Effects of The Antidepressant Venlafaxine on The Expression of Peroxiredoxin-3 and Peroxiredoxin-5 Against LPS-induced Oxidative Stress in SHSY-5Y Neurons.
Year 2024,
Issue: Special Issue / International Multidisciplinary Symposium on Drug Research and Development, DRD-2023, 17 - 26, 01.07.2024
Fadime Aydın Köse
,
Muhammed İsmail Akgül
,
Ayçe İdil Arap
Abstract
The main objective of this study was to examine the potential neuroprotective
properties of venlafaxine, an antidepressant belonging to the serotonin-norepinephrine
reuptake inhibitor class. Furthermore, it provides a novel insight into
how venlafaxine might interact with peroxiredoxin-3 and -5 enzymes (PRDX-3
and PRDX-5), pivotal cellular antioxidant defence system components. For this
purpose, human neuroblastoma cells (SH-SY5Y) were pretreated with venlafaxine
(0-100 μM) for 12 h, followed by a 4 h LPS exposure (1 μg/mL) to induce
oxidative stress. Cell viability was determined by MTT assay, and ROS generation
was assessed by DCFH-DA assay. Protein and mRNA expression levels of
PRDX-3 and PRDX-5 were determined by immunoblotting and qRT-PCR, respectively.
Based on the results obtained, it was found that the venlafaxine pretreatment
led to a notable reduction in intracellular ROS accumulation induced
by LPS when compared to the control group (p< 0.05). In the same manner, it
was observed that venlafaxine pre-treatment altered LPS-induced PRDX-3 and
PRDX-5 expression in neuronal cells (p< 0.05). Our findings indicate the involvement
of multifunctional PRDX-3 and PRDX-5 enzymes in the antioxidant
effect of venlafaxine and suggest that further investigations into this pathway
could provide valuable therapeutic contributions.
Ethical Statement
In this study, no experiment was conducted with animal or human samples that would require ethical approval.
Supporting Institution
This study received financial support from the TUBİTAK Research Project Support Programme for Undergraduate Students (2209-A 2021/1).
Thanks
The authors would like to express their gratitude for their valuable criticize to Prof. Sinem Ezgi TURUNÇ ÖZOĞLU.
References
- 1. Stein DJ. Antidepressants: Past, present and future. Antidepressants
and major Depressive Disorder. Future Medicine Ltd.
2012:3–11. https://doi.org/10.2217/ebo.11.394.
- 2. Duman RS. Pathophysiology of depression: The concept of synaptic plasticity. European Psychiatry 2002; 17:306–10.
https://doi.org/10.1016/S0924-9338(02)00654-5.
- 3. Temel MK. “Antidepressant use disorder” as a result of modern
psychosociological factors: a medical-ethically problematic
phenomenon. Anatolian Clinic Journal of Medical
Sciences 2019; 24:206–16. https://doi.org/10.21673/anadoluklin.
568664.
- 4. Bhatt S, Nagappa AN, Patil CR. Role of oxidative stress in
depression. Drug Discov Today 2020; 25:1270–6. https://doi.
org/10.1016/j.drudis.2020.05.001.
- 5. Rossby SP, Manier DH, Liang S, Nalepa I, Sulser F. Pharmacological
actions of the antidepressant venlafaxine beyond
aminergic receptors. Int J Neuropsychopharmacol 1999;
2(1):1-8. https://doi.org/10.1017/S1461145799001273.
- 6. Krivosova M, Grendar M, Hrtanek I, Ondrejka I, Tonhajzerova
I, Sekaninova N, et al. Potential Major Depressive Disorder
Biomarkers in Pediatric Population – a Pilot Study. Physiol
Res 2021;69: 523–532. https://doi.org/10.33549/physiolres.
934590.
- 7. Mansouri MT, Naghizadeh B, Ghorbanzadeh B, Amirgholami
N, Houshmand G, Alboghobeish S. Venlafaxine inhibits
naloxone-precipitated morphine withdrawal symptoms: Role
of inflammatory cytokines and nitric oxide. Metab Brain Dis
2020; 35:305–13. https://doi.org/10.1007/s11011-019-00491-
4.
- 8. WHO. World health statistics 2022: monitoring health for the
SDGs, sustainable development goals. https://www.who.int/
publications/i/item/9789240051157. 2022.
- 9. Black CN, Bot M, Scheffer PG, Cuijpers P, Penninx BWJH.
Is depression associated with increased oxidative stress? A
systematic review and meta-analysis. Psychoneuroendocrinology
2015; 51:164–75. https://doi.org/10.1016/j.psyneuen.
2014.09.025.
- 10. Belleau EL, Treadway MT, Pizzagalli DA. The impact of
stress and major depressive disorder on hippocampal and
medial prefrontal cortex morphology. Biol Psychiatry 2019;
85:443–53. https://doi.org/10.1016/j.biopsych.2018.09.031.
- 11. Rhee SG, Woo HA, Kil IS, Bae SH. Peroxiredoxin functions
as a peroxidase and a regulator and sensor of local peroxides.
J Biol Chem 2012; 287:4403–10. https://doi.org/10.1074/jbc.
R111.283432.
- 12. Perkins A, Poole LB, Karplus PA. Tuning of peroxiredoxin
catalysis for various physiological roles. Biochemistry 2014;
53: 7693–705. https://doi.org/10.1021/bi5013222.
- 13.Poynton RA, Hampton MB. Peroxiredoxins as biomarkers of
oxidative stress. Biochim Biophys Acta 2014; 1840:906–12.
https://doi.org/10.1016/j.bbagen.2013.08.001.
- 14. Sies H. Role of metabolic H2O2 generation: redox signaling
and oxidative stress. J Biol Chem 2014; 289:8735–41. https://
doi.org/10.1074/jbc.R113.544635.
- 15.Wang T, Diaz AJ, Yun Y. The role of peroxiredoxin II in chemoresistance
of breast cancer cells. Breast Cancer: Targets and
Therapy 2014; 6:73. https://doi.org/10.2147/BCTT.S61281.
- 16. Armagan G, Sevgili E, Gürkan FT, Köse FA, Bilgiç T, Dagci
T, et al. Regulation of the Nrf2 pathway by glycogen synthase
kinase-3β in MPP+-induced cell damage. Molecules 2019;24.
https://doi.org/10.3390/molecules24071377.
- 17. Jouha J, Loubidi M, Bouali J, Hamri S, Hafid A, Suzenet F, et
al. Synthesis of new heterocyclic compounds based on pyrazolopyridine
scaffold and evaluation of their neuroprotective potential
in MPP+-induced neurodegeneration. Eur J Med Chem
2017;129. https://doi.org/10.1016/j.ejmech.2017.02.019.
- 18. Loubidi M, Jouha J, Tber Z, Khouili M, Suzenet F, Akssira
M, et al. Efficient synthesis and first regioselective C-6 direct
arylation of imidazo[2,1-c] [1,2,4]triazine scaffold and their
evaluation in H2O2-induced oxidative stress. Eur J Med Chem
2018;145. https://doi.org/10.1016/j.ejmech.2017.12.081.
- 19. Köse FA, Pabuccuoglu A, Karakoyun M, Aydogdu S. Peroxiredoxins
and hypoxia-inducible factor-1α in duodenal tissue:
emerging factors in the pathophysiology of pediatric celiac disease
patients. Curr Issues Mol Biol 2023; 45:1779–93. https://
doi.org/10.3390/cimb45020114.
- 20. Erzurumlu Y, Aydin Kose F, Gozen O, Gozuacik D, Toth EA,
Ballar P. A unique IBMPFD-related P97/VCP mutation with
differential binding pattern and subcellular localization. International
Journal of Biochemistry and Cell Biology 2013;
45:773–82.
- 21. Schmittgen TD, Livak KJ. Analyzing real-time PCR data
by the comparative CT method. Nat Protoc 2008; 3:1101–8.
https://doi.org/10.1038/nprot.2008.73.
- 22. Shim S-Y, Kim H-S. Oxidative stress and the antioxidant enzyme
system in the developing brain. Korean J Pediatr 2013;
56:107–11. https://doi.org/10.3345/kjp.2013.56.3.107.
- 23.Michel TM, Frangou S, Thiemeyer D, Camara S, Jecel J, Nara K,
et al. Evidence for oxidative stress in the frontal cortex in patients
with recurrent depressive disorder-a postmortem study.
Psychiatry Res 2007; 151:145–50. https://doi.org/10.1016/j.
psychres.2006.04.013.
- 24. Szuster-Ciesielska A, Słotwińska M, Stachura A,
Marmurowska-Michałowska H, Dubas-Ślemp H, Bojarska-
Junak A, et al. Accelerated apoptosis of blood leukocytes and
oxidative stress in blood of patients with major depression.
Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:686–
94. https://doi.org/10.1016/j.pnpbp.2007.11.012.
- 25.Li W, Zhu Y, Liu X, Hou J, Fang J, Shen J, et al. Phencynonate
mediates antidepressant response by activating sirtuin 6-SOD2/Prdx6 pathway. Biochem Biophys Res Commun 2018;
505:898–904. https://doi.org/10.1016/j.bbrc.2018.10.017.
- 26. Maes M, Kubera M, Leunis JC, Berk M, Geffard M, Bosmans
E. In depression, bacterial translocation may drive inflammatory
responses, oxidative and nitrosative stress (O&NS), and
autoimmune responses directed against O&NS-damaged neoepitopes.
Acta Psychiatr Scand 2013; 127:344–54. https://doi.
org/10.1111/j.1600-0447.2012.01908.x.
- 27. Lee SY, Lee SJ, Han C, Patkar AA, Masand PS, Pae CU.
Oxidative/nitrosative stress and antidepressants: Targets
for novel antidepressants. Prog Neuropsychopharmacol
Biol Psychiatry 2013; 46:224–35. https://doi.org/10.1016/j.
pnpbp.2012.09.008.
- 28. Komsiiska D, Petkov Y. The role of oxidative stress in the etiopathogenesis
of depression. Trakia Journal of Sciences 2019;
17:81–93. https://doi.org/10.15547/tjs.2019.01.013.
- 29. Abdel-Wahab BA, Salama RH. Venlafaxine protects against
stress-induced oxidative DNA damage in hippocampus during
antidepressant testing in mice. Pharmacol Biochem Behav
2011; 100:59–65. https://doi.org/10.1016/j.pbb.2011.07.015.
- 30. Réus GZ, Stringari RB, De Souza B, Petronilho F, Dal-Pizzol
F, Hallak JE, et al. Harmine and imipramine promote antioxidant
activities in prefrontal cortex and hippocampus. Oxid
Med Cell Longev 2010; 3:325–31. https://doi.org/10.4161/
oxim.3.5.13109.
- 31. Bilici M, Efe H, Köroğlu MA, Uydu HA, Bekaroğlu M, Değer
O. Antioxidative enzyme activities and lipid peroxidation in
major depression: Alterations by antidepressant treatments. J
Affect Disord 2001; 64:43–51. https://doi.org/10.1016/S0165-
0327(00)00199-3.
- 32. Schmidt AJ, Heiser P, Hemmeter UM, Krieg JC, Vedder H.
Effects of antidepressants on mRNA levels of antioxidant
enzymes in human monocytic U-937 cells. Prog Neuropsychopharmacol
Biol Psychiatry 2008; 32:1567–73. https://doi.
org/10.1016/j.pnpbp.2008.05.024.
- 33. Shen P, Hu Q, Dong M, Bai S, Liang Z, Chen Z, et al. Venlafaxine
exerts antidepressant effects possibly by activating
MAPK–ERK1/2 and P13K–AKT pathways in the hippocampus.
Behavioural Brain Research 2017; 335:63–70. https://doi.
org/10.1016/j.bbr.2017.08.011.
- 34.Engel DF, de Oliveira J, Lieberknecht V, Rodrigues ALS, de
Bem AF, Gabilan NH. Duloxetine protects human neuroblastoma
cells from oxidative stress-induced cell death through
Akt/Nrf-2/HO-1 pathway. Neurochem Res 2018; 43:387–96.
https://doi.org/10.1007/s11064-017-2433-3.
- 35.Goemaere J, Knoops B. Peroxiredoxin distribution in the mouse
brain with emphasis on neuronal populations affected in neurodegenerative
disorders. Journal of Comparative Neurology
2012; 520:258–80. https://doi.org/10.1002/cne.22689.
- 36. Zhang Y, Bi YX, Chen J, Li S, Wu XX, Zhang L, et al. Association
of Peroxiredoxin 1 and brain-derived neurotrophic
factor serum levels with depression and anxiety symptoms
in patients with irritable bowel syndrome. Gen Hosp
Psychiatry 2021; 68:59–64. https://doi.org/10.1016/j.genhosppsych.
2020.11.010.
- 37. Shim S-Y, Kim H-S, Kim E-K, Choi J-H. Expression of peroxiredoxin
1, 2, and 6 in the rat brain during perinatal development
and in response to dexamethasone. Free Radic Res 2012;
46:231–9. https://doi.org/10.3109/10715762.2011.649749.
- 38. Bharti V, Tan H, Deol J, Wu Z, Wang JF. Upregulation of antioxidant
thioredoxin by antidepressants fluoxetine and venlafaxine.
Psychopharmacology (Berl) 2020; 237:127–36. https://
doi.org/10.1007/s00213-019-05350-9.
- 39. Eren I, Naziroǧlu M, Demirdaş A, Çelik Ö, Uǧuz AC, Altunbaşak
A, et al. Venlafaxine modulates depression-induced oxidative
stress in brain and medulla of rat. Neurochem Res 2007;
32:497–505. https://doi.org/10.1007/s11064-006-9258-9.
- 40.Tamási V, Petschner P, Adori C, Kirilly E, Ando RD, Tothfalusi
L, et al. Transcriptional evidence for the role of chronic venlafaxine
treatment in neurotrophic signaling and neuroplasticity
including also glutamatergic- and insulin-mediated neuronal
processes. PLoS One 2014;9. https://doi.org/10.1371/journal.
pone.0113662.
SHSY-5Y Nöronlarında LPS ile İndüklenen Oksidatif Stres Artışında Antidepresan Venlafaksin'in Peroksiredoksin-3 ve Peroksiredoksin-5 Ekspresyonları Üzerindeki Etkileri
Year 2024,
Issue: Special Issue / International Multidisciplinary Symposium on Drug Research and Development, DRD-2023, 17 - 26, 01.07.2024
Fadime Aydın Köse
,
Muhammed İsmail Akgül
,
Ayçe İdil Arap
Abstract
Bu çalışmanın temel amacı, serotonin-norepinefrin geri alım inhibitörü bir antidepresan olan venlafaksinin potansiyel nöroprotektif özelliklerini incelemektir. Ayrıca, venlafaksinin hücresel antioksidan savunma sisteminin önemli bileşenleri olan peroksirodoksin-3 ve -5 (PRDX-3 and PRDX-5) enzimleriyle olası etkileşimine dair yeni bir bakış açısı sunmaktadır. Bu amaçla, insan nöroblastoma (SHSY-5Y) hücreleri, 12 saat venlafaksin (0-100 µM) ile muamele edildikten sonra oksidatif stresi indüklemek için 4 saat LPS (1 µg/mL) ile inkübe edildiler. Hücre canlılığı MTT testi ile belirlendi ve ROS oluşumu DCFH-DA testi ile değerlendirildi. PRDX-3 ve PRDX-5 protein ve mRNA ifade seviyeleri sırasıyla immunoblotlama ve RT-PCR ile belirlendi. Elde edilen sonuçlara göre, hücrelerde kontrol grubuna göre venlafaksin uygulamasın LPS ile indüklenen hücresel ROT birikiminde belirgin bir azalmaya yol açtığı tespit edilmiştir (p <0.05). Benzer olarak, venlafaksin ön işlemi, nöronal hücrelerde LPS tarafından indüklenen PRDX-3 ve PRDX-5 ifadesini değiştirdiği gözlenmiştir (p <0.05). Elde edilen bu bulgular, venlafaksinin antioksidan etkisinde multifonksiyonel PRDX-3 ve PRDX-5 enzimlerinin rol oynadığına işaret etmekte olup bu yolak ile ilişkili yapılacak ileri çalışmaların önemli terapötik katkılarda bulunabileceğini düşündürmektedir.
References
- 1. Stein DJ. Antidepressants: Past, present and future. Antidepressants
and major Depressive Disorder. Future Medicine Ltd.
2012:3–11. https://doi.org/10.2217/ebo.11.394.
- 2. Duman RS. Pathophysiology of depression: The concept of synaptic plasticity. European Psychiatry 2002; 17:306–10.
https://doi.org/10.1016/S0924-9338(02)00654-5.
- 3. Temel MK. “Antidepressant use disorder” as a result of modern
psychosociological factors: a medical-ethically problematic
phenomenon. Anatolian Clinic Journal of Medical
Sciences 2019; 24:206–16. https://doi.org/10.21673/anadoluklin.
568664.
- 4. Bhatt S, Nagappa AN, Patil CR. Role of oxidative stress in
depression. Drug Discov Today 2020; 25:1270–6. https://doi.
org/10.1016/j.drudis.2020.05.001.
- 5. Rossby SP, Manier DH, Liang S, Nalepa I, Sulser F. Pharmacological
actions of the antidepressant venlafaxine beyond
aminergic receptors. Int J Neuropsychopharmacol 1999;
2(1):1-8. https://doi.org/10.1017/S1461145799001273.
- 6. Krivosova M, Grendar M, Hrtanek I, Ondrejka I, Tonhajzerova
I, Sekaninova N, et al. Potential Major Depressive Disorder
Biomarkers in Pediatric Population – a Pilot Study. Physiol
Res 2021;69: 523–532. https://doi.org/10.33549/physiolres.
934590.
- 7. Mansouri MT, Naghizadeh B, Ghorbanzadeh B, Amirgholami
N, Houshmand G, Alboghobeish S. Venlafaxine inhibits
naloxone-precipitated morphine withdrawal symptoms: Role
of inflammatory cytokines and nitric oxide. Metab Brain Dis
2020; 35:305–13. https://doi.org/10.1007/s11011-019-00491-
4.
- 8. WHO. World health statistics 2022: monitoring health for the
SDGs, sustainable development goals. https://www.who.int/
publications/i/item/9789240051157. 2022.
- 9. Black CN, Bot M, Scheffer PG, Cuijpers P, Penninx BWJH.
Is depression associated with increased oxidative stress? A
systematic review and meta-analysis. Psychoneuroendocrinology
2015; 51:164–75. https://doi.org/10.1016/j.psyneuen.
2014.09.025.
- 10. Belleau EL, Treadway MT, Pizzagalli DA. The impact of
stress and major depressive disorder on hippocampal and
medial prefrontal cortex morphology. Biol Psychiatry 2019;
85:443–53. https://doi.org/10.1016/j.biopsych.2018.09.031.
- 11. Rhee SG, Woo HA, Kil IS, Bae SH. Peroxiredoxin functions
as a peroxidase and a regulator and sensor of local peroxides.
J Biol Chem 2012; 287:4403–10. https://doi.org/10.1074/jbc.
R111.283432.
- 12. Perkins A, Poole LB, Karplus PA. Tuning of peroxiredoxin
catalysis for various physiological roles. Biochemistry 2014;
53: 7693–705. https://doi.org/10.1021/bi5013222.
- 13.Poynton RA, Hampton MB. Peroxiredoxins as biomarkers of
oxidative stress. Biochim Biophys Acta 2014; 1840:906–12.
https://doi.org/10.1016/j.bbagen.2013.08.001.
- 14. Sies H. Role of metabolic H2O2 generation: redox signaling
and oxidative stress. J Biol Chem 2014; 289:8735–41. https://
doi.org/10.1074/jbc.R113.544635.
- 15.Wang T, Diaz AJ, Yun Y. The role of peroxiredoxin II in chemoresistance
of breast cancer cells. Breast Cancer: Targets and
Therapy 2014; 6:73. https://doi.org/10.2147/BCTT.S61281.
- 16. Armagan G, Sevgili E, Gürkan FT, Köse FA, Bilgiç T, Dagci
T, et al. Regulation of the Nrf2 pathway by glycogen synthase
kinase-3β in MPP+-induced cell damage. Molecules 2019;24.
https://doi.org/10.3390/molecules24071377.
- 17. Jouha J, Loubidi M, Bouali J, Hamri S, Hafid A, Suzenet F, et
al. Synthesis of new heterocyclic compounds based on pyrazolopyridine
scaffold and evaluation of their neuroprotective potential
in MPP+-induced neurodegeneration. Eur J Med Chem
2017;129. https://doi.org/10.1016/j.ejmech.2017.02.019.
- 18. Loubidi M, Jouha J, Tber Z, Khouili M, Suzenet F, Akssira
M, et al. Efficient synthesis and first regioselective C-6 direct
arylation of imidazo[2,1-c] [1,2,4]triazine scaffold and their
evaluation in H2O2-induced oxidative stress. Eur J Med Chem
2018;145. https://doi.org/10.1016/j.ejmech.2017.12.081.
- 19. Köse FA, Pabuccuoglu A, Karakoyun M, Aydogdu S. Peroxiredoxins
and hypoxia-inducible factor-1α in duodenal tissue:
emerging factors in the pathophysiology of pediatric celiac disease
patients. Curr Issues Mol Biol 2023; 45:1779–93. https://
doi.org/10.3390/cimb45020114.
- 20. Erzurumlu Y, Aydin Kose F, Gozen O, Gozuacik D, Toth EA,
Ballar P. A unique IBMPFD-related P97/VCP mutation with
differential binding pattern and subcellular localization. International
Journal of Biochemistry and Cell Biology 2013;
45:773–82.
- 21. Schmittgen TD, Livak KJ. Analyzing real-time PCR data
by the comparative CT method. Nat Protoc 2008; 3:1101–8.
https://doi.org/10.1038/nprot.2008.73.
- 22. Shim S-Y, Kim H-S. Oxidative stress and the antioxidant enzyme
system in the developing brain. Korean J Pediatr 2013;
56:107–11. https://doi.org/10.3345/kjp.2013.56.3.107.
- 23.Michel TM, Frangou S, Thiemeyer D, Camara S, Jecel J, Nara K,
et al. Evidence for oxidative stress in the frontal cortex in patients
with recurrent depressive disorder-a postmortem study.
Psychiatry Res 2007; 151:145–50. https://doi.org/10.1016/j.
psychres.2006.04.013.
- 24. Szuster-Ciesielska A, Słotwińska M, Stachura A,
Marmurowska-Michałowska H, Dubas-Ślemp H, Bojarska-
Junak A, et al. Accelerated apoptosis of blood leukocytes and
oxidative stress in blood of patients with major depression.
Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:686–
94. https://doi.org/10.1016/j.pnpbp.2007.11.012.
- 25.Li W, Zhu Y, Liu X, Hou J, Fang J, Shen J, et al. Phencynonate
mediates antidepressant response by activating sirtuin 6-SOD2/Prdx6 pathway. Biochem Biophys Res Commun 2018;
505:898–904. https://doi.org/10.1016/j.bbrc.2018.10.017.
- 26. Maes M, Kubera M, Leunis JC, Berk M, Geffard M, Bosmans
E. In depression, bacterial translocation may drive inflammatory
responses, oxidative and nitrosative stress (O&NS), and
autoimmune responses directed against O&NS-damaged neoepitopes.
Acta Psychiatr Scand 2013; 127:344–54. https://doi.
org/10.1111/j.1600-0447.2012.01908.x.
- 27. Lee SY, Lee SJ, Han C, Patkar AA, Masand PS, Pae CU.
Oxidative/nitrosative stress and antidepressants: Targets
for novel antidepressants. Prog Neuropsychopharmacol
Biol Psychiatry 2013; 46:224–35. https://doi.org/10.1016/j.
pnpbp.2012.09.008.
- 28. Komsiiska D, Petkov Y. The role of oxidative stress in the etiopathogenesis
of depression. Trakia Journal of Sciences 2019;
17:81–93. https://doi.org/10.15547/tjs.2019.01.013.
- 29. Abdel-Wahab BA, Salama RH. Venlafaxine protects against
stress-induced oxidative DNA damage in hippocampus during
antidepressant testing in mice. Pharmacol Biochem Behav
2011; 100:59–65. https://doi.org/10.1016/j.pbb.2011.07.015.
- 30. Réus GZ, Stringari RB, De Souza B, Petronilho F, Dal-Pizzol
F, Hallak JE, et al. Harmine and imipramine promote antioxidant
activities in prefrontal cortex and hippocampus. Oxid
Med Cell Longev 2010; 3:325–31. https://doi.org/10.4161/
oxim.3.5.13109.
- 31. Bilici M, Efe H, Köroğlu MA, Uydu HA, Bekaroğlu M, Değer
O. Antioxidative enzyme activities and lipid peroxidation in
major depression: Alterations by antidepressant treatments. J
Affect Disord 2001; 64:43–51. https://doi.org/10.1016/S0165-
0327(00)00199-3.
- 32. Schmidt AJ, Heiser P, Hemmeter UM, Krieg JC, Vedder H.
Effects of antidepressants on mRNA levels of antioxidant
enzymes in human monocytic U-937 cells. Prog Neuropsychopharmacol
Biol Psychiatry 2008; 32:1567–73. https://doi.
org/10.1016/j.pnpbp.2008.05.024.
- 33. Shen P, Hu Q, Dong M, Bai S, Liang Z, Chen Z, et al. Venlafaxine
exerts antidepressant effects possibly by activating
MAPK–ERK1/2 and P13K–AKT pathways in the hippocampus.
Behavioural Brain Research 2017; 335:63–70. https://doi.
org/10.1016/j.bbr.2017.08.011.
- 34.Engel DF, de Oliveira J, Lieberknecht V, Rodrigues ALS, de
Bem AF, Gabilan NH. Duloxetine protects human neuroblastoma
cells from oxidative stress-induced cell death through
Akt/Nrf-2/HO-1 pathway. Neurochem Res 2018; 43:387–96.
https://doi.org/10.1007/s11064-017-2433-3.
- 35.Goemaere J, Knoops B. Peroxiredoxin distribution in the mouse
brain with emphasis on neuronal populations affected in neurodegenerative
disorders. Journal of Comparative Neurology
2012; 520:258–80. https://doi.org/10.1002/cne.22689.
- 36. Zhang Y, Bi YX, Chen J, Li S, Wu XX, Zhang L, et al. Association
of Peroxiredoxin 1 and brain-derived neurotrophic
factor serum levels with depression and anxiety symptoms
in patients with irritable bowel syndrome. Gen Hosp
Psychiatry 2021; 68:59–64. https://doi.org/10.1016/j.genhosppsych.
2020.11.010.
- 37. Shim S-Y, Kim H-S, Kim E-K, Choi J-H. Expression of peroxiredoxin
1, 2, and 6 in the rat brain during perinatal development
and in response to dexamethasone. Free Radic Res 2012;
46:231–9. https://doi.org/10.3109/10715762.2011.649749.
- 38. Bharti V, Tan H, Deol J, Wu Z, Wang JF. Upregulation of antioxidant
thioredoxin by antidepressants fluoxetine and venlafaxine.
Psychopharmacology (Berl) 2020; 237:127–36. https://
doi.org/10.1007/s00213-019-05350-9.
- 39. Eren I, Naziroǧlu M, Demirdaş A, Çelik Ö, Uǧuz AC, Altunbaşak
A, et al. Venlafaxine modulates depression-induced oxidative
stress in brain and medulla of rat. Neurochem Res 2007;
32:497–505. https://doi.org/10.1007/s11064-006-9258-9.
- 40.Tamási V, Petschner P, Adori C, Kirilly E, Ando RD, Tothfalusi
L, et al. Transcriptional evidence for the role of chronic venlafaxine
treatment in neurotrophic signaling and neuroplasticity
including also glutamatergic- and insulin-mediated neuronal
processes. PLoS One 2014;9. https://doi.org/10.1371/journal.
pone.0113662.