221228041M
-
68. He Y, Yue Y, Zheng X, Zhang K, Chen S, Du Z. Curcumin, inflammation, and chronic diseases: how are they linked? Molecules. 2015;20(5):9183-9213.
https://doi.org/ 10.3390/molecules20059183
-
69. Basnet P, Hussain H, Tho I, Skalko-Basnet N. Liposomal delivery system enhances anti-inflammatory properties of curcumin. J Pharm Sci. 2012;101(2):598-609.
https://doi.org/ 10.1002/jps.23052
-
70. Frei G, Haimhoffer Á, Csapó E, et al. In vitro and in vivo efficacy of topical dosage forms containing self-nanoemulsifying drug delivery system loaded with curcumin. Pharmaceutics. 2023;15(8):2054. https://doi.org/ 10.3390/pharmaceutics15082054
-
71. Mirończuk-Chodakowska I, Witkowska AM, Zujko ME. Endogenous non-enzymatic antioxidants in the human body. Adv Med Sci. 2018;63(1):68-78.
https://doi.org/ 10.1016/j.advms.2017.12.003
-
72. Hsu CH, Cheng AL. Clinical studies with curcumin. In: Aggarwal BB, Surh YJ, Shishodia S, editors. The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease. Advances in Experimental Medicine and Biology, vol 595. Boston: Springer; 2007.
-
73. Manojmouli C, Pasha TY, Nagaprashanth K, Ramesh B, Eain NU, Purushotham KN. Flavonoid derivatives as anticancer moiety and its effect on cancer cell lines: An updated review: Survey. J Serbian Chem Soc. 2023;88(10):937-57.
https://doi.org/ 10.2298/JSC220608129M
-
74. Tarocco A, Caroccia N, Morciano G, Wieckowski MR, Ancora G, Garani G, Pinton P. Melatonin as a master regulator of cell death and inflammation: molecular mechanisms and clinical implications for newborn care. Cell Death Dis. 2019;10(4):1-12. https://doi.org/ 10.1038/s41419-019-1444-x
-
75. Li L, Gang X, Wang J, Gong X. Role of melatonin in respiratory diseases. Exp Ther Med. 2022;23(4):271. https://doi.org/10.3892/etm.2022.11191
-
76. Zhang HM, Zhang Y. Melatonin: a well-documented antioxidant with conditional pro-oxidant actions. J Pineal Res. 2014;57(2):131-146. https://doi.org/10.1111/jpi.12162
-
77. Toczewska J, Zalewska A, Konopka T, Maciejczyk M. Enzymatic antioxidants activity in gingival crevicular fluid and saliva in advanced periodontitis. Oral Dis. 2023;29(8):3559-3570. https://doi.org/10.1111/odi.14287
-
78. Jain N, Ramawat KG. Nutraceuticals and antioxidants in prevention of diseases. In: Ramawat KG, Mérillon JM, editors. Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids and Other Nitrogen Compounds. Berlin, Heidelberg: Springer; 2013. p. 2559–80.
-
79. Xiong HH, Lin SY, Chen LL, Ouyang KH, Wang WJ. The interaction between flavonoids and intestinal microbes: a review. Foods. 2023; 12:320.
https://doi.org/10.3390/foods12020320
-
80. Arulselvan P, Fard MT, Tan WS, Gothai S, Fakurazi S, Norhaizan ME, Kumar SS. Role of antioxidants and natural products in inflammation. Oxid Med Cell Longev. 2016; 2016:5276130. https://doi.org/10.1155/2016/5276130
-
81. Olendzki BC, Silverstein TD, Persuitte GM, Ma Y, Baldwin KR, Cave D. An anti-inflammatory diet as treatment for inflammatory bowel disease: a case series report. Nutr J. 2014;13(1):1-7. https://doi.org/10.1186/1475-2891-13-14
-
82. Katsimbri P, Korakas E, Kountouri A, Ikonomidis I, Tsougos E, Vlachos D, Papadavid E, Raptis A, Lambadiari V. The effect of antioxidant and anti-inflammatory capacity of diet on psoriasis and psoriatic arthritis phenotype: nutrition as therapeutic tool? Antioxidants. 2021;10(2):157. https://doi.org/10.3390/antiox10020157
-
83. Schönenberger KA, Schüpfer AC, Gloy VL, Hasler P, Stanga Z, Kaegi-Braun N, Reber E. Effect of anti-inflammatory diets on pain in rheumatoid arthritis: a systematic review and meta-analysis. Nutrients. 2021;13(12):4221. https://doi.org/10.3390/nu13124221
-
84. Diluzio W, Nguyen PM, Varga CM, Palaniappan V, Brown J. Formulation for anti-α4β7 antibody. JP2020180163A. August 7, 2018.
-
85. Papas AM. Diet and antioxidant status. In: Papas AM, editor. Antioxidant status, diet, nutrition, and health. 2019. p. 89-106
-
86. Lü JM, Lin PH, Yao Q, Chen C. Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems. J Cell Mol Med. 2010;14(4):840-860. https://doi.org/ 10.1111/j.1582-4934.2010.01027.x
-
87. Iacobini C, Menini S, Ricci C, Scipioni A, Salvi L, Risuleo G, et al. Food-related carbonyl stress in cardiometabolic and cancer risk linked to unhealthy modern diet. Nutrients. 2022;14(5):1061. https://doi.org/10.3390/nu14051061
-
88. Losada-Barreiro S, Sanchez-Paz V, Bravo-Diaz C, Bastida S, Mourente G. Biochemistry of antioxidants: mechanisms and pharmaceutical applications. Biomedicines. 2022;10(12):3051. https://doi.org/10.3390/biomedicines10123051
-
89. Besora-Moreno M, Llauradó E, Tarro L, Solà R. Antioxidant-rich foods, antioxidant supplements, and sarcopenia in old-young adults ≥55 years old: A systematic review and meta-analysis of observational studies and randomized controlled trials. Clin Nutr. 2022;41(10):2308-2324. https://doi.org/10.1016/j.clnu.2022.06.002
-
90 . Luévano-Contreras C, Garay-Sevilla ME, Rojas A, Malacara JM. Dietary advanced glycation end products and cardiometabolic risk. Curr Diab Rep. 2017;17:1-11.
https://doi.org/ 10.1007/s11892-017-0904-2.
-
91. Ahire ED, Parmar KB, Choudhary VK. Role of omega-3 fatty acids in different neurodegenerative disorders. In: Kumar SS, editor. Applied Pharmaceutical Science and Microbiology. Apple Academic Press; 2020. p. 173-194.
-
92. Nani A, Murtaza B, Khan AS, Khan MK, Hichami A, Benammar C. Antioxidant and anti-inflammatory potential of polyphenols contained in Mediterranean diet in obesity: Molecular mechanisms. Molecules. 2021;26(4):985.
https://doi.org/10.3390/molecules26040985.
-
93. Boosalis MG. The role of selenium in chronic disease. Nutr Clin Pract. 2008;23(2):152-160. https://doi.org/10.1177/0884533608314532
-
94. Lyu YL, Gao Y, Wang S, Xu Y, Zhang M, Zhao J. Biological activities underlying the therapeutic effect of quercetin on inflammatory bowel disease. Mediators Inflamm. 2022;2022:5665778. https://doi.org/10.1155/2022/5665778
-
95. Francescangeli F, De Angelis ML, Zeuner A. Dietary factors in the control of gut homeostasis, intestinal stem cells, and colorectal cancer. Nutrients. 2019;11(12):2936. https://doi.org/10.3390/nu11122936
-
96. Buck R, Duska-McEwen GO, Schaller JP. Nutritional formulations including human milk oligosaccharides and antioxidants and uses thereof. US11464793B2. 2020.
-
97. Zielinski T, Russell M, Moon E, Allen EP. Antioxidant compositions for treatment of inflammation or oxidative damage. US10918613B2. 2016.
-
98. Myhill PR, Driscoll WJ. Compositions for alleviating inflammation and oxidative stress in a mammal. US8435574B2. 2012.
-
99. Xin J, Jiang J, Greiner JL, Lester M, Maravetz S, Szucs SS, et al. Antioxidant inflammation modulators: novel derivatives of oleanolic acid. US8338618B2. December 25, 2012
-
100. Bhagat U. Optimized nutritional formulations, methods for selection of tailored diets therefrom, and methods of use thereof. CA2814053C. 2020.