Effect of Vitamin C on Cancer Process
Year 2024,
Volume: 44 Issue: 3, 253 - 262, 01.09.2024
Omnia Abdo Mahmoud Hemdan
,
Gözde Girgin
,
Terken Baydar
Abstract
The diverse roles of vitamin C in combatting cancer through its antioxidative and pro-oxidative properties, as well as its immune-boosting functions, are significant. Vitamin C acts as a cofactor for oxygenase enzymes containing iron or copper, aiding in two key processes: firstly, the stimulation of reactive oxygen species production, which selectively targets cancer cells, and secondly, the regulation of cellular metabolism and epigenetic processes involving DNA and histone demethylases, thereby diminishing tumorigenesis. Although various studies highlight the potential effectiveness of vitamin C against different cancer types in laboratory and animal studies, both as a standalone treatment and in combination with traditional chemotherapy and radiation, its role in clinical or non-clinical human studies remains unclear and contentious. Recent papers of randomized clinical trials or observational studies have not yielded conclusive evidence supporting vitamin C’s clinical efficacy in cancer treatment or prevention. In this review, vitamin C usage and its efficacy in cancer therapy approaches have been focused and discussed. In conclusion, it may be speculated that these complexities highlight the need for larger, high-quality randomized clinical trials to provide more definitive understanding of vitamin C’s anticancer potential and to establish appropriate clinical recommendations.
Ethical Statement
Not necessary.
Supporting Institution
None
References
-
1. Iqbal, K., Khan, A., & Khattak, M., M., A., K. (2003). Biological
Significance of Ascorbic Acid (Vitamin C) in Human
Health - A Review. Pak J Nutr. 3(1), 5–13. https://doi.
org/10.3923/PJN.2004.5.13
-
2. Carr, A. C., & Lykkesfeldt, J. (2021). Discrepancies in global
vitamin C recommendations: a review of RDA criteria and underlying
health perspectives. Crit Rev Food Sci Nutr. 61(5),
742–755. https://doi.org/10.1080/10408398.2020.1744513
-
3. Levine, M., Conry-Cantilena, C., Wang, Y., Welch, R. W.,
Washko, P. W., Dhariwal, K. R., Park, J. B., Lazarev, A., Graumlich,
J. F., King, J., & Cantilena, L. R. (1996). Vitamin C
pharmacokinetics in healthy volunteers: evidence for a recommended
dietary allowance. Proc Natl Acad Sci. 93(8), 3704–
3709. https://doi.org/10.1073/PNAS.93.8.3704
-
4. Du, J., Cullen, J. J., & Buettner, G. R. (2012). Ascorbic acid:
Chemistry, biology and the treatment of cancer. Biochim
Biophys Acta Rev Cancer. 1826(2), 443–457. https://doi.
org/10.1016/J.BBCAN.2012.06.003
-
5. Hulse, J. D., Ellis, S. R., & Henderson, L. M. (1978). Carnitine
biosynthesis. beta-Hydroxylation of trimethyllysine by an alpha-
ketoglutarate-dependent mitochondrial dioxygenase. J Biol
Chem. 253(5), 1654–1659. https://doi.org/10.1016/S0021-
9258(17)34915-3
-
6. Vissers, M. C. M., Kuiper, C., & Dachs, G. U. (2014). Regulation
of the 2-oxoglutarate-dependent dioxygenases and
implications for cancer. Biochem Soc Trans. 42(4), 945–951.
https://doi.org/10.1042/BST20140118
-
7. Kontoghiorghes, G. J., Kolnagou, A., Kontoghiorghe, C.
N., Mourouzidis, L., Timoshnikov, V. A., & Polyakov, N. E.
(2020). Trying to Solve the Puzzle of the Interaction of Ascorbic
Acid and Iron: Redox, Chelation and Therapeutic Implications.
Medicines. 2020, Vol. 7, Page 45, 7(8), 45. https://doi.
org/10.3390/MEDICINES7080045
-
8. Teucher, B., Olivares, M., & Cori, H. (2004). Enhancers of Iron
Absorption: Ascorbic Acid and other Organic Acids. Int J Vitam
Nutr Res. 74(6), 403–419. https://doi.org/10.1024/0300-
9831.74.6.403
-
9. Mayland, C. R., Bennett, M. I., & Allan, K. (2005). Vitamin
C deficiency in cancer patients. Palliat Med. 19(1), 17–20.
https://doi.org/10.1191/0269216305PM970OA
-
10. Huijskens, M. J. A. J., Wodzig, W. K. W. H., Walczak, M.,
Germeraad, W. T. V., & Bos, G. M. J. (2016). Ascorbic acid
serum levels are reduced in patients with hematological malignancies.
Results Immunol. 6, 8–10. https://doi.org/10.1016/J.
RINIM.2016.01.001
-
11. Chambial, S., Dwivedi, S., Shukla, K. K., John, P. J., & Sharma,
P. (2013). Vitamin C in disease prevention and cure: An
overview. Indian J Clin Biochem. 28(4), 314–328. https://doi.
org/10.1007/S12291-013-0375-3
-
12. Ströhle, A., Wolters, M., & Hahn, A. (2011). Micronutrients
at the interface between inflammation and infection - ascorbic
acid and calciferol. part 1: General overview with a focus on
ascorbic acid. Inflamm Allergy Drug Targets. 10(1), 54–63.
https://doi.org/10.2174/187152811794352105
-
13. Ang, A., Pullar, J. M., Currie, M. J., & Vissers, M. C. M.
(2018). Vitamin C and immune cell function in inflammation
and cancer. Biochem Soc Trans. 46(5), 1147–1159. https://doi.
org/10.1042/BST20180169
-
14. Agathocleous, M., Meacham, C. E., Burgess, R. J., Piskounova,
E., Zhao, Z., Crane, G. M., Cowin, B. L., Bruner, E.,
Murphy, M. M., Chen, W., Spangrude, G. J., Hu, Z., DeBerardinis,
R. J., & Morrison, S. J. (2017). Ascorbate regulates haematopoietic
stem cell function and leukaemogenesis. Nature
2017 549:7673, 549 (7673), 476–481. https://doi.org/10.1038/
nature23876
-
15. Henke, N., Ferreirós, N., Geisslinger, G., Ding, M. G., Essler,
S., Fuhrmann, D. C., Geis, T., Namgaladze, D., Dehne,
N., Brüne, B., Henke, N., Ferreirós, N., Geisslinger, G., Ding,
M. G., Essler, S., Fuhrmann, D. C., Geis, T., Namgaladze, D.,
Dehne, N., & Brüne, B. (2016). Loss of HIF-1β in macrophages
attenuates AhR/ARNT-mediated tumorigenesis in a
PAH-driven tumor model. Oncotarget. 7(18), 25915–25929.
https://doi.org/10.18632/ONCOTARGET.8297
-
16. Mastrangelo, D., Pelosi, E., Castelli, G., Lo-Coco, F., & Testa,
U. (2018a). Mechanisms of anti-cancer effects of ascorbate:
Cytotoxic activity and epigenetic modulation. Blood Cells Mol
Dis. 69, 57–64. https://doi.org/10.1016/J.BCMD.2017.09.005
-
17. Mingay, M., Chaturvedi, A., Bilenky, M., Cao, Q., Jackson,
L., Hui, T., Moksa, M., Heravi-Moussavi, A., Humphries, R.
K., Heuser, M., & Hirst, M. (2017). Vitamin C-induced epigenomic
remodelling in IDH1 mutant acute myeloid leukaemia.
Leukemia 2018 32:1, 32(1), 11–20. https://doi.org/10.1038/
leu.2017.171
-
18. Cull, A. H., Snetsinger, B., Buckstein, R., Wells, R. A., &
Rauh, M. J. (2017). Tet2 restrains inflammatory gene expression
in macrophages. Exp Hematol. 55, 56-70. e13. https://doi.
org/10.1016/J.EXPHEM.2017.08.001
-
19. Buettner, G. R. (1993). The Pecking Order of Free Radicals
and Antioxidants: Lipid Peroxidation, α-Tocopherol, and Ascorbate.
Arch Biochem Biophys. 300(2), 535–543. https://doi.
org/10.1006/ABBI.1993.1074
-
20. Riley, P. A. (1994). Free Radicals in Biology: Oxidative Stress
and the Effects of Ionizing Radiation. Int J Radiat Biol. 65(1),
27–33. https://doi.org/10.1080/09553009414550041
-
21. Asada, K. (1999). The Water-Water Cycle In Chloroplasts:
Scavenging of Active Oxygens and Dissipation of Excess
Photons. Annu Rev Plant Physiol Plant Mol Biol. 50, 601–
639. https://doi.org/10.1146/ANNUREV.ARPLANT.50.1.601
-
22. Smirnoff, N. (2000). Ascorbic acid: metabolism and functions
of a multi-facetted molecule. Curr Opin Plant Biol. 3(3), 229-
235. https://pubmed.ncbi.nlm.nih.gov/10837263/
-
23. Takemura, Y., Satoh, M., Satoh, K., Hamada, H., Sekido,
Y., & Kubota, S. (2010). High dose of ascorbic acid induces
cell death in mesothelioma cells. Biochem Biophys
Res Commun. 394(2), 249–253. https://doi.org/10.1016/J.
BBRC.2010.02.012
-
24. Yin, X., Chen, K., Cheng, H., Chen, X., Feng, S., Song, Y., &
Liang, L. (2022). Chemical Stability of Ascorbic Acid Integrated
into Commercial Products: A Review on Bioactivity and
Delivery Technology. Antioxidants. 2022, Vol. 11, Page 153,
11(1), 153. https://doi.org/10.3390/ANTIOX11010153
-
25. Ngo, B., Van Riper, J. M., Cantley, L. C., & Yun, J. (2019).
Targeting cancer vulnerabilities with high-dose vitamin
C. Nat Rev Cancer. 2019 19:5, 19(5), 271–282. https://doi.
org/10.1038/s41568-019-0135-7
-
26. Vissers, M. C. M., & Das, A. B. (2018). Potential mechanisms
of action for vitamin C in cancer: Reviewing the evidence.
Front Physiol. 9 (JUL), 384131. https://doi.org/10.3389/
FPHYS.2018.00809
-
27. Barbosa, A. M., & Martel, F. (2020). Targeting Glucose Transporters
for Breast Cancer Therapy: The Effect of Natural and
Synthetic Compounds. Cancers. 2020, Vol. 12, Page 154,
12(1), 154. https://doi.org/10.3390/CANCERS12010154
-
28. Wilkes, J. G., O’Leary, B. R., Du, J., Klinger, A. R., Sibenaller,
Z. A., Doskey, C. M., Gibson-Corley, K. N., Alexander, M. S.,
Tsai, S., Buettner, G. R., & Cullen, J. J. (2018). Pharmacologic
ascorbate (P-AscH−) suppresses hypoxia-inducible Factor-1α
(HIF-1α) in pancreatic adenocarcinoma. Clin Exp Metastasis.
35 (1–2), 37–51. https://doi.org/10.1007/S10585-018-9876-Z/
FIGURES/7
-
29. Yun, J., Mullarky, E., Lu, C., Bosch, K. N., Kavalier, A., Rivera,
K., Roper, J., Chio, I. I. C., Giannopoulou, E. G., Rago,
C., Muley, A., Asara, J. M., Paik, J., Elemento, O., Chen, Z.,
Pappin, D. J., Dow, L. E., Papadopoulos, N., Gross, S. S., &
Cantley, L. C. (2015). Vitamin C selectively kills KRAS and
BRAF mutant colorectal cancer cells by targeting GAPDH.
Science. 350(6266), 1391–1396. https://doi.org/10.1126/SCIENCE.
AAA5004
-
30. Pawlowska, E., Szczepanska, J., & Blasiak, J. (2019). Pro- And
antioxidant effects of Vitamin C in cancer in correspondence
to its dietary and pharmacological concentrations. Oxid Med
Cell Longev. 2019. https://doi.org/10.1155/2019/7286737
-
31. Baylin, S. B., & Jones, P. A. (2011). A decade of exploring
the cancer epigenome — biological and translational implications.
Nat Rev Cancer. 2011 11:10, 11(10), 726–734. https://
doi.org/10.1038/nrc3130
-
32. Shenoy, N., Bhagat, T., Nieves, E., Stenson, M., Lawson, J.,
Choudhary, G. S., Habermann, T., Nowakowski, G., Singh, R.,
Wu, X., Verma, A., & Witzig, T. E. (2017). Upregulation of
TET activity with ascorbic acid induces epigenetic modulation
of lymphoma cells. Blood Cancer J. 2017 7:7, 7(7), e587–
e587. https://doi.org/10.1038/bcj.2017.65
-
33. Young, J. I., Züchner, S., & Wang, G. (2015). Regulation of
the Epigenome by Vitamin C. Annu Rev Nutr. 35(1), 545–564.
https://doi.org/10.1146/ANNUREV-NUTR-071714-034228
-
34. Cimmino, L., Dolgalev, I., Wang, Y., Yoshimi, A., Martin, G.
H., Wang, J., Ng, V., Xia, B., Witkowski, M. T., Mitchell-
Flack, M., Grillo, I., Bakogianni, S., Ndiaye-Lobry, D., Martín,
M. T., Guillamot, M., Banh, R. S., Xu, M., Figueroa, M. E.,
Dickins, R. A., Aifantis, I. (2017). Restoration of TET2 Function
Blocks Aberrant Self-Renewal and Leukemia Progression.
Cell. 170(6), 1079-1095.e20. https://doi.org/10.1016/J.
CELL.2017.07.032
-
35. Pavlovic, V., Ciric, M., Petkovic, M., & Golubovic, M. (2023).
Vitamin C and epigenetics: A short physiological overview.
Open Med. 18(1). https://doi.org/10.1515/MED-2023-0688
-
36. Ravasco, P. (2019). Nutrition in Cancer Patients. J Clin Med.
2019, Vol. 8, Page 1211, 8(8), 1211. https://doi.org/10.3390/
JCM8081211
-
37. Greenwald, P., Clifford, C. K., & Milner, J. A. (2001). Diet and
Cancer Prevention. European Eur J Cancer. 37(8), 948–965.
https://doi.org/10.1016/S0959-8049(01)00070-3
-
38. Xu, K., Peng, R., Zou, Y., Jiang, X., Sun, Q., & Song, C.
(2022). Vitamin C intake and multiple health outcomes: an
umbrella review of systematic reviews and meta-analyses. Int
J Food Sci Nutr. 73(5), 588–599. https://doi.org/10.1080/0963
7486.2022.2048359
-
39. Chen, Z., Huang, Y., Cao, D., Qiu, S., Chen, B., Li, J., Bao,
Y., Wei, Q., Han, P., & Liu, L. (2022). Vitamin C Intake and
Cancers: An Umbrella Review. Front Nutr. 8, 812394. https://
doi.org/10.3389/FNUT.2021.812394
-
40. Fu, Y., Xu, F., Jiang, L., Miao, Z., Liang, X., Yang, J., Larsson,
S. C., & Zheng, J. S. (2021). Circulating vitamin C concentration
and risk of cancers: a Mendelian randomization study.
BMC Med. 19(1), 1–14. https://doi.org/10.1186/S12916-021-
02041-1/FIGURES/5
-
41. Yin, L., Yan, H., Chen, K., Ji, Z., Zhang, X., Ji, G., & Zhang,
B. (2022). Diet-Derived Circulating Antioxidants and Risk
of Digestive System Tumors: A Mendelian Randomization
Study. Nutrients. 14(16), 3274. https://doi.org/10.3390/
NU14163274/S1
-
42. Zhao, H., & Jin, X. (2022). Causal associations between dietary
antioxidant vitamin intake and lung cancer: A Mendelian
randomization study. Front Nutr. 9, 965911. https://doi.
org/10.3389/FNUT.2022.965911
-
43. Larsson, S. C., Mason, A. M., Vithayathil, M., Carter, P., Kar,
S., Zheng, J. S., & Burgess, S. (2022). Circulating vitamin
C and digestive system cancers: Mendelian randomization
study. Clin Nutr. 41(9), 2031–2035. https://doi.org/10.1016/J.
CLNU.2022.07.040
-
44. Abdel-Latif, M., Babar, M., Kelleher, D., & Reynolds, J.
(2019). A pilot study of the impact of Vitamin C supplementation
with neoadjuvant chemoradiation on regulators of inflammation
and carcinogenesis in esophageal cancer patients. J
Cancer Res Cell Ther. 15(1), 185–191. https://doi.org/10.4103/
JCRT.JCRT_763_16
-
45. Furqan, M., Abu-Hejleh, T., Stephens, L. M., Hartwig, S. M.,
Mott, S. L., Pulliam, C. F., Petronek, M., Henrich, J. B., Fath,
M. A., Houtman, J. C., Varga, S. M., Bodeker, K. L., Bossler,
A. D., Bellizzi, A. M., Zhang, J., Monga, V., Mani, H., Ivanovic,
M., Smith, B. J., Allen, B. G. (2022). Pharmacological
ascorbate improves the response to platinum-based chemotherapy
in advanced stage non-small cell lung cancer. Redox Biol.
53, 102318. https://doi.org/10.1016/J.REDOX.2022.102318
-
46. Hoppe, C., Freuding, M., Büntzel, J., Münstedt, K., & Hübner,
J. (2021). Clinical efficacy and safety of oral and intravenous
vitamin C use in patients with malignant diseases. J Cancer
Res Clin Oncol. 147(10), 3025–3042. https://doi.org/10.1007/
S00432-021-03759-4/FIGURES/2
-
47. Cameron, E., & Campbell, A. (1974). The orthomolecular treatment
of cancer II. Clinical trial of high-dose ascorbic acid
supplements in advanced human cancer. Chem Biol Interact.
9(4), 285–315. https://doi.org/10.1016/0009-2797(74)90019-
2
-
48. Cameron, E., Campbell, A., & Jack, T. (1975). The orthomolecular
treatment of cancer: III. Reticulum cell sarcoma:
Double complete regression induced by high-dose ascorbic
acid therapy. Chem Biol Interact. 11(5), 387–393. https://doi.
org/10.1016/0009-2797(75)90007-1
-
49. Cameron, E., & Pauling, L. (1976). Supplemental ascorbate in
the supportive treatment of cancer: Prolongation of survival
times in terminal human cancer. Proc Natl Acad Sci U S A.
73(10), 3685–3689. https://doi.org/10.1073/PNAS.73.10.3685
-
50. Carr, A. C. (2019). Vitamin C administration in the critically
ill: A summary of recent meta-analyses. Crit Care. 23(1), 1–3.
https://doi.org/10.1186/S13054-019-2538-Y/TABLES/1
-
51. Levine, M., Padayatty, S. J., & Espey, M. G. (2011). Vitamin
C: A Concentration-Function Approach Yields Pharmacology
and Therapeutic Discoveries. Adv Nutr. 2(2), 78–88. https://
doi.org/10.3945/AN.110.000109
-
52. Rasmussen, K. D., & Helin, K. (2016). Role of TET enzymes
in DNA methylation, development, and cancer. Genes Dev.
30(7), 733–750. https://doi.org/10.1101/GAD.276568.115
-
53. van Gorkom, G. N. Y., Lookermans, E. L., Van Elssen, C. H.
M. J., & Bos, G. M. J. (2019). The Effect of Vitamin C (Ascorbic
Acid) in the Treatment of Patients with Cancer: A Systematic
Review. Nutrients. 2019, Vol. 11, Page 977, 11(5), 977.
https://doi.org/10.3390/NU11050977
-
54. Wang, F., He, M. M., Xiao, J., Zhang, Y. Q., Yuan, X. L., Fang,
W. J., Zhang, Y., Wang, W., Hu, X. H., Ma, Z. G., Yao, Y. C.,
Zhuang, Z. X., Zhou, F. X., Ying, J. E., Yuan, Y., Zou, Q. F.,
Guo, Z. Q., Wu, X. Y., Jin, Y., Xu, R. H. (2022). A Randomized,
Open-Label, Multicenter, Phase 3 Study of High-Dose
Vitamin C Plus FOLFOX ± Bevacizumab versus FOLFOX
± Bevacizumab in Unresectable Untreated Metastatic Colorectal
Cancer (VITALITY Study). Clin Cancer Res.28(19),
4232–4239. https://doi.org/10.1158/1078-0432.CCR-22-
0655/707466/AM/A-RANDOMIZED-OPEN-LABELMULTICENTER-
PHASE-3-STUDY
-
55. van Gorkom, G. N. Y., Boerenkamp, L. S., Gijsbers, B. L. M.
G., van Ojik, H. H., Wodzig, W. K. W. H., Wieten, L., Van Elssen,
C. H. M. J., & Bos, G. M. J. (2022). No Effect of Vitamin
C Administration on Neutrophil Recovery in Autologous Stem
Cell Transplantation for Myeloma or Lymphoma: A Blinded,
Randomized Placebo-Controlled Trial. Nutrients. 2022,
Vol. 14, Page 4784, 14(22), 4784. https://doi.org/10.3390/
NU14224784
-
56. Park, J. Y., Baek, J. W., Yu, J., Kim, C. S., Bae, J., & Kim,
Y. K. (2023). Vitamin C and catheter-related bladder discomfort
after transurethral resection of bladder tumor: A doubleblind,
randomized, placebo-controlled study. J Clin Anesth. 89,
111191. https://doi.org/10.1016/J.JCLINANE.2023.111191
-
57. Gillberg, L., Ørskov, A. D., Nasif, A., Ohtani, H., Madaj, Z.,
Hansen, J. W., Rapin, N., Mogensen, J. B., Liu, M., Dufva,
I. H., Lykkesfeldt, J., Hajkova, P., Jones, P. A., & Grønbæk,
K. (2019). Oral vitamin C supplementation to patients with
myeloid cancer on azacitidine treatment: Normalization of
plasma vitamin C induces epigenetic changes. Clin Epigenetics.
11(1), 1–11. https://doi.org/10.1186/S13148-019-0739-5/
FIGURES/4
Kanser sürecinde vitamin C'nin etkisi
Year 2024,
Volume: 44 Issue: 3, 253 - 262, 01.09.2024
Omnia Abdo Mahmoud Hemdan
,
Gözde Girgin
,
Terken Baydar
Abstract
The diverse roles of vitamin C in combatting cancer through its antioxidative and pro-oxidative properties, as well as its immune-boosting functions, are significant. Vitamin C acts as a cofactor for oxygenase enzymes containing iron or copper, aiding in two key processes: firstly, the stimulation of reactive oxygen species production, which selectively targets cancer cells, and secondly, the regulation of cellular metabolism and epigenetic processes involving DNA and histone demethylases, thereby diminishing tumorigenesis. Although various studies highlight the potential effectiveness of vitamin C against different cancer types in laboratory and animal studies, both as a standalone treatment and in combination with traditional chemotherapy and radiation, its role in clinical or non-clinical human studies remains unclear and contentious. Recent papers of randomized clinical trials or observational studies have not yielded conclusive evidence supporting vitamin C's clinical efficacy in cancer treatment or prevention. In this review, vitamin C usage in cancer therapy and its efficacy in cancer therapy approaches have been focused and discussed. In conclusion, it may be speculated that these complexities highlight the need for larger, high-quality randomized clinical trials to provide more definitive understanding of vitamin C's anticancer potential and to establish appropriate clinical recommendations.
Ethical Statement
Gerekli değil.
Supporting Institution
None.
References
-
1. Iqbal, K., Khan, A., & Khattak, M., M., A., K. (2003). Biological
Significance of Ascorbic Acid (Vitamin C) in Human
Health - A Review. Pak J Nutr. 3(1), 5–13. https://doi.
org/10.3923/PJN.2004.5.13
-
2. Carr, A. C., & Lykkesfeldt, J. (2021). Discrepancies in global
vitamin C recommendations: a review of RDA criteria and underlying
health perspectives. Crit Rev Food Sci Nutr. 61(5),
742–755. https://doi.org/10.1080/10408398.2020.1744513
-
3. Levine, M., Conry-Cantilena, C., Wang, Y., Welch, R. W.,
Washko, P. W., Dhariwal, K. R., Park, J. B., Lazarev, A., Graumlich,
J. F., King, J., & Cantilena, L. R. (1996). Vitamin C
pharmacokinetics in healthy volunteers: evidence for a recommended
dietary allowance. Proc Natl Acad Sci. 93(8), 3704–
3709. https://doi.org/10.1073/PNAS.93.8.3704
-
4. Du, J., Cullen, J. J., & Buettner, G. R. (2012). Ascorbic acid:
Chemistry, biology and the treatment of cancer. Biochim
Biophys Acta Rev Cancer. 1826(2), 443–457. https://doi.
org/10.1016/J.BBCAN.2012.06.003
-
5. Hulse, J. D., Ellis, S. R., & Henderson, L. M. (1978). Carnitine
biosynthesis. beta-Hydroxylation of trimethyllysine by an alpha-
ketoglutarate-dependent mitochondrial dioxygenase. J Biol
Chem. 253(5), 1654–1659. https://doi.org/10.1016/S0021-
9258(17)34915-3
-
6. Vissers, M. C. M., Kuiper, C., & Dachs, G. U. (2014). Regulation
of the 2-oxoglutarate-dependent dioxygenases and
implications for cancer. Biochem Soc Trans. 42(4), 945–951.
https://doi.org/10.1042/BST20140118
-
7. Kontoghiorghes, G. J., Kolnagou, A., Kontoghiorghe, C.
N., Mourouzidis, L., Timoshnikov, V. A., & Polyakov, N. E.
(2020). Trying to Solve the Puzzle of the Interaction of Ascorbic
Acid and Iron: Redox, Chelation and Therapeutic Implications.
Medicines. 2020, Vol. 7, Page 45, 7(8), 45. https://doi.
org/10.3390/MEDICINES7080045
-
8. Teucher, B., Olivares, M., & Cori, H. (2004). Enhancers of Iron
Absorption: Ascorbic Acid and other Organic Acids. Int J Vitam
Nutr Res. 74(6), 403–419. https://doi.org/10.1024/0300-
9831.74.6.403
-
9. Mayland, C. R., Bennett, M. I., & Allan, K. (2005). Vitamin
C deficiency in cancer patients. Palliat Med. 19(1), 17–20.
https://doi.org/10.1191/0269216305PM970OA
-
10. Huijskens, M. J. A. J., Wodzig, W. K. W. H., Walczak, M.,
Germeraad, W. T. V., & Bos, G. M. J. (2016). Ascorbic acid
serum levels are reduced in patients with hematological malignancies.
Results Immunol. 6, 8–10. https://doi.org/10.1016/J.
RINIM.2016.01.001
-
11. Chambial, S., Dwivedi, S., Shukla, K. K., John, P. J., & Sharma,
P. (2013). Vitamin C in disease prevention and cure: An
overview. Indian J Clin Biochem. 28(4), 314–328. https://doi.
org/10.1007/S12291-013-0375-3
-
12. Ströhle, A., Wolters, M., & Hahn, A. (2011). Micronutrients
at the interface between inflammation and infection - ascorbic
acid and calciferol. part 1: General overview with a focus on
ascorbic acid. Inflamm Allergy Drug Targets. 10(1), 54–63.
https://doi.org/10.2174/187152811794352105
-
13. Ang, A., Pullar, J. M., Currie, M. J., & Vissers, M. C. M.
(2018). Vitamin C and immune cell function in inflammation
and cancer. Biochem Soc Trans. 46(5), 1147–1159. https://doi.
org/10.1042/BST20180169
-
14. Agathocleous, M., Meacham, C. E., Burgess, R. J., Piskounova,
E., Zhao, Z., Crane, G. M., Cowin, B. L., Bruner, E.,
Murphy, M. M., Chen, W., Spangrude, G. J., Hu, Z., DeBerardinis,
R. J., & Morrison, S. J. (2017). Ascorbate regulates haematopoietic
stem cell function and leukaemogenesis. Nature
2017 549:7673, 549 (7673), 476–481. https://doi.org/10.1038/
nature23876
-
15. Henke, N., Ferreirós, N., Geisslinger, G., Ding, M. G., Essler,
S., Fuhrmann, D. C., Geis, T., Namgaladze, D., Dehne,
N., Brüne, B., Henke, N., Ferreirós, N., Geisslinger, G., Ding,
M. G., Essler, S., Fuhrmann, D. C., Geis, T., Namgaladze, D.,
Dehne, N., & Brüne, B. (2016). Loss of HIF-1β in macrophages
attenuates AhR/ARNT-mediated tumorigenesis in a
PAH-driven tumor model. Oncotarget. 7(18), 25915–25929.
https://doi.org/10.18632/ONCOTARGET.8297
-
16. Mastrangelo, D., Pelosi, E., Castelli, G., Lo-Coco, F., & Testa,
U. (2018a). Mechanisms of anti-cancer effects of ascorbate:
Cytotoxic activity and epigenetic modulation. Blood Cells Mol
Dis. 69, 57–64. https://doi.org/10.1016/J.BCMD.2017.09.005
-
17. Mingay, M., Chaturvedi, A., Bilenky, M., Cao, Q., Jackson,
L., Hui, T., Moksa, M., Heravi-Moussavi, A., Humphries, R.
K., Heuser, M., & Hirst, M. (2017). Vitamin C-induced epigenomic
remodelling in IDH1 mutant acute myeloid leukaemia.
Leukemia 2018 32:1, 32(1), 11–20. https://doi.org/10.1038/
leu.2017.171
-
18. Cull, A. H., Snetsinger, B., Buckstein, R., Wells, R. A., &
Rauh, M. J. (2017). Tet2 restrains inflammatory gene expression
in macrophages. Exp Hematol. 55, 56-70. e13. https://doi.
org/10.1016/J.EXPHEM.2017.08.001
-
19. Buettner, G. R. (1993). The Pecking Order of Free Radicals
and Antioxidants: Lipid Peroxidation, α-Tocopherol, and Ascorbate.
Arch Biochem Biophys. 300(2), 535–543. https://doi.
org/10.1006/ABBI.1993.1074
-
20. Riley, P. A. (1994). Free Radicals in Biology: Oxidative Stress
and the Effects of Ionizing Radiation. Int J Radiat Biol. 65(1),
27–33. https://doi.org/10.1080/09553009414550041
-
21. Asada, K. (1999). The Water-Water Cycle In Chloroplasts:
Scavenging of Active Oxygens and Dissipation of Excess
Photons. Annu Rev Plant Physiol Plant Mol Biol. 50, 601–
639. https://doi.org/10.1146/ANNUREV.ARPLANT.50.1.601
-
22. Smirnoff, N. (2000). Ascorbic acid: metabolism and functions
of a multi-facetted molecule. Curr Opin Plant Biol. 3(3), 229-
235. https://pubmed.ncbi.nlm.nih.gov/10837263/
-
23. Takemura, Y., Satoh, M., Satoh, K., Hamada, H., Sekido,
Y., & Kubota, S. (2010). High dose of ascorbic acid induces
cell death in mesothelioma cells. Biochem Biophys
Res Commun. 394(2), 249–253. https://doi.org/10.1016/J.
BBRC.2010.02.012
-
24. Yin, X., Chen, K., Cheng, H., Chen, X., Feng, S., Song, Y., &
Liang, L. (2022). Chemical Stability of Ascorbic Acid Integrated
into Commercial Products: A Review on Bioactivity and
Delivery Technology. Antioxidants. 2022, Vol. 11, Page 153,
11(1), 153. https://doi.org/10.3390/ANTIOX11010153
-
25. Ngo, B., Van Riper, J. M., Cantley, L. C., & Yun, J. (2019).
Targeting cancer vulnerabilities with high-dose vitamin
C. Nat Rev Cancer. 2019 19:5, 19(5), 271–282. https://doi.
org/10.1038/s41568-019-0135-7
-
26. Vissers, M. C. M., & Das, A. B. (2018). Potential mechanisms
of action for vitamin C in cancer: Reviewing the evidence.
Front Physiol. 9 (JUL), 384131. https://doi.org/10.3389/
FPHYS.2018.00809
-
27. Barbosa, A. M., & Martel, F. (2020). Targeting Glucose Transporters
for Breast Cancer Therapy: The Effect of Natural and
Synthetic Compounds. Cancers. 2020, Vol. 12, Page 154,
12(1), 154. https://doi.org/10.3390/CANCERS12010154
-
28. Wilkes, J. G., O’Leary, B. R., Du, J., Klinger, A. R., Sibenaller,
Z. A., Doskey, C. M., Gibson-Corley, K. N., Alexander, M. S.,
Tsai, S., Buettner, G. R., & Cullen, J. J. (2018). Pharmacologic
ascorbate (P-AscH−) suppresses hypoxia-inducible Factor-1α
(HIF-1α) in pancreatic adenocarcinoma. Clin Exp Metastasis.
35 (1–2), 37–51. https://doi.org/10.1007/S10585-018-9876-Z/
FIGURES/7
-
29. Yun, J., Mullarky, E., Lu, C., Bosch, K. N., Kavalier, A., Rivera,
K., Roper, J., Chio, I. I. C., Giannopoulou, E. G., Rago,
C., Muley, A., Asara, J. M., Paik, J., Elemento, O., Chen, Z.,
Pappin, D. J., Dow, L. E., Papadopoulos, N., Gross, S. S., &
Cantley, L. C. (2015). Vitamin C selectively kills KRAS and
BRAF mutant colorectal cancer cells by targeting GAPDH.
Science. 350(6266), 1391–1396. https://doi.org/10.1126/SCIENCE.
AAA5004
-
30. Pawlowska, E., Szczepanska, J., & Blasiak, J. (2019). Pro- And
antioxidant effects of Vitamin C in cancer in correspondence
to its dietary and pharmacological concentrations. Oxid Med
Cell Longev. 2019. https://doi.org/10.1155/2019/7286737
-
31. Baylin, S. B., & Jones, P. A. (2011). A decade of exploring
the cancer epigenome — biological and translational implications.
Nat Rev Cancer. 2011 11:10, 11(10), 726–734. https://
doi.org/10.1038/nrc3130
-
32. Shenoy, N., Bhagat, T., Nieves, E., Stenson, M., Lawson, J.,
Choudhary, G. S., Habermann, T., Nowakowski, G., Singh, R.,
Wu, X., Verma, A., & Witzig, T. E. (2017). Upregulation of
TET activity with ascorbic acid induces epigenetic modulation
of lymphoma cells. Blood Cancer J. 2017 7:7, 7(7), e587–
e587. https://doi.org/10.1038/bcj.2017.65
-
33. Young, J. I., Züchner, S., & Wang, G. (2015). Regulation of
the Epigenome by Vitamin C. Annu Rev Nutr. 35(1), 545–564.
https://doi.org/10.1146/ANNUREV-NUTR-071714-034228
-
34. Cimmino, L., Dolgalev, I., Wang, Y., Yoshimi, A., Martin, G.
H., Wang, J., Ng, V., Xia, B., Witkowski, M. T., Mitchell-
Flack, M., Grillo, I., Bakogianni, S., Ndiaye-Lobry, D., Martín,
M. T., Guillamot, M., Banh, R. S., Xu, M., Figueroa, M. E.,
Dickins, R. A., Aifantis, I. (2017). Restoration of TET2 Function
Blocks Aberrant Self-Renewal and Leukemia Progression.
Cell. 170(6), 1079-1095.e20. https://doi.org/10.1016/J.
CELL.2017.07.032
-
35. Pavlovic, V., Ciric, M., Petkovic, M., & Golubovic, M. (2023).
Vitamin C and epigenetics: A short physiological overview.
Open Med. 18(1). https://doi.org/10.1515/MED-2023-0688
-
36. Ravasco, P. (2019). Nutrition in Cancer Patients. J Clin Med.
2019, Vol. 8, Page 1211, 8(8), 1211. https://doi.org/10.3390/
JCM8081211
-
37. Greenwald, P., Clifford, C. K., & Milner, J. A. (2001). Diet and
Cancer Prevention. European Eur J Cancer. 37(8), 948–965.
https://doi.org/10.1016/S0959-8049(01)00070-3
-
38. Xu, K., Peng, R., Zou, Y., Jiang, X., Sun, Q., & Song, C.
(2022). Vitamin C intake and multiple health outcomes: an
umbrella review of systematic reviews and meta-analyses. Int
J Food Sci Nutr. 73(5), 588–599. https://doi.org/10.1080/0963
7486.2022.2048359
-
39. Chen, Z., Huang, Y., Cao, D., Qiu, S., Chen, B., Li, J., Bao,
Y., Wei, Q., Han, P., & Liu, L. (2022). Vitamin C Intake and
Cancers: An Umbrella Review. Front Nutr. 8, 812394. https://
doi.org/10.3389/FNUT.2021.812394
-
40. Fu, Y., Xu, F., Jiang, L., Miao, Z., Liang, X., Yang, J., Larsson,
S. C., & Zheng, J. S. (2021). Circulating vitamin C concentration
and risk of cancers: a Mendelian randomization study.
BMC Med. 19(1), 1–14. https://doi.org/10.1186/S12916-021-
02041-1/FIGURES/5
-
41. Yin, L., Yan, H., Chen, K., Ji, Z., Zhang, X., Ji, G., & Zhang,
B. (2022). Diet-Derived Circulating Antioxidants and Risk
of Digestive System Tumors: A Mendelian Randomization
Study. Nutrients. 14(16), 3274. https://doi.org/10.3390/
NU14163274/S1
-
42. Zhao, H., & Jin, X. (2022). Causal associations between dietary
antioxidant vitamin intake and lung cancer: A Mendelian
randomization study. Front Nutr. 9, 965911. https://doi.
org/10.3389/FNUT.2022.965911
-
43. Larsson, S. C., Mason, A. M., Vithayathil, M., Carter, P., Kar,
S., Zheng, J. S., & Burgess, S. (2022). Circulating vitamin
C and digestive system cancers: Mendelian randomization
study. Clin Nutr. 41(9), 2031–2035. https://doi.org/10.1016/J.
CLNU.2022.07.040
-
44. Abdel-Latif, M., Babar, M., Kelleher, D., & Reynolds, J.
(2019). A pilot study of the impact of Vitamin C supplementation
with neoadjuvant chemoradiation on regulators of inflammation
and carcinogenesis in esophageal cancer patients. J
Cancer Res Cell Ther. 15(1), 185–191. https://doi.org/10.4103/
JCRT.JCRT_763_16
-
45. Furqan, M., Abu-Hejleh, T., Stephens, L. M., Hartwig, S. M.,
Mott, S. L., Pulliam, C. F., Petronek, M., Henrich, J. B., Fath,
M. A., Houtman, J. C., Varga, S. M., Bodeker, K. L., Bossler,
A. D., Bellizzi, A. M., Zhang, J., Monga, V., Mani, H., Ivanovic,
M., Smith, B. J., Allen, B. G. (2022). Pharmacological
ascorbate improves the response to platinum-based chemotherapy
in advanced stage non-small cell lung cancer. Redox Biol.
53, 102318. https://doi.org/10.1016/J.REDOX.2022.102318
-
46. Hoppe, C., Freuding, M., Büntzel, J., Münstedt, K., & Hübner,
J. (2021). Clinical efficacy and safety of oral and intravenous
vitamin C use in patients with malignant diseases. J Cancer
Res Clin Oncol. 147(10), 3025–3042. https://doi.org/10.1007/
S00432-021-03759-4/FIGURES/2
-
47. Cameron, E., & Campbell, A. (1974). The orthomolecular treatment
of cancer II. Clinical trial of high-dose ascorbic acid
supplements in advanced human cancer. Chem Biol Interact.
9(4), 285–315. https://doi.org/10.1016/0009-2797(74)90019-
2
-
48. Cameron, E., Campbell, A., & Jack, T. (1975). The orthomolecular
treatment of cancer: III. Reticulum cell sarcoma:
Double complete regression induced by high-dose ascorbic
acid therapy. Chem Biol Interact. 11(5), 387–393. https://doi.
org/10.1016/0009-2797(75)90007-1
-
49. Cameron, E., & Pauling, L. (1976). Supplemental ascorbate in
the supportive treatment of cancer: Prolongation of survival
times in terminal human cancer. Proc Natl Acad Sci U S A.
73(10), 3685–3689. https://doi.org/10.1073/PNAS.73.10.3685
-
50. Carr, A. C. (2019). Vitamin C administration in the critically
ill: A summary of recent meta-analyses. Crit Care. 23(1), 1–3.
https://doi.org/10.1186/S13054-019-2538-Y/TABLES/1
-
51. Levine, M., Padayatty, S. J., & Espey, M. G. (2011). Vitamin
C: A Concentration-Function Approach Yields Pharmacology
and Therapeutic Discoveries. Adv Nutr. 2(2), 78–88. https://
doi.org/10.3945/AN.110.000109
-
52. Rasmussen, K. D., & Helin, K. (2016). Role of TET enzymes
in DNA methylation, development, and cancer. Genes Dev.
30(7), 733–750. https://doi.org/10.1101/GAD.276568.115
-
53. van Gorkom, G. N. Y., Lookermans, E. L., Van Elssen, C. H.
M. J., & Bos, G. M. J. (2019). The Effect of Vitamin C (Ascorbic
Acid) in the Treatment of Patients with Cancer: A Systematic
Review. Nutrients. 2019, Vol. 11, Page 977, 11(5), 977.
https://doi.org/10.3390/NU11050977
-
54. Wang, F., He, M. M., Xiao, J., Zhang, Y. Q., Yuan, X. L., Fang,
W. J., Zhang, Y., Wang, W., Hu, X. H., Ma, Z. G., Yao, Y. C.,
Zhuang, Z. X., Zhou, F. X., Ying, J. E., Yuan, Y., Zou, Q. F.,
Guo, Z. Q., Wu, X. Y., Jin, Y., Xu, R. H. (2022). A Randomized,
Open-Label, Multicenter, Phase 3 Study of High-Dose
Vitamin C Plus FOLFOX ± Bevacizumab versus FOLFOX
± Bevacizumab in Unresectable Untreated Metastatic Colorectal
Cancer (VITALITY Study). Clin Cancer Res.28(19),
4232–4239. https://doi.org/10.1158/1078-0432.CCR-22-
0655/707466/AM/A-RANDOMIZED-OPEN-LABELMULTICENTER-
PHASE-3-STUDY
-
55. van Gorkom, G. N. Y., Boerenkamp, L. S., Gijsbers, B. L. M.
G., van Ojik, H. H., Wodzig, W. K. W. H., Wieten, L., Van Elssen,
C. H. M. J., & Bos, G. M. J. (2022). No Effect of Vitamin
C Administration on Neutrophil Recovery in Autologous Stem
Cell Transplantation for Myeloma or Lymphoma: A Blinded,
Randomized Placebo-Controlled Trial. Nutrients. 2022,
Vol. 14, Page 4784, 14(22), 4784. https://doi.org/10.3390/
NU14224784
-
56. Park, J. Y., Baek, J. W., Yu, J., Kim, C. S., Bae, J., & Kim,
Y. K. (2023). Vitamin C and catheter-related bladder discomfort
after transurethral resection of bladder tumor: A doubleblind,
randomized, placebo-controlled study. J Clin Anesth. 89,
111191. https://doi.org/10.1016/J.JCLINANE.2023.111191
-
57. Gillberg, L., Ørskov, A. D., Nasif, A., Ohtani, H., Madaj, Z.,
Hansen, J. W., Rapin, N., Mogensen, J. B., Liu, M., Dufva,
I. H., Lykkesfeldt, J., Hajkova, P., Jones, P. A., & Grønbæk,
K. (2019). Oral vitamin C supplementation to patients with
myeloid cancer on azacitidine treatment: Normalization of
plasma vitamin C induces epigenetic changes. Clin Epigenetics.
11(1), 1–11. https://doi.org/10.1186/S13148-019-0739-5/
FIGURES/4