Review
BibTex RIS Cite

Piperazine in Antitubercular Agents

Year 2024, Volume: 44 Issue: 3, 275 - 288, 01.09.2024
https://doi.org/10.52794/hujpharm.1519545

Abstract

Tuberculosis is a deadly, contagious disease caused by the bacterium Mycobacterium tuberculosis. The emergence of multidrug-resistant tuberculosis strains has made the treatment of the disease challenging. Therefore, developing potent antitubercular compounds that can overcome drug resistance with low side effects is an urgent need. Piperazine is a cyclic structure composed of two methylene groups linked by two nitrogen atoms. In drugs approved by the FDA, the piperazine structure is one of the most commonly used heterocyclic rings. Piperazine and its derivatives are found in the structure of many compounds with various pharmacological effects. Rifampicin, ciprofloxacin, and ofloxacin are some antitubercular drugs that contain a piperazine structure. This review explores recent research on piperazine-based drugs for tuberculosis treatment and aims to foster the development of innovative antitubercular agents.

References

  • 1. World Health Organization (WHO), Global tuberculosis report (2023). https://wwwwhoint/teams/global-tuberculosisprogramme/ tb-reports/global-tuberculosis-report-2023. 2023
  • 2. Somoskovi A, Dormandy J, Parsons LM, Kaswa M, Goh KS, Rastogi N, et al. Sequencing of the pncA gene in members of the Mycobacterium tuberculosis complex has important diagnostic applications: Identification of a species-specific pncA mutation in “Mycobacterium canettii” and the reliable and rapid predictor of pyrazinamide resistance. J Clin Microbiol. 2007;45(2):595-9. https://doi.org/10.1128/jcm.01454-06
  • 3. Schaller MA, Wicke F, Foerch C, Weidauer S. Central Nervous System Tuberculosis. Clin Neuroradiol. 2019;29(1):3-18. https://doi.org/10.1007/s00062-018-0726-9
  • 4. Alsayed SSR, Lun S, Payne A, Bishai WR, Gunosewoyo H. Facile synthesis and antimycobacterial activity of isoniazid, pyrazinamide and ciprofloxacin derivatives. Chem Biol Drug Des. 2021;97(6):1137-50. https://doi.org/10.1111/cbdd.13836
  • 5. Singh V, Pacitto A, Donini S, Ferraris DM, Boros S, Illyes E, et al. Synthesis and Structure-Activity relationship of 1-(5-isoquinolinesulfonyl)piperazine analogues as inhibitors of Mycobacterium tuberculosis IMPDH. Eur J Med Chem. 2019;174:309-29. https://doi.org/10.1016/j.ejmech. 2019.04.027
  • 6. Patel VR, Park Won S. An Evolving Role of Piperazine Moieties in Drug Design and Discovery. Mini-Rev Med Chem. 2013;13(11):1579-601. http://dx.doi.org/10.2174/1389557511 3139990073
  • 7. Shaquiquzzaman M, Verma G, Marella A, Akhter M, Akhtar W, Khan MF, et al. Piperazine scaffold: A remarkable tool in generation of diverse pharmacological agents. Eur J Med Chem. 2015;102:487-529. https://doi.org/10.1016/j.ejmech. 2015.07.026
  • 8. Vitaku E, Smith DT, Njardarson JT. Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals. J Med Chem. 2014;57(24):10257-74. https://doi.org/10.1021/ jm501100b
  • 9. Romanelli MN, Braconi L, Gabellini A, Manetti D, Marotta G, Teodori E. Synthetic Approaches to Piperazine-Containing Drugs Approved by FDA in the Period of 2011–2023. Molecules [Internet]. 2024; 29(1). Available from: https://doi. org/10.3390/molecules29010068.
  • 10. Zhang R-H, Guo H-Y, Deng H, Li J, Quan Z-S. Piperazine skeleton in the structural modification of natural products: a review. J Enzyme Inhib Med Chem. 2021;36(1):1165-97. https://doi.org/10.1080/14756366.2021.1931861
  • 11. Rachelson MH, Ferguson WR. Piperazine in the treatment of enterobiasis. AMA Am J Dis Child. 1955;89(3):346-9. doi:10.1001/archpedi.1955.02050110412013
  • 12. Fang Z, Zhang B, Xing W, Yu H, Xing C, Gong N, et al. An Evolving Role of Aqueous Piperazine to Improve the Solubility of Non-Steroidal Anti-Inflammatory Drugs. J Pharm Sci. 2022;111(10):2839-47. https://doi.org/10.1016/j. xphs.2022.05.009
  • 13. Girase PS, Dhawan S, Kumar V, Shinde SR, Palkar MB, Karpoormath R. An appraisal of anti-mycobacterial activity with structure-activity relationship of piperazine and its analogues: A review. Eur J Med Chem. 2021;210:112967. https://doi. org/10.1016/j.ejmech.2020.112967
  • 14. Evranos-Aksöz B. New drug candidates in tuberculosis treatment. Türk Hijyen ve Deneysel Biyoloji Dergisi. 2014;71:207-16. https://doi.org/10.5505/TurkHijyen. 2014.35492
  • 15. O’Brien RJ, Spigelman M. New Drugs for Tuberculosis: Current Status and Future Prospects. Clin Chest Med. 2005;26(2):327- 40. https://doi.org/10.1016/j.ccm.2005.02.013
  • 16. Biltekin N, Ülger M. Tüberküloz tedavisinde kullanılan antitüberküloz ilaçlar Antituberculosis drugs used in the treatment of tuberculosis. Mersin Üniversitesi Sağlık Bilimleri Dergisi. 2023;3:525-42. https://doi.org/10.26559/mersinsbd.1213832
  • 17. Maruri F, Sterling TR, Kaiga AW, Blackman A, van der Heijden YF, Mayer C, et al. A systematic review of gyrase mutations associated with fluoroquinolone-resistant Mycobacterium tuberculosis and a proposed gyrase numbering system. J Antimicrob Chemother. 2012;67(4):819-31. https://doi. org/10.1093/jac/dkr566
  • 18. Zhanel GG, Walkty A, Vercaigne L, Karlowsky JA, Embil J, Gin AS, et al. The new fluoroquinolones: A critical review. Can J Infect Dis. 1999;10(3):207-38. https://doi. org/10.1155/1999/378394
  • 19. Sood R, Rao M, Singhal S, Rattan A. Activity of RBx 7644 and RBx 8700, new investigational oxazolidinones, against Mycobacterium tuberculosis infected murine macrophages. Int J Antimicrob Agents. 2005;25(6):464-8. https://doi. org/10.1016/j.ijantimicag.2005.01.021
  • 20. Emanuele P, Mario CR, Giovanni Battista M. Regimens to treat multidrug-resistant tuberculosis: past, present and future perspectives. European Respiratory Review. 2019;28(152):190035. https://doi.org/10.1183/16000617.0035-2019
  • 21. Kilbile JT, Tamboli Y, Gadekar SS, Islam I, Supuran CT, Sapkal SB. An insight into the biological activity and structurebased drug design attributes of sulfonylpiperazine derivatives. J Mol Struct. 2023;1278:134971. https://doi.org/10.1016/j. molstruc.2023.134971
  • 22. Rizwan M, Noreen S, Asim S, Liaqat Z, Shaheen M, Ibrahim H. A comprehensive review on the synthesis of substituted piperazine and its novel bio-medicinal applications. Chemistry of Inorganic Materials. 2024;2:100041. https://doi. org/10.1016/j.cinorg.2024.100041
  • 23. Agrawal KM, Talele GS. Synthesis and antibacterial, antimycobacterial and docking studies of novel N-piperazinyl fluoroquinolones. Med Chem Res. 2013;22(2):818-31. https://doi. org/10.1007/s00044-012-0074-2
  • 24. Kamal A, Swapna P, Shetti RVCRNC, Shaik AB, Narasimha Rao MP, Sultana F, et al. Anti-tubercular agents. Part 7: A new class of diarylpyrrole–oxazolidinone conjugates as antimycobacterial agents. Eur J Med Chem. 2013;64:239-51. https:// doi.org/10.1016/j.ejmech.2013.03.027
  • 25. Chauhan K, Sharma M, Trivedi P, Chaturvedi V, Chauhan PMS. New class of methyl tetrazole based hybrid of (Z)-5- benzylidene-2-(piperazin-1-yl)thiazol-4(%H)-one as potent antitubercular agents. Bioorg Med Chem. 2014;24(17):4166- 70. https://doi.org/10.1016/j.bmcl.2014.07.061
  • 26. Jallapally A, Addla D, Yogeeswari P, Sriram D, Kantevari S. 2-Butyl-4-chloroimidazole based substituted piperazine-thiosemicarbazone hybrids as potent inhibitors of Mycobacterium tuberculosis. Bioorg Med Chem. 2014;24(23):5520-4. https:// doi.org/10.1016/j.bmcl.2014.09.084
  • 27. Nagesh HN, Suresh A, Sairam SDSS, Sriram D, Yogeeswari P, Chandra Sekhar KVG. Design, synthesis and antimycobacterial evaluation of 1-(4-(2-substitutedthiazol-4-yl)phenethyl)- 4-(3-(4-substitutedpiperazin-1-yl)alkyl)piperazine hybrid analogues. Eur J Med Chem. 2014;84:605-13. https://doi. org/10.1016/j.ejmech.2014.07.067
  • 28. Naidu KM, Suresh A, Subbalakshmi J, Sriram D, Yogeeswari P, Raghavaiah P, et al. Design, synthesis and antimycobacterial activity of various 3-(4-(substitutedsulfonyl)piperazin-1-yl) benzo[d]isoxazole derivatives. Eur J Med Chem. 2014;87:71- 8. https://doi.org/10.1016/j.ejmech.2014.09.043
  • 29. Patel KN, Telvekar VN. Design, synthesis and antitubercular evaluation of novel series of N-[4-(piperazin-1-yl)phenyl] cinnamamide derivatives. Eur J Med Chem. 2014;75:43-56. https://doi.org/10.1016/j.ejmech.2014.01.024
  • 30. Suresh N, Nagesh HN, Renuka J, Rajput V, Sharma R, Khan IA, et al. Synthesis and evaluation of 1-cyclopropyl-6- fluoro-1,4-dihydro-4-oxo-7-(4-(2-(4-substitutedpiperazin- 1-yl)acetyl)piperazin-1-yl)quinoline-3-carboxylic acid derivatives as anti-tubercular and antibacterial agents. Eur J Med Chem. 2014;71:324-32. https://doi.org/10.1016/j.ejmech. 2013.10.055
  • 31. Medapi B, Suryadevara P, Renuka J, Sridevi JP, Yogeeswari P, Sriram D. 4-Aminoquinoline derivatives as novel Mycobacterium tuberculosis GyrB inhibitors: Structural optimization, synthesis and biological evaluation. Eur J Med Chem. 2015;103:1-16. https://doi.org/10.1016/j.ejmech.2015.06.032
  • 32. Nair V, Okello MO, Mangu NK, Seo BI, Gund MG. A novel molecule with notable activity against multi-drug resistant tuberculosis. Bioorg Med Chem. 2015;25(6):1269-73. https:// doi.org/10.1016/j.bmcl.2015.01.050
  • 33. Chollet A, Mori G, Menendez C, Rodriguez F, Fabing I, Pasca MR, et al. Design, synthesis and evaluation of new GEQ derivatives as inhibitors of InhA enzyme and Mycobacterium tuberculosis growth. Eur J Med Chem. 2015;101:218-35. https://doi.org/10.1016/j.ejmech.2015.06.035
  • 34. Penta A, Franzblau S, Wan B, Murugesan S. Design, synthesis and evaluation of diarylpiperazine derivatives as potent antitubercular agents. Eur J Med Chem. 2015;105:238-44. https:// doi.org/10.1016/j.ejmech.2015.10.024
  • 35. Rotta M, Pissinate K, Villela AD, Back DF, Timmers LFSM, Bachega JFR, et al. Piperazine derivatives: Synthesis, inhibition of the Mycobacterium tuberculosis enoyl-acyl carrier protein reductase and SAR studies. Eur J Med Chem. 2015;90:436- 47. https://doi.org/10.1016/j.ejmech.2014.11.034
  • 36. Peng C-T, Gao C, Wang N-Y, You X-Y, Zhang L-D, Zhu Y-X, et al. Synthesis and antitubercular evaluation of 4-carbonyl piperazine substituted 1,3-benzothiazin-4-one derivatives. Bioorg Med Chem. 2015;25(7):1373-6. https://doi.org/10.1016/j. bmcl.2015.02.061
  • 37. Jeankumar VU, Reshma RS, Vats R, Janupally R, Saxena S, Yogeeswari P, et al. Engineering another class of anti-tubercular lead: Hit to lead optimization of an intriguing class of gyrase ATPase inhibitors. Eur J Med Chem. 2016;122:216-31. https://doi.org/10.1016/j.ejmech.2016.06.042
  • 38. Bobesh KA, Renuka J, Srilakshmi RR, Yellanki S, Kulkarni P, Yogeeswari P, et al. Replacement of cardiotoxic aminopiperidine linker with piperazine moiety reduces cardiotoxicity? Mycobacterium tuberculosis novel bacterial topoisomerase inhibitors. Bioorg Med Chem. 2016;24(1):42-52. https://doi. org/10.1016/j.bmc.2015.11.039
  • 39. De Vita D, Pandolfi F, Cirilli R, Scipione L, Di Santo R, Friggeri L, et al. Discovery of in vitro antitubercular agents through in silico ligand-based approaches. Eur J Med Chem. 2016;121:169-80. https://doi.org/10.1016/j.ejmech. 2016.05.032
  • 40. Majewski MW, Tiwari R, Miller PA, Cho S, Franzblau SG, Miller MJ. Design, syntheses, and anti-tuberculosis activities of conjugates of piperazino-1,3-benzothiazin-4- ones (pBTZs) with 2,7-dimethylimidazo [1,2-a]pyridine-3- carboxylic acids and 7-phenylacetyl cephalosporins. Bioorg Med Chem. 2016;26(8):2068-71. https://doi.org/10.1016/j. bmcl.2016.02.076
  • 41. Moraski GC, Seeger N, Miller PA, Oliver AG, Boshoff HI, Cho S, et al. Arrival of Imidazo[2,1-b]thiazole-5-carboxamides: Potent Anti-tuberculosis Agents That Target QcrB. ACS Infect Dis. 2016;2(6):393-8. https://doi.org/10.1021/ acsinfecdis.5b00154
  • 42. Naidu KM, Srinivasarao S, Agnieszka N, Ewa A-K, Kumar MMK, Chandra Sekhar KVG. Seeking potent anti-tubercular agents: Design, synthesis, anti-tubercular activity and docking study of various ((triazoles/indole)-piperazin-1- yl/1,4-diazepan-1-yl)benzo[d]isoxazole derivatives. Bioorg Med Chem. 2016;26(9):2245-50. https://doi.org/10.1016/j. bmcl.2016.03.059
  • 43. Pulipati L, Sridevi JP, Yogeeswari P, Sriram D, Kantevari S. Synthesis and antitubercular evaluation of novel dibenzo[b,d] thiophene tethered imidazo[1,2-a]pyridine-3-carboxamides. Bioorg Med Chem. 2016;26(13):3135-40. https://doi. org/10.1016/j.bmcl.2016.04.088
  • 44. Roh J, Karabanovich G, Vlčková H, Carazo A, Němeček J, Sychra P, et al. Development of water-soluble 3,5-dinitrophenyl tetrazole and oxadiazole antitubercular agents. Bioorg Med Chem. 2017;25(20):5468-76. https://doi.org/10.1016/j. bmc.2017.08.010
  • 45. Goněc T, Malík I, Csöllei J, Jampílek J, Stolaříková J, Solovič I, et al. Synthesis and In Vitro Antimycobacterial Activity of Novel N-Arylpiperazines Containing an Ethane-1,2-diyl Connecting Chain. Molecules [Internet]. 2017; 22(12). https://doi. org/10.3390/molecules22122100.
  • 46. Piton J, Vocat A, Lupien A, Foo Caroline S, Riabova O, Makarov V, et al. Structure-Based Drug Design and Characterization of Sulfonyl-Piperazine Benzothiazinone Inhibitors of DprE1 from Mycobacterium tuberculosis. AAC 2018;62(10):10.1128/aac.00681-18. https://doi.org/10.1128/ aac.00681-18
  • 47. Zhao SJ, Lv ZS, Deng JL, Zhang GD, Xu Z. Pyrrolidinecontaining or Piperazine-containing Nitrofuranylamides: Design, Synthesis, and In Vitro Anti-mycobacterial Activities. J Heterocycl Chem. 2018;55(12):2996-3000. https://doi. org/10.1002/jhet.3340
  • 48. El-wahab HAAA, Accietto M, Marino LB, McLean KJ, Levy CW, Abdel-Rahman HM, et al. Design, synthesis and evaluation against Mycobacterium tuberculosis of azole piperazine derivatives as dicyclotyrosine (cYY) mimics. Bioorg Med Chem. 2018;26(1):161-76. https://doi.org/10.1016/j. bmc.2017.11.030
  • 49. Marvadi SK, Krishna VS, Sriram D, Kantevari S. Synthesis of novel morpholine, thiomorpholine and N-substituted piperazine coupled 2-(thiophen-2-yl)dihydroquinolines as potent inhibitors of Mycobacterium tuberculosis. Eur J Med Chem. 2019;164:171-8. https://doi.org/10.1016/j.ejmech. 2018.12.043
  • 50. Sirim MM, Krishna VS, Sriram D, Unsal Tan O. Novel benzimidazole-acrylonitrile hybrids and their derivatives: Design, synthesis and antimycobacterial activity. Eur J Med Chem. 2020;188:112010. https://doi.org/10.1016/j.ejmech. 2019.112010
  • 51. Srinivasarao S, Nandikolla A, Suresh A, Calster KV, De Voogt L, Cappoen D, et al. Seeking potent anti-tubercular agents: design and synthesis of substituted-N-(6-(4-(pyrazine-2- carbonyl)piperazine/homopiperazine-1-yl)pyridin-3-yl)benzamide derivatives as anti-tubercular agents. RSC Advances. 2020;10(21):12272-88. https://doi.org/10.1039/D0RA01348J
  • 52. Chitti S, Van Calster K, Cappoen D, Nandikolla A, Khetmalis YM, Cos P, et al. Design, synthesis and biological evaluation of benzo-[d]-imidazo-[2,1-b]-thiazole and imidazo-[2,1-b]- thiazole carboxamide triazole derivatives as antimycobacterial agents. RSC Advances. 2022;12(35):22385-401. https://doi. org/10.1039/D2RA03318F
  • 53. Bi Y, Chen X, Xue Y, Liu K, Zhang Y, Gu Q. Effective Synthesis and Anti-Mycobacterial Activity of Isoxazole- Substituted Piperazine Derivatives. ChemistrySelect. 2023;8(18):e202300551. https://doi.org/10.1002/ slct.202300551
  • 54. Reddyrajula R, Etikyala U, Manga V, kumar Dalimba U. Discovery of 1,2,3-triazole incorporated indole-piperazines as potent antitubercular agents: Design, synthesis, in vitro biological evaluation, molecular docking and ADME studies. Bioorg Med Chem. 2024;98:117562. https://doi.org/10.1016/j. bmc.2023.117562

Antitüberküler Bileşiklerde Piperazin Yapısı

Year 2024, Volume: 44 Issue: 3, 275 - 288, 01.09.2024
https://doi.org/10.52794/hujpharm.1519545

Abstract

Tüberküloz, Mycobacterium tuberculosis basilinin sebep olduğu öldürücü, bulaşıcı bir hastalıktır. Çoklu ilaca dirençli tüberküloz suşlarının ortaya çıkması hastalığın tedavisini zorlaştırmıştır. Bu nedenle ilaç direncinin üstesinden gelebilecek ve düşük yan etkili güçlü antitüberküler bileşiklerin geliştirilmesi acil bir ihtiyaçtır. Piperazin, iki adet azot atomu ile birbirine bağlı iki metilen grubundan oluşan bir siklik yapıdır. FDA tarafından onaylanan ilaçlarda piperazin yapısı en çok kullanılan heterosiklik halkalardan biridir. Piperazin ve türevleri, çeşitli farmakolojik etkilere sahip birçok bileşiğin yapısında yer almaktadır. Rifampisin, siprofloksasin ve ofloksasin yapısında piperazin taşıyan antitüberküler ilaçlardan bazılarıdır. Bu derleme, piperazin içeren antitüberküler ilaçlar üzerinde yapılan son araştırmaları gözden geçirmekte ve yenilikçi antitüberküler bileşiklerin tasarımına yardımcı olmayı amaçlamaktadır.

References

  • 1. World Health Organization (WHO), Global tuberculosis report (2023). https://wwwwhoint/teams/global-tuberculosisprogramme/ tb-reports/global-tuberculosis-report-2023. 2023
  • 2. Somoskovi A, Dormandy J, Parsons LM, Kaswa M, Goh KS, Rastogi N, et al. Sequencing of the pncA gene in members of the Mycobacterium tuberculosis complex has important diagnostic applications: Identification of a species-specific pncA mutation in “Mycobacterium canettii” and the reliable and rapid predictor of pyrazinamide resistance. J Clin Microbiol. 2007;45(2):595-9. https://doi.org/10.1128/jcm.01454-06
  • 3. Schaller MA, Wicke F, Foerch C, Weidauer S. Central Nervous System Tuberculosis. Clin Neuroradiol. 2019;29(1):3-18. https://doi.org/10.1007/s00062-018-0726-9
  • 4. Alsayed SSR, Lun S, Payne A, Bishai WR, Gunosewoyo H. Facile synthesis and antimycobacterial activity of isoniazid, pyrazinamide and ciprofloxacin derivatives. Chem Biol Drug Des. 2021;97(6):1137-50. https://doi.org/10.1111/cbdd.13836
  • 5. Singh V, Pacitto A, Donini S, Ferraris DM, Boros S, Illyes E, et al. Synthesis and Structure-Activity relationship of 1-(5-isoquinolinesulfonyl)piperazine analogues as inhibitors of Mycobacterium tuberculosis IMPDH. Eur J Med Chem. 2019;174:309-29. https://doi.org/10.1016/j.ejmech. 2019.04.027
  • 6. Patel VR, Park Won S. An Evolving Role of Piperazine Moieties in Drug Design and Discovery. Mini-Rev Med Chem. 2013;13(11):1579-601. http://dx.doi.org/10.2174/1389557511 3139990073
  • 7. Shaquiquzzaman M, Verma G, Marella A, Akhter M, Akhtar W, Khan MF, et al. Piperazine scaffold: A remarkable tool in generation of diverse pharmacological agents. Eur J Med Chem. 2015;102:487-529. https://doi.org/10.1016/j.ejmech. 2015.07.026
  • 8. Vitaku E, Smith DT, Njardarson JT. Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals. J Med Chem. 2014;57(24):10257-74. https://doi.org/10.1021/ jm501100b
  • 9. Romanelli MN, Braconi L, Gabellini A, Manetti D, Marotta G, Teodori E. Synthetic Approaches to Piperazine-Containing Drugs Approved by FDA in the Period of 2011–2023. Molecules [Internet]. 2024; 29(1). Available from: https://doi. org/10.3390/molecules29010068.
  • 10. Zhang R-H, Guo H-Y, Deng H, Li J, Quan Z-S. Piperazine skeleton in the structural modification of natural products: a review. J Enzyme Inhib Med Chem. 2021;36(1):1165-97. https://doi.org/10.1080/14756366.2021.1931861
  • 11. Rachelson MH, Ferguson WR. Piperazine in the treatment of enterobiasis. AMA Am J Dis Child. 1955;89(3):346-9. doi:10.1001/archpedi.1955.02050110412013
  • 12. Fang Z, Zhang B, Xing W, Yu H, Xing C, Gong N, et al. An Evolving Role of Aqueous Piperazine to Improve the Solubility of Non-Steroidal Anti-Inflammatory Drugs. J Pharm Sci. 2022;111(10):2839-47. https://doi.org/10.1016/j. xphs.2022.05.009
  • 13. Girase PS, Dhawan S, Kumar V, Shinde SR, Palkar MB, Karpoormath R. An appraisal of anti-mycobacterial activity with structure-activity relationship of piperazine and its analogues: A review. Eur J Med Chem. 2021;210:112967. https://doi. org/10.1016/j.ejmech.2020.112967
  • 14. Evranos-Aksöz B. New drug candidates in tuberculosis treatment. Türk Hijyen ve Deneysel Biyoloji Dergisi. 2014;71:207-16. https://doi.org/10.5505/TurkHijyen. 2014.35492
  • 15. O’Brien RJ, Spigelman M. New Drugs for Tuberculosis: Current Status and Future Prospects. Clin Chest Med. 2005;26(2):327- 40. https://doi.org/10.1016/j.ccm.2005.02.013
  • 16. Biltekin N, Ülger M. Tüberküloz tedavisinde kullanılan antitüberküloz ilaçlar Antituberculosis drugs used in the treatment of tuberculosis. Mersin Üniversitesi Sağlık Bilimleri Dergisi. 2023;3:525-42. https://doi.org/10.26559/mersinsbd.1213832
  • 17. Maruri F, Sterling TR, Kaiga AW, Blackman A, van der Heijden YF, Mayer C, et al. A systematic review of gyrase mutations associated with fluoroquinolone-resistant Mycobacterium tuberculosis and a proposed gyrase numbering system. J Antimicrob Chemother. 2012;67(4):819-31. https://doi. org/10.1093/jac/dkr566
  • 18. Zhanel GG, Walkty A, Vercaigne L, Karlowsky JA, Embil J, Gin AS, et al. The new fluoroquinolones: A critical review. Can J Infect Dis. 1999;10(3):207-38. https://doi. org/10.1155/1999/378394
  • 19. Sood R, Rao M, Singhal S, Rattan A. Activity of RBx 7644 and RBx 8700, new investigational oxazolidinones, against Mycobacterium tuberculosis infected murine macrophages. Int J Antimicrob Agents. 2005;25(6):464-8. https://doi. org/10.1016/j.ijantimicag.2005.01.021
  • 20. Emanuele P, Mario CR, Giovanni Battista M. Regimens to treat multidrug-resistant tuberculosis: past, present and future perspectives. European Respiratory Review. 2019;28(152):190035. https://doi.org/10.1183/16000617.0035-2019
  • 21. Kilbile JT, Tamboli Y, Gadekar SS, Islam I, Supuran CT, Sapkal SB. An insight into the biological activity and structurebased drug design attributes of sulfonylpiperazine derivatives. J Mol Struct. 2023;1278:134971. https://doi.org/10.1016/j. molstruc.2023.134971
  • 22. Rizwan M, Noreen S, Asim S, Liaqat Z, Shaheen M, Ibrahim H. A comprehensive review on the synthesis of substituted piperazine and its novel bio-medicinal applications. Chemistry of Inorganic Materials. 2024;2:100041. https://doi. org/10.1016/j.cinorg.2024.100041
  • 23. Agrawal KM, Talele GS. Synthesis and antibacterial, antimycobacterial and docking studies of novel N-piperazinyl fluoroquinolones. Med Chem Res. 2013;22(2):818-31. https://doi. org/10.1007/s00044-012-0074-2
  • 24. Kamal A, Swapna P, Shetti RVCRNC, Shaik AB, Narasimha Rao MP, Sultana F, et al. Anti-tubercular agents. Part 7: A new class of diarylpyrrole–oxazolidinone conjugates as antimycobacterial agents. Eur J Med Chem. 2013;64:239-51. https:// doi.org/10.1016/j.ejmech.2013.03.027
  • 25. Chauhan K, Sharma M, Trivedi P, Chaturvedi V, Chauhan PMS. New class of methyl tetrazole based hybrid of (Z)-5- benzylidene-2-(piperazin-1-yl)thiazol-4(%H)-one as potent antitubercular agents. Bioorg Med Chem. 2014;24(17):4166- 70. https://doi.org/10.1016/j.bmcl.2014.07.061
  • 26. Jallapally A, Addla D, Yogeeswari P, Sriram D, Kantevari S. 2-Butyl-4-chloroimidazole based substituted piperazine-thiosemicarbazone hybrids as potent inhibitors of Mycobacterium tuberculosis. Bioorg Med Chem. 2014;24(23):5520-4. https:// doi.org/10.1016/j.bmcl.2014.09.084
  • 27. Nagesh HN, Suresh A, Sairam SDSS, Sriram D, Yogeeswari P, Chandra Sekhar KVG. Design, synthesis and antimycobacterial evaluation of 1-(4-(2-substitutedthiazol-4-yl)phenethyl)- 4-(3-(4-substitutedpiperazin-1-yl)alkyl)piperazine hybrid analogues. Eur J Med Chem. 2014;84:605-13. https://doi. org/10.1016/j.ejmech.2014.07.067
  • 28. Naidu KM, Suresh A, Subbalakshmi J, Sriram D, Yogeeswari P, Raghavaiah P, et al. Design, synthesis and antimycobacterial activity of various 3-(4-(substitutedsulfonyl)piperazin-1-yl) benzo[d]isoxazole derivatives. Eur J Med Chem. 2014;87:71- 8. https://doi.org/10.1016/j.ejmech.2014.09.043
  • 29. Patel KN, Telvekar VN. Design, synthesis and antitubercular evaluation of novel series of N-[4-(piperazin-1-yl)phenyl] cinnamamide derivatives. Eur J Med Chem. 2014;75:43-56. https://doi.org/10.1016/j.ejmech.2014.01.024
  • 30. Suresh N, Nagesh HN, Renuka J, Rajput V, Sharma R, Khan IA, et al. Synthesis and evaluation of 1-cyclopropyl-6- fluoro-1,4-dihydro-4-oxo-7-(4-(2-(4-substitutedpiperazin- 1-yl)acetyl)piperazin-1-yl)quinoline-3-carboxylic acid derivatives as anti-tubercular and antibacterial agents. Eur J Med Chem. 2014;71:324-32. https://doi.org/10.1016/j.ejmech. 2013.10.055
  • 31. Medapi B, Suryadevara P, Renuka J, Sridevi JP, Yogeeswari P, Sriram D. 4-Aminoquinoline derivatives as novel Mycobacterium tuberculosis GyrB inhibitors: Structural optimization, synthesis and biological evaluation. Eur J Med Chem. 2015;103:1-16. https://doi.org/10.1016/j.ejmech.2015.06.032
  • 32. Nair V, Okello MO, Mangu NK, Seo BI, Gund MG. A novel molecule with notable activity against multi-drug resistant tuberculosis. Bioorg Med Chem. 2015;25(6):1269-73. https:// doi.org/10.1016/j.bmcl.2015.01.050
  • 33. Chollet A, Mori G, Menendez C, Rodriguez F, Fabing I, Pasca MR, et al. Design, synthesis and evaluation of new GEQ derivatives as inhibitors of InhA enzyme and Mycobacterium tuberculosis growth. Eur J Med Chem. 2015;101:218-35. https://doi.org/10.1016/j.ejmech.2015.06.035
  • 34. Penta A, Franzblau S, Wan B, Murugesan S. Design, synthesis and evaluation of diarylpiperazine derivatives as potent antitubercular agents. Eur J Med Chem. 2015;105:238-44. https:// doi.org/10.1016/j.ejmech.2015.10.024
  • 35. Rotta M, Pissinate K, Villela AD, Back DF, Timmers LFSM, Bachega JFR, et al. Piperazine derivatives: Synthesis, inhibition of the Mycobacterium tuberculosis enoyl-acyl carrier protein reductase and SAR studies. Eur J Med Chem. 2015;90:436- 47. https://doi.org/10.1016/j.ejmech.2014.11.034
  • 36. Peng C-T, Gao C, Wang N-Y, You X-Y, Zhang L-D, Zhu Y-X, et al. Synthesis and antitubercular evaluation of 4-carbonyl piperazine substituted 1,3-benzothiazin-4-one derivatives. Bioorg Med Chem. 2015;25(7):1373-6. https://doi.org/10.1016/j. bmcl.2015.02.061
  • 37. Jeankumar VU, Reshma RS, Vats R, Janupally R, Saxena S, Yogeeswari P, et al. Engineering another class of anti-tubercular lead: Hit to lead optimization of an intriguing class of gyrase ATPase inhibitors. Eur J Med Chem. 2016;122:216-31. https://doi.org/10.1016/j.ejmech.2016.06.042
  • 38. Bobesh KA, Renuka J, Srilakshmi RR, Yellanki S, Kulkarni P, Yogeeswari P, et al. Replacement of cardiotoxic aminopiperidine linker with piperazine moiety reduces cardiotoxicity? Mycobacterium tuberculosis novel bacterial topoisomerase inhibitors. Bioorg Med Chem. 2016;24(1):42-52. https://doi. org/10.1016/j.bmc.2015.11.039
  • 39. De Vita D, Pandolfi F, Cirilli R, Scipione L, Di Santo R, Friggeri L, et al. Discovery of in vitro antitubercular agents through in silico ligand-based approaches. Eur J Med Chem. 2016;121:169-80. https://doi.org/10.1016/j.ejmech. 2016.05.032
  • 40. Majewski MW, Tiwari R, Miller PA, Cho S, Franzblau SG, Miller MJ. Design, syntheses, and anti-tuberculosis activities of conjugates of piperazino-1,3-benzothiazin-4- ones (pBTZs) with 2,7-dimethylimidazo [1,2-a]pyridine-3- carboxylic acids and 7-phenylacetyl cephalosporins. Bioorg Med Chem. 2016;26(8):2068-71. https://doi.org/10.1016/j. bmcl.2016.02.076
  • 41. Moraski GC, Seeger N, Miller PA, Oliver AG, Boshoff HI, Cho S, et al. Arrival of Imidazo[2,1-b]thiazole-5-carboxamides: Potent Anti-tuberculosis Agents That Target QcrB. ACS Infect Dis. 2016;2(6):393-8. https://doi.org/10.1021/ acsinfecdis.5b00154
  • 42. Naidu KM, Srinivasarao S, Agnieszka N, Ewa A-K, Kumar MMK, Chandra Sekhar KVG. Seeking potent anti-tubercular agents: Design, synthesis, anti-tubercular activity and docking study of various ((triazoles/indole)-piperazin-1- yl/1,4-diazepan-1-yl)benzo[d]isoxazole derivatives. Bioorg Med Chem. 2016;26(9):2245-50. https://doi.org/10.1016/j. bmcl.2016.03.059
  • 43. Pulipati L, Sridevi JP, Yogeeswari P, Sriram D, Kantevari S. Synthesis and antitubercular evaluation of novel dibenzo[b,d] thiophene tethered imidazo[1,2-a]pyridine-3-carboxamides. Bioorg Med Chem. 2016;26(13):3135-40. https://doi. org/10.1016/j.bmcl.2016.04.088
  • 44. Roh J, Karabanovich G, Vlčková H, Carazo A, Němeček J, Sychra P, et al. Development of water-soluble 3,5-dinitrophenyl tetrazole and oxadiazole antitubercular agents. Bioorg Med Chem. 2017;25(20):5468-76. https://doi.org/10.1016/j. bmc.2017.08.010
  • 45. Goněc T, Malík I, Csöllei J, Jampílek J, Stolaříková J, Solovič I, et al. Synthesis and In Vitro Antimycobacterial Activity of Novel N-Arylpiperazines Containing an Ethane-1,2-diyl Connecting Chain. Molecules [Internet]. 2017; 22(12). https://doi. org/10.3390/molecules22122100.
  • 46. Piton J, Vocat A, Lupien A, Foo Caroline S, Riabova O, Makarov V, et al. Structure-Based Drug Design and Characterization of Sulfonyl-Piperazine Benzothiazinone Inhibitors of DprE1 from Mycobacterium tuberculosis. AAC 2018;62(10):10.1128/aac.00681-18. https://doi.org/10.1128/ aac.00681-18
  • 47. Zhao SJ, Lv ZS, Deng JL, Zhang GD, Xu Z. Pyrrolidinecontaining or Piperazine-containing Nitrofuranylamides: Design, Synthesis, and In Vitro Anti-mycobacterial Activities. J Heterocycl Chem. 2018;55(12):2996-3000. https://doi. org/10.1002/jhet.3340
  • 48. El-wahab HAAA, Accietto M, Marino LB, McLean KJ, Levy CW, Abdel-Rahman HM, et al. Design, synthesis and evaluation against Mycobacterium tuberculosis of azole piperazine derivatives as dicyclotyrosine (cYY) mimics. Bioorg Med Chem. 2018;26(1):161-76. https://doi.org/10.1016/j. bmc.2017.11.030
  • 49. Marvadi SK, Krishna VS, Sriram D, Kantevari S. Synthesis of novel morpholine, thiomorpholine and N-substituted piperazine coupled 2-(thiophen-2-yl)dihydroquinolines as potent inhibitors of Mycobacterium tuberculosis. Eur J Med Chem. 2019;164:171-8. https://doi.org/10.1016/j.ejmech. 2018.12.043
  • 50. Sirim MM, Krishna VS, Sriram D, Unsal Tan O. Novel benzimidazole-acrylonitrile hybrids and their derivatives: Design, synthesis and antimycobacterial activity. Eur J Med Chem. 2020;188:112010. https://doi.org/10.1016/j.ejmech. 2019.112010
  • 51. Srinivasarao S, Nandikolla A, Suresh A, Calster KV, De Voogt L, Cappoen D, et al. Seeking potent anti-tubercular agents: design and synthesis of substituted-N-(6-(4-(pyrazine-2- carbonyl)piperazine/homopiperazine-1-yl)pyridin-3-yl)benzamide derivatives as anti-tubercular agents. RSC Advances. 2020;10(21):12272-88. https://doi.org/10.1039/D0RA01348J
  • 52. Chitti S, Van Calster K, Cappoen D, Nandikolla A, Khetmalis YM, Cos P, et al. Design, synthesis and biological evaluation of benzo-[d]-imidazo-[2,1-b]-thiazole and imidazo-[2,1-b]- thiazole carboxamide triazole derivatives as antimycobacterial agents. RSC Advances. 2022;12(35):22385-401. https://doi. org/10.1039/D2RA03318F
  • 53. Bi Y, Chen X, Xue Y, Liu K, Zhang Y, Gu Q. Effective Synthesis and Anti-Mycobacterial Activity of Isoxazole- Substituted Piperazine Derivatives. ChemistrySelect. 2023;8(18):e202300551. https://doi.org/10.1002/ slct.202300551
  • 54. Reddyrajula R, Etikyala U, Manga V, kumar Dalimba U. Discovery of 1,2,3-triazole incorporated indole-piperazines as potent antitubercular agents: Design, synthesis, in vitro biological evaluation, molecular docking and ADME studies. Bioorg Med Chem. 2024;98:117562. https://doi.org/10.1016/j. bmc.2023.117562
There are 54 citations in total.

Details

Primary Language Turkish
Subjects Pharmaceutical Chemistry
Journal Section Review Articles
Authors

Merve Zengin 0000-0003-1586-5448

Seyitcan Doğanel 0009-0000-6191-1535

Oya Ünsal Tan 0000-0002-4152-069X

Publication Date September 1, 2024
Submission Date July 20, 2024
Acceptance Date August 12, 2024
Published in Issue Year 2024 Volume: 44 Issue: 3

Cite

Vancouver Zengin M, Doğanel S, Tan OÜ. Antitüberküler Bileşiklerde Piperazin Yapısı. HUJPHARM. 2024;44(3):275-88.